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ABSTRACT

We propose Amortized Posterior Sampling (APS), a novel variational inference
approach for efficient posterior sampling in inverse problems. Our method trains
a conditional flow model to minimize the divergence between the variational dis-
tribution and the posterior distribution implicitly defined by the diffusion model.
This results in a powerful, amortized sampler capable of generating diverse poste-
rior samples with a single neural function evaluation, generalizing across various
measurements. Unlike existing methods, our approach is unsupervised, requires
no paired training data, and is applicable to both Euclidean and non-Euclidean
domains. We demonstrate its effectiveness on a range of tasks, including image
restoration, manifold signal reconstruction, and climate data imputation. APS
significantly outperforms existing approaches in computational efficiency while
maintaining competitive reconstruction quality, enabling real-time, high-quality
solutions to inverse problems across diverse domains.

1 INTRODUCTION

We consider the following inverse problem

y = A(x) + n, y ∈ Rm, x ∈ Rn, A : Rn 7→ Rm, n ∼ N (0, σ2
yI), (1)

where the goal is to infer an unknown signal x from the degraded measurement y obtained through
some forward operator A, leveraging the information contained in the measurement and the prior
p(x). A powerful modern way to define the prior is through diffusion models (Ho et al., 2020;
Song et al., 2021c), where we train a parametrized model sθ to estimate the gradient of the log prior
∇x log p(x).

Solving inverse problems with the diffusion model can be achieved through posterior sampling
with Bayesian inference. Arguably the standard way to achieve this is through modifying the re-
verse diffusion process of diffusion models (Daras et al., 2024). This adjustment shifts the focus
from sampling from the trained prior distribution pθ(x0) to sampling from the posterior distribu-
tion pθ(x0|y). This transition is facilitated by employing iterative projections to the measurement
subspace (Kadkhodaie & Simoncelli, 2021; Song et al., 2021c; Chung et al., 2022b; Wang et al.,
2023), guiding the samples through gradients pointing towards measurement consistency (Chung
et al., 2023a; Song et al., 2023a). It should be noted that diffusion models learn the gradient of the
prior, and diffusion samplers (Song et al., 2021a; Lu et al., 2022; Song et al., 2021c) are methods that
numerically solve the probability-flow ODE (PF-ODE) that defines the reverse diffusion sampling
trajectory. Consequently, regardless of the specifics of the methods, standard diffusion model-based
inverse problem solvers (DIS), even those that are considered fast, take at least a few tens of neural
function evaluation (NFE), making them less effective for time-critical applications such as medical
imaging and computational photography.

Another class of methods (Feng et al., 2023; Feng & Bouman, 2023) introduces the use of variational
inference (VI) to train a new proposal distribution qyϕ(x) to distill the prior learned through the pre-
trained diffusion model. The problem is defined as the following optimization problem

min
ϕ

DKL(q
y
ϕ(x0)||pθ(x0|y)), (2)

where the superscript y emphasizes that the proposal distribution is specific for a single measure-
ment y. For tractable optimization, q is often taken to be a normalizing flow (Rezende & Mohamed,
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Figure 1: Diverse inverse problem solving can be done with a single NFE, with the same network
for all the different measurements. (row 1) Denoising on celebA, (row 2) inpainting MNIST on the
bunny manifold, (row 3) imputation of ERA5 on the spherical manifold.

2015; Dinh et al., 2016) (NF) so that the computation of likelihood can be done instantly, and one
can sample multiple reconstructions from the posterior samples by plugging in different noise values
from the reference distribution. Posing the problem this way yields a method that can achieve pos-
terior samples with just a single NFE. Nevertheless, it is still impractical as training a measurement-
specific variational distribution takes hours of training. It is often unrealistic to train a whole new
model from scratch every time when a new measurement is taken.

In this work, we take a step towards a practical VI-based posterior sampler by distilling a diffusion
model prior. To this end, we propose a conditional normalizing flow qϕ(x0|y) as our variational dis-
tribution and amortize the optimization problem in Eq. (2) over the conditions y. By using a network
that additionally takes in the condition y as the input, we can train a single model that generalizes
across the whole dataset without the need for cumbersome re-training for specific measurements.
(See Fig. 2 for the conceptual illustration of the proposed method, as well as representative results
presented in Fig. 1.) Interestingly, we find that the speed of optimization is not hampered with such
amortization, and the proposed method achieves comparable performance against the measurement-
specific flow model (Feng & Bouman, 2023; Feng et al., 2023). Furthermore, we extend the theory
to consider inverse problems on the Riemannian manifold, showing that the proposed idea is gener-
alizable even when the signal is not one the Euclidean manifold. In summary, our contributions and
key takeaways are as follows

1. We propose an amortized variational inference framework to enable 1-step posterior sam-
pling constructed implicitly from the pre-trained diffusion prior pθ(x) for any measurement
y.

2. To the best of our knowledge, our method is the first diffusion prior distillation approach for
solving inverse problems that are unsupervised (i.e. does not require any ground-truth data
x), as opposed to standard conditional NFs (Lugmayr et al., 2020) that required supervised
paired data.

3. Experimentally, we show that the proposed method easily scales to signals that lie on the
standard Euclidean manifold (e.g. images) as well as signals that lie on the Riemannian
manifold, achieving strong performance regardless of the representation.
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Figure 2: Concept of the proposed method, APS. (a) Training can be performed in an unsupervised
fashion with a dataset consisting of degraded measurements y to train a conditional normalizing
flow Gϕ with the diffusion prior sθ. (b) Once trained, one can achieve multiple posterior samples
by inputting different noise vectors z ∼ N (0, I) concatenated with the condition y with a single
NFE, generalizable across any measurement y.

2 PRELIMINARIES

2.1 SCORE-BASED DIFFUSION MODELS

We adopt the standard framework for constructing a continuous diffusion process x(t), where t ∈
[0, T ] and x(t) ∈ Rd, as outlined by Song et al. (2021c). Specifically, our goal is to initialize x(0)
from a distribution p0(x) = pdata, and evolve x(t) towards a reference distribution pT at time T ,
which is easy to sample from.

The evolution of x(t) is governed by the Itô stochastic differential equation (SDE):

dx = f(x, t)dt+ g(t)dw, (3)

where f : Rd × R → Rd represents the drift function, and g : R → Rd denotes the diffusion
coefficient. These coefficients are designed to drive x(t) towards a spherical Gaussian distribution
as t approaches T . When the drift function f(x, t) is affine, the perturbation kernel p0t(x(t)|x(0))

3
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is Gaussian, allowing for the parameters to be determined analytically. This facilitates data pertur-
bation via p0t(x(t)|x(0)) efficiently, without necessitating computations through a neural network.

Furthermore, corresponding to the forward SDE, there exists a reverse-time SDE:

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (4)

where dt represents an infinitesimal negative time step, and w̄ denotes the backward standard
Brownian motion. While the trajectory of Eq. (4) is stochastic, there also exists a corresponding
probability-flow ODE (PF-ODE) that recovers the same law pt(x) as the time progresses (Song
et al., 2021c;a)

dx = [f(x, t)− g(t)2

2
∇x log pt(x)]dt. (5)

This allows a deterministic mapping between the reference and the target distribution, and hence
diffusion models can also be seen as a neural ODE (Chen et al., 2018).

A neural network can be trained to approximate the true score function ∇x log pt(x) through score
matching techniques, as demonstrated in previous works (Song & Ermon, 2019; Song et al., 2021c).
This approximation, denoted sθ(x, t) ≈ ∇x log pt(x), is then utilized to numerically integrate the
reverse-time SDE. To effectively train the score function, denoising score matching (DSM) is often
employed (Hyvärinen & Dayan, 2005)

θ∗ = argmin
θ

Et∼U(ε,1),x(t),x(0)

[
∥sθ(x(t), t)−∇xt log p0t(x(t)|x(0))∥22

]
, (6)

Interestingly, the posterior mean, or the so-called denoised estimate can be computed via Tweedie’s
formula (Efron, 2011). Specifically, for p(xt|x0) = N (xt;αtx0, β

2
t I),

x̂θ
0|t := Ep(x0|xt)[x0|xt] =

1

αt
(xt + β2

t∇xt
log p(xt)). (7)

2.2 DIFFUSION MODELS FOR INVERSE PROBLEMS (DIS)

Solving the reverse SDE in Eq. (4) or the PF-ODE in Eq. (5) results in sampling from the prior
distribution pθ(x0), with the subscript emphasizing the time variable in the diffusion model context
x0 ≡ x. When solving an inverse problem as posed in Eq. (1), our goal is to sample from the
posterior pθ(x0|y) ∝ pθ(x)p(y|x0). Using Bayes rule for a general timestep t yields

∇xt log pθ(xt|y) = ∇xt log pθ(xt) +∇xt log p(y|xt). (8)

While the former term can be replaced with a pre-trained diffusion model, the latter term is in-
tractable and needs some form of approximation. Existing DIS (Kawar et al., 2022; Chung et al.,
2023a; Wang et al., 2023) propose different approximations for ∇xt log p(y|xt), which yields sam-
pling from slightly different posteriors ∇xt log pθ(xt|y).
Algorithmically, the posterior samplers are often implemented so that the original numerical solver
for sampling from the prior distribution remains intact, while modifying the Tweedie denoised esti-
mate at each time x̂θ

0|t to satisfy the measurement condition given as Eq. (1). From Tweedie’s for-
mula, we can see that this corresponds to approximating the conditional posterior mean E[x0|xt,y]
in the place of the unconditional counterpart E[x0|xt]. The algorithms are inherently itera-
tive, and the modern solvers (Chung et al., 2023a; Wang et al., 2023; Zhu et al., 2023) require
at least 50 NFE to yield a high-quality sample. Moreover, as existing methods can be inter-
preted as approximating the reverse distribution p(x0|xt) with a simplistic Gaussian distribution
q(x0|xt) = N (x0; x̂

θ
0|t, s

2
tI) (Peng et al., 2024), it typically yields a large approximation error,

especially in the earlier steps of the reverse diffusion.

3 RELATED WORKS

3.1 VARIATIONAL INFERENCE IN DIS

Standard DIS discussed in Sec. 2.2 sample from the posterior distribution by following the reverse
diffusion trajectory. Another less studied approach uses VI to use a new proposal distribution, where
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Class Score-based Variational Inference
Methods DIS Noise2Score RED-Diff Score prior APS (ours)

One-step inference ✗ ✓ ✓ ✓ ✓

Tackles general
inverse problems ✓ ✗ ✗ ✓ ✓

Exact likelihood
computation ✗ ✗ ✗ ✓ ✓

Amortized across y ✗ ✗ ✗ ✗ ✓

Generalizable
across dataset ✗ ✗ ✗ ✗ ✓

Blind sampling ✗ ✗ ✗ ✗ ✓

Table 1: Methods that leverage diffusion priors for solving inverse problems according to their class,
and their characteristics.

the problem is cast as an optimization problem in Eq. (2). RED-diff (Mardani et al., 2023) places
a unimodal Gaussian distribution as the proposal distribution qyϕ(x), and the KL minimization is
done in a coarse-to-fine manner, similar to standard DIS, starting from high noise level to low noise
level. While motivated differently, RED-diff and standard DIS have similar downsides of requiring
at least a few tens of NFEs, as well as placing a simplistic proposal distribution. Furthermore, one
can achieve only a single sample per optimization.

Recently, Feng et al. (Feng et al., 2023; Feng & Bouman, 2023) uses an NF model for the proposal
distribution while solving the same VI problem. The optimization problem involves computing the
diffusion prior log likelihood log pθ(x). It was shown that it can be exactly computed by solving
the PF-ODE (Feng et al., 2023; Song et al., 2021c), but numerically solving the PF-ODE per every
optimization step is extremely computationally heavy, and hence does not scale well. To circumvent
this issue, it was proposed to use a lower bound (Feng & Bouman, 2023; Song et al., 2021b). Once
trained, the NF model can be given different noise inputs z ∼ N (0, I) to generate diverse posterior
samples with a single forward pass through the network. However, the training should be performed
with respect to all the different measurements, not being able to generalize across the dataset. Our
work follows along this path to overcome the current drawback and optimize a single model for
entire measurement space with a similar cost as shown in Tab. 1.

3.2 DISTILLATION OF THE DIFFUSION PRIOR

Our method involves distillation of the diffusion prior into a student deep neural network, in our
case an NF model. Particularly, it involves evaluating the output of the model by checking the
denoising loss gradients from the pre-trained diffusion model. This idea is closely related to variants
of score distillation sampling (SDS) (Poole et al., 2023; Wang et al., 2024), where the gradient from
the denoising loss is used to distill the diffusion prior by discarding the score Jacobian. Possibly a
closely related work is Diff-instruct (Luo et al., 2024), where the authors propose to train a one-step
generative model similar to GANs (Goodfellow et al., 2014) by distillation of the diffusion prior with
VI. By proposing an integral KL divergence (IKL) by considering KL minimization across multiple
noise levels across the diffusion, it was shown that SDS-like gradients can be used to effectively
train a new generative model. While having similarities, our method directly minimizes the KL
divergence and does not require dropping the score Jacobian.

Orthogonal to the score distillation approaches, there have been recent efforts to train a student net-
work to emulate the PF-ODE trajectory itself (Song et al., 2023b; Gu et al., 2023) with a single
NFE, one of the most prominent directions being consistency distillation (CD) (Song et al., 2023b).
While promising, the performance of CM is upper-bounded by the teacher PF-ODE. Thus, in order
to leverage CD-type approaches for diffusion posterior sampling, one has to choose one of the ap-
proximations of DIS as its teacher model. In this regard, applying CD for diffusion inverse problem
solving is inherently limited.
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4 AMORTIZED POSTERIOR SAMPLING (APS)

4.1 CONDITIONAL NF FOR AMORTIZED SCORE PRIOR

The goal is to use a variational distribution that is conditioned on y, such that the resulting distilled
conditional NF model Gϕ generalizes to any condition y. To this end, inspired from the choices
of (Sun & Bouman, 2021; Feng et al., 2023) we modify the objective in Eq. (2) to

min
ϕ

DKL(qϕ(x0|y)||pθ(x0|y)) (9)

=min
ϕ

∫
qϕ(x0|y)[− log p(y|x0)− log pθ(x0) + log qϕ(x0|y)] (10)

=min
ϕ

Ez

− log p(y|Gϕ(z,y))︸ ︷︷ ︸
fidelity

− log pθ(Gϕ(z,y))︸ ︷︷ ︸
prior

+ log π(z)− log

∣∣∣∣det dGϕ(z,y)

dz

∣∣∣∣︸ ︷︷ ︸
induced entropy

 , (11)

where the second equality is the result of choosing a conditional NF as our proposal distribution,
and now the expectation is over random noise z ∼ N (0, I). Notice that our network takes in both a
random noise z and the condition y as an input to the network.

Under the Gaussian measurement model in Eq. (1), the fidelity loss reads

−Ez[log p(y|Gϕ(z,y))] = −Ez

[
∥y −A(Gϕ(z,y))∥22

2σ2
y

]
. (12)

Moreover, the induced entropy can be easily computed as it is an NF

Eqϕ(x)[log qϕ(x)] = Ez

[
log π(z)− log

∣∣∣∣det dGϕ(z,y)

dz

∣∣∣∣] (13)

where π(z), in our case, is the reference Gaussian distribution N . For simplicity, let us denote
x̂0 := Gϕ(z,y).

Computation of log pθ(x̂0) is more involved: to exactly compute the value, we would have to solve
the PF-ODE, which is compute-heavy (Song et al., 2021c; Feng et al., 2023). To circumvent this
burden, we leverage the evidence lower bound (ELBO) (Song et al., 2021b; Feng & Bouman, 2023)
bθ(x̂0) ≤ log pθ(x̂0):

bθ(x̂0) = Ep(x̂T |x̂0) [log π(x̂T )]−
1

2

∫ T

0

g(t)2h(t) dt (14)

where

h(t) := Ep(x̂t|x̂0)

[
∥sθ(x̂t)−∇x̂t

log p(x̂t|x̂0)∥22︸ ︷︷ ︸
DSM(Eq. (6))

− ∥∇x̂t
log p(x̂t|x̂0)∥22 −

2

g(t)2
∇x̂t

· f(x̂t, t).

]
(15)

When we have p(xt|x0) = N (xt;αtx0, β
2
t I) and a standard diffusion model with a linear SDE

f(xt, t) = f(t)xt,

∥∇xt log p(xt|x0)∥22 =
1

β(t)2
∥ϵ∥22,

2

g(t)2
∇xt · f(xt, t) =

2dβ(t)

g(t)2
, (16)

where d is the dimensionality of xt, and both terms are independent of ϕ and θ. Intuitively, the DSM
term evaluates the probability of x0 by measuring how easy it is to denoise the given x0. When the
network easily denoises the given image, then it will assign a high probability. When not, a low
probability is assigned. We can now define an equivalent ELBO b′θ(x0) in terms of optimization,
which reads

b′θ(x0) = Ep0T
[log π(xT )]−

1

2

∫ T

0

g(t)2∥sθ(xt)−∇xt
log p(xt|x0)∥22 dt (17)

Plugging b′θ(Gϕ(z,y)) of Eq. (17) in the place of log pθ(Gϕ(z,y)) in Eq. (11), we can efficiently
update ϕ by distilling the prior information contained in the diffusion model.
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4.2 ARCHITECTURE

It has been demonstrated in (Lugmayr et al., 2020) that Conditional NFs are capable of learning
distributions on the ambient space that are constrained on measurement. To achieve an architecture
with invertible transformations, we extend RealNVP (Dinh et al., 2016) architecture to the con-
ditional settings by borrowing insight from (Sun & Bouman, 2021). In its plain form, RealNVP
architecture mainly consists of Flow steps, each containing two Affine Coupling layers. In each
affine coupling layer, input signal x is split into two parts: xa which stays unchanged, and xb which
is fed into the neural network. In order to invoke the condition, we simply concatenate the condition-
ing input y to the xb as these layers serve as the main and basic building blocks of entire invertible
architecture. This seemingly simple integration led to very promising results in both Euclidean and
non-Euclidean geometries as will be depicted in Section 5.

4.3 MANIFOLD

Many real-world datasets, particularly in environmental science, naturally reside on non-Euclidean
geometries, making inverse problems challenging. Our work extends conditional normalizing flows
(CNFs) to distributions on non-Euclidean manifolds, enabling direct solving of inverse problems on
these surfaces without additional rendering steps. We represent manifold data as point clouds of size
V ×C, where V is the number of vertices in the mesh discretization and C is the dimension of signal
features. By leveraging the expressive power of CNFs, our approach captures the intrinsic geometry
and structure of manifold data while enabling efficient inference and sampling. Our framework can
handle complex geometries and severe masking levels across different manifolds, as demonstrated
in our experiments with noisy inpainting and imputation tasks (see Section 5).

5 EXPERIMENTS

We validate our approach through various experiments, including (i) Denoising, Super Resolution
(SR), and Deblurring with CelebA face image data (Liu et al., 2015); (ii) Inpainting on Stanford
Bunny Manifold with MNIST data; and (iii) Imputation on Sphere with ERA5 (Hersbach et al.,
2020) temperature data. (i) Denoising, SR, and Deblurring are performed on the Euclidean in the
image domain. In contrast, noisy (ii) inpainting and (iii) imputation are solved directly on the bunny
and sphere manifolds. Throughout all the experiments, we use 24 flow steps and we set the batch
size to the 64. We conduct all the training and optimization experiments on a single RTX3090 GPU
instance. Our code is implemented in the JAX framework (Bradbury et al., 2018).

5.1 EXPERIMENTAL SETTINGS

Inverse Problems on CelebA. We follow the usual formulation and adapt 32×32 resolution of facial
images. Data is normalized into [0, 1] range and measurement is acquired by the appropriate choices
of forward operator depending on the task (See Appendix A for details). Gϕ is optimized over the
19, 962 test images by using the forward operator and prior from diffusion models. We optimize
APS for 1M iterations for all different tasks (convergency was observed earlier but continued for
potential refinement).

Inpainting on Bunny MNIST. In order to demonstrate the geometric awareness of our model, we
conduct experiment on Stanford Bunny Manifold. We choose the mesh resolution of 1889 vertices
and then project the [0, 1] normalized MNIST digits onto the bunny manifold (Turk & Levoy, 1994).
In order to ensure the dimensionality compatibility for the models, we use 1888 vertices and zero
mask the last vertex throughout the experiments. We obtain the measurement by occluding 30%
of vertices randomly and adding some Gaussian noise, i.e. A is the random masking operator and
σy = 0.1 in (1). APS is optimized on the test chunk of 10, 000 digit examples for 1.5M iterations.

Imputation on ERA5. To show the essence and practical importance of our pipeline, we further
conduct experiments on ERA5 temperature dataset. Even though data is available in a rectangular
format, due to the spherical shape of Earth, it inherits some geometric information. We use 4◦

resolution dataset with 4140 vertices borrowed from (Dupont et al., 2022b) with only temperature
channel as it is quite popular to analyze in the domain of generative AI (Dupont et al., 2021; 2022a).
Again, due to the dimensionality, we add 20 more vertices with a signal value of zero, and the data

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Geometry Euclidean Riemannian
Dataset & Task celebA (denoising) Bunny-MNIST (inpainting) ERA5 (imputation)

Metric Time[s]↓ PSNR↑ SSIM↑ Time[s]↓ PSNR↑ MSE↓ Time[s]↓ PSNR↑ SSIM↑
MCG (Chung et al., 2022a) - - - 19.85 26.69 0.0024 16.16 27.52 0.871
Noise2Score (Kim & Ye, 2021) 0.0172 24.36 0.871 - - - - - -
DPS (Chung et al., 2023a) 16.95 27.93 0.932 19.39 28.03 0.0017 15.36 28.95 0.953

APS (ours) (N = 1) 0.0021 23.37 0.836 0.0021 25.97 0.0032 0.0012 33.17 0.883
APS (ours) (N = 128) 0.0035 25.82 0.901 0.0035 26.72 0.0022 0.0018 34.61 0.959

Table 2: Quantitative results on our 3 main experiments. Best, second best

is [0, 1] normalized. In contrast to Bunny MNIST, we use more severe occlusion of 60% random
masking with additional Gaussian noise of σy = 0.05. We perform the optimization of APS on the
test part of the dataset with 2420 examples for 315k iterations.

Score Networks. For all the diffusion priors, VPSDE formulation has been adapted. In the case of
image domain CelebA, we borrow the same score checkpoint used in the (Feng et al., 2023; Feng &
Bouman, 2023), which uses NCSN++ (Song et al., 2021b) architecture and has been trained for 1M
iterations. For Bunny MNIST, we adapt the 1D formulation of DDPM (Ho et al., 2020) and train
the score network for 500k, at which the convergence was clearly observed through the generated
samples. In the case of spherical weather data, we followed the same strategy as Bunny MNIST but
achieved convergence of score network earlier at 360k iterations.

5.2 RESULTS

In this section, we provide the general results of each different task described above. We compare
APS with the various baselines including, DPS (Chung et al., 2023a), MCG (Chung et al., 2022a),
and Noise2Score (Kim & Ye, 2021). It should be noted that MCG and DPS are identical for denois-
ing, and Noise2Score is only applicable to denoising. In such cases, we do not report the metrics. We
also demonstrate the comparisons and results against Feng et al. (Feng & Bouman, 2023). Finally,
we experimentally confirm the robustness of APS across different unseen data or datasets. For eval-
uation purposes, we use peak signal-to-noise ratio (PSNR) and structural-similarity-index-measure
(SSIM) which are widely used to assess the performance of inverse solvers with the ground truth
and reconstructed signals. We further evaluate Fréchet Inception Distance (FID) to showcase the
perceptual quality of generated samples. As the proposed method, APS, can sample multiple differ-
ent posterior samples with a single forward pass, and this process is easily parallelizable, we report
two different types for the proposed method. One by taking a single posterior sample (N = 1), and
another by taking 128 posterior samples and taking the mean (N = 128).

Gaussian Deblurring Super Resolution x2
Method PSNR ↑ SSIM ↑ FID ↓ PSNR ↑ SSIM ↑ FID ↓ Time[s] ↓
MCG (Chung et al., 2022a) 27.38 0.928 75.63 22.64 0.859 100.3 17.27
DPS (Chung et al., 2023a) 27.40 0.928 74.84 24.44 0.865 89.92 16.95

APS (ours) 26.34 0.923 56.11 23.81 0.860 86.23 0.0035

Table 3: Quantitative results

Measurement DPS APS (ours) Ground Truth

D
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rr
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g

SR
x2

MCG

Figure 3: Qualitative results

5.2.1 GENERAL RESULTS.

In general, our approach achieves competitive quantitative and qualitative results across different
datasets on Euclidean and non-Euclidean geometries. We observe significant time improvements
due to the single-step generation ability of our framework. Tab. 2 and Fig. 1,6 depict competitive
quantitative and qualitative results confirming discussions along with instant time generations. It
should be noted that the boosted version (N = 128) of the proposed method only marginally in-
creases the compute time, as we can sample multiple reconstructions in parallel. To demonstrate that
our method can be applied to more general inverse problems, similar to (Chung et al., 2023a), we
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conducted 2× Super Resolution and Gaussian Deblurring experiments on the celebA data as shown
in Tab. 3 & Fig. 3, where we see that the perceptual quality of the proposed method is better while
being ∼ ×1000 faster, and the difference in the distortion metrics are small. Interestingly, while
Noise2Score approximates the posterior mean, and the boosted version of the proposed method
also approximates the posterior mean by taking the average of the posterior samples, our method
outperforms Noise2Score by more than 1 db, showcasing the superiority of the proposed method.

5.2.2 COMPARING WITH DIS AND NOISE2SCORE.

Both DPS (Chung et al., 2023a) and MCG (Chung et al., 2022a) leverage the pre-trained diffusion
model to sample from the posterior distribution. However, these methods require thousands of NFEs
to achieve stable performance. The required time for DPS and MCG is reported in Tab. 2, 3. When
decreasing the NFE as shown in Fig. 4 (a), PSNR heavily degrades and eventually diverges when we
take an NFE value of less than 30. APS achieves competitive performance even with a single NFE.
Moreover, it is shown in Fig. 4 (b) that even slightly incorrectly choosing the step size parameter
leads to a large degradation in performance, whereas our method is free from such cumbersome
hyperparameter tuning. Finally, it is shown in Fig. 4 (c) that DPS collapses to the mean of the prior
distribution, altering the content of the measurement heavily when we take a smaller number of
NFEs.

Figure 4: Comparison of our method against DPS (Chung et al., 2023a) on celebA denoising. (a)
NFE vs. PSNR plot, (b) step size (used in DPS only) vs. PSNR plot, (c) representative results by
varying the NFE.

It is worth mentioning that Noise2Score (Kim & Ye, 2021) is applicable for one-step denoising of
the measurements by leveraging the Tweedie’s formula. However, as discussed in Sec. 6, APS is
generally applicable to a wide class of inverse problems, whereas the applicability of Noise2Score
is limited.

5.2.3 COMPARING WITH SCORE PRIOR METHOD.

Compared to the exact score prior (Feng et al., 2023), surrogate counterpart (Feng & Bouman,
2023) presents 100 times faster approach along with competitive or slightly better results in terms
of quality. Despite being fast in terms of optimization of NF, Feng & Bouman (2023) still requires
training the network for a considerable amount of time for every single measurement. We observed
that under same conditions, conditional NF does not increase the complexity and training stage takes
0.15 seconds which is 0.14 seconds in case of unconditional version. We further sample a random
point from test data of celebA and optimize unconditional NF with the same configurations as ours
on this single measurement. NF trained solely on this data reaches 23.75dB in PSNR score, which
is almost same as our result of 23.43dB on this measurement. All these confirms that under same
conditions, APS can simply achieve best results being also amortized for plenty of measurements.

5.2.4 GENERALIZABILITY ACROSS DATASETS AND BLIND INVERSE PROBLEMS.

We further observe that our optimized framework can be used on unseen data as well. Tab. 5 and
Fig. 7 depicts that we achieve similar quantitative and qualitative reconstruction results when we
sample from unseen celebA or ERA5 validation datasets. Note that score network is trained on train

9
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Figure 5: Blind inverse problem solving with varying imputation levels.

signals and CNF optimization has been conducted on test signals, i.e. validation is totally hidden
to both teacher and student models. More strongly, our approach can also be leveraged on various
datasets as pre-optimized inverse solver. To this end, we use our celebA optimized CNF model to
perform Denoising task on the FFHQ (Karras et al., 2019) dataset. Same Table and Figure show
that our model can remove the noise artifacts with a similar performance as it does on original data,
confirming the generalizibility feature.

We further observed that APS can work in the absence of forward operator. In other words, we can
perform blind inverse problems through our amortized posterior sampling. We used various imputa-
tion levels between 30% to 60% for ERA5 dataset, and conducted experiments with random choice
of imputation in a blind manner. As a result, Fig. 5 shows that results as good as the original inverse
solver with the known forward operation (at least 33 PSNR across all different blind imputation
levels).

6 DISCUSSION

We show a first proof of concept that we can construct a one-step posterior sampler that generalizes
across any measurements in an unsupervised fashion (only having access to the measurements y).
Notably, APS extends to wide use cases with minimal constraints: 1) the operator A can be arbitrar-
ily complex and non-linear, as in DPS (Chung et al., 2023a), unlike many recent DIS that requires
linearity of the operator (Wang et al., 2023; Chung et al., 2024; Zhu et al., 2023); 2) training of the
sampler can be done without any strict conditions on the measurement, unlike recent unsupervised
score training methods that require i.i.d. measurement conditions with the same randomized for-
ward operator (Daras et al., 2023; Kawar et al., 2023); 3) method can be generalized into different
geometries and datasets in a blind manner, unlike recent DIS methods require to know forward op-
erator during sampling (Chung et al., 2023b; Mardani et al., 2023). We opted for simplicity in the
architecture design of Gϕ, and avoided introducing inductive bias of spatial information by taking a
vectorized input, potentially explaining the slight background noise in the reconstructions. Further
optimization in the choice of network architecture is left as a future direction of study.

7 CONCLUSION

In this work, we propose to use a conditional NF for a VI-based optimization strategy to train a
one-step posterior sampler, which implicitly samples from the posterior distribution defined from
the pre-trained diffusion prior. We show that APS is highly generalizable, being able to reconstruct
samples that are not seen during training, applicable to diverse forward measurements, and types of
data, encompassing standard Euclidean geometry as well as data on general Riemannian manifolds.
We believe that our work can act as a cornerstone for developing a fast, practical posterior sampler
that distills the diffusion prior.

10
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A APPENDIX

A.1 REPRODUCIBILITY AND DETAILS OF PARAMETERS

We further provide all the necessary details to replicate the results with our proposed method. Tab. 4
demonstrates the details of tasks and datasets along with the parameter choices for both prior score
network training and Conditional NF optimization. Note that, we have validated our approach
through 3 different inverse problems on the image dataset (celebA), where noise level was set to
0.1 for denoising and 0.01 for Super-Resolution and Gaussian Deblurring.

Parameter CelebA Bunny Sphere

resolution (#vertices) 32 × 32 1889 4140
distribution on manifold - MNIST ERA5
task varying Inpainting Imputation
mask level - 30% 60%
noise level varying 0.1 0.05
#channels 3 1 1
normalized range [0, 1] [0, 1] [0, 1]

(S) #train data 162,770 60,000 8,510
(S) batch size 128 64 64
(S) learning rate 2e-4 2e-4 2e-4
(S) #training iters 1M 500k 360k

(C) #test data 19,962 10,000 2,420
(C) batch size 64 64 64
(C) learning rate 1e-5 1e-5 1e-5
(C) #optimization iters 1M 1.5M 315k

Table 4: Different configurations of hyperparameter choices for varying datasets and manifolds
learned by APS. (S) and (C) denotes the parameter choices for score network and CNF optimization,
respectively.
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A.2 QUALITATIVE COMPARISONS WITH BASELINES

Figure 6: Comparisons with different baselines for CelebA denoising, ERA5 imputation, and Bunny
MNIST inpainting tasks. Note that second row shows the results of Noise2Score for the CelebA
denoising task and MCG for inpainting and imputation of manifold data.

A.3 ROBUSTNESS RESULTS

Dataset & Task celebA val (denoising) ERA5 val (imputation) FFHQ (denoising)

PSNR↑ 23.26 33.12 21.92
SSIM↑ 0.831 0.882 0.822

Table 5: APS is robust against unseen data samples and even generalizable accross different datasets
once it is optimized. For the first 2 columns, we use validation part of datasets and feed-forward our
CNF on this totally unseen data. For the third column, we even show that pre-optimized APS can be
leveraged to restore back the noised data samples from across various datasets. All the quantitative
results align with their counterparts in Tab. 2 that confirms robustness and generalization ability of
our pipeline which was not possible before.
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Figure 7: Figure demonstrating the visual results of robustness and generalization ability of APS.
First and second rows show the results on unseen validation data, and third row depicts generaliza-
tion to another dataset. Corresponding quantitative analysis can be found in Tab. 5.
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