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ABSTRACT

Recently, Text-to-speech (TTS) models based on large language models (LLMs)
that translate natural language text into sequences of discrete audio tokens have
gained great research attention, with advances in neural audio codec (NAC) mod-
els using residual vector quantization (RVQ). However, long-form speech synthe-
sis remains a significant challenge due to the high frame rate, which increases the
length of audio tokens and makes it difficult for autoregressive language models
to generate audio tokens for even a minute of speech. To address this challenge,
this paper introduces two novel post-training approaches: 1) Multi-Resolution Re-
quantization (MReQ) and 2) HALL-E. MReQ is a framework to reduce the frame
rate of pre-trained NAC models. Specifically, it incorporates multi-resolution
residual vector quantization (MRVQ) module that hierarchically reorganizes dis-
crete audio tokens through teacher-student distillation. HALL-E is an LLM-based
TTS model designed to predict hierarchical tokens of MReQ. Specifically, it incor-
porates the technique of using MRVQ sub-modules and continues training from a
pre-trained LLM-based TTS model. Furthermore, to promote TTS research, we
create MinutesSpeech, a new benchmark dataset consisting of 40k hours of filtered
speech data for training and evaluating speech synthesis ranging from 3s up to
180s. In experiments, we demonstrated the effectiveness of our approaches by ap-
plying our post-training framework to VALL-E. We achieved the frame rate down
to as low as 8 Hz, enabling the stable minitue-long speech synthesis in a single
inference step. Audio samples, dataset, codes and pre-trained models are available
at https://yutonishimura-v2.github.io/HALL-E_DEMO.

1 INTRODUCTION

Recent advances in large language models (LLMs) have enabled us to model complex linguistic
structures and patterns with unprecedented precision in natural language processing tasks (Brown
et al., 2020; Chowdhery et al., 2023; Zeng et al., 2023). Motivated by these developments, LLM-
based text-to-speech (TTS) models have gained research interest for their ability to model complex
speech structures and patterns, enabling the synthesis of more natural-sounding speech in a zero-shot
manner (Wang et al., 2023; Zhang et al., 2023b; Song et al., 2024; Han et al., 2024a; Chen et al.,
2024a; Xin et al., 2024; Meng et al., 2024; Wang et al., 2024a). The core concept behind LLM-
based TTS models is to translate natural language text into a sequence of audio tokens, typically
using frozen natural audio codec (NAC) models that quantize audio signals into discrete tokens via
vector quantization techniques (Zeghidour et al., 2021; Défossez et al., 2022; Kumar et al., 2023b;
Zhang et al., 2024; Wu et al., 2023; Huang et al., 2023; Du et al., 2024; Yang et al., 2023a).

Since LLMs are becoming capable of capturing long context in text (Guo et al., 2022; Chen et al.,
2024b; Han et al., 2024b), LLM-based TTS models are also expected to handle long context to
synthesize speech over extended periods. However, this presents significant challenges, mainly
because the length of audio tokens per second is typically large. More specifically, when using an
autoregressive language model to predict audio tokens, as in the VALL-E architecture (Wang et al.,
2023), the high frame rate1 at the first layer of residual vector quantization (RVQ) (Zeghidour et al.,

1We refer to the number of audio tokens per second as the frame rate (Hz).
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2021) in NAC models often becomes a major factor that hinders the synthesis of long speech. As
recently discussed and investigated by Han et al. (2024a); Chen et al. (2024a), reducing the frame
rate is essential, but not straightforward. Simply reducing the frame rate in NAC models results in
degraded audio quality and incorrect phoneme pronunciation. Addressing this issue requires novel
solutions that bridge NAC models and LLM-based TTS models.

In this paper, we propose a novel approach to tackle the challenge of minitue-long speech synthesis
in LLM-based TTS models by introducing a hierarchical post-training framework that effectively
manages the trade-off between reducing frame rate and producing high-quality speech. Our contri-
butions are summarized as follows:
1) We propose Multi-Resolution Requantization (MReQ), a post-training framework for hierar-

chically reorganizing pre-trained RVQ module to reduce the frame rate at lower quantization
layers. MReQ incorporates a multi-resolution residual vector quantization (MRVQ) module into
a pre-trained NAC model and continues training in a teacher-student distillation manner. This
results in reducing the frame rate at the first quantization layer to 8 Hz.

2) We propose HALL-E, a hierarchical LLM-based TTS model designed to predict hierarchical
tokens of MReQ. The AR model is trained using 8Hz tokens, while the NAR model is trained by
using sub-modules in MRVQ, and continues training from a pre-trained LLM-based TTS model.

3) We introduce MinutesSpeech, a new benchmark dataset to promote TTS research, particularly
for minute-long speech synthesis. The training set consists of 40k hours of automatically filtered
and balanced speech data. The test set consists of 8 hours of speech data with transcriptions
created by professional transcribers.

4) We thoroughly conducted experiments to provide best practices for managing the trade-off be-
tween reducing frame rate and producing high-quality speech, while demonstrating the effective-
ness and efficiency of our approach. We open-source dataset, codes and pre-trained models along
with audio samples at https://yutonishimura-v2.github.io/HALL-E_DEMO.

2 RELATED WORK

Neural audio codec models. NAC models produce discrete audio tokens by quantizing audio sig-
nals. SoundStream (Zeghidour et al., 2021) and Encodec (Défossez et al., 2022) are pioneering NAC
models, which significantly improved compression efficiency over traditional audio codecs. Recent
studies have proposed NAC models with a focus on maintaining performance in speech processing
tasks. Examples include SpeechTokenizer (Zhang et al., 2024), Descript Audio Code (Kumar et al.,
2023b), AcademiCodec (Yang et al., 2023a), AudioDec (Wu et al., 2023), RepCodec (Huang et al.,
2023), and FunCodec (Du et al., 2024). Many studies have focused on reducing bps, while few
have explored lowering and varying the frame rate.Dieleman et al. (2021) introduced the concept of
time-varying audio codes. Défossez et al. (2024) achieved the lowest frame rate for a NAC model,
reaching 12.5Hz by incorporating Transformer models and SpeechTokenizer. We report achieving
an even lower frame rate of 8Hz, which is about 1.5 times shorter than it.

Zero-shot TTS. Zero-Shot TTS aims to synthesize speech from text in the voice of a target speaker
using only a short reference audio segment from that speaker. Early models relied on speaker em-
beddings or speaker adaptation (Casanova et al., 2022; Arik et al., 2018; Chen et al., 2019), while
recent studies have focused on LLM-based models that use NAC models in conjunction with LLMs.
VALL-E (Wang et al., 2023) was the first LLM-based model, demonstrating impressive capabilities
in zero-shot TTS tasks. Follow-up studies have explored various extensions such as VALL-E X for
cross-lingual TTS (Zhang et al., 2023b), ELLA-V using Montreal forced aligner (Song et al., 2024),
RALL-E using prosody features (Xin et al., 2024), VALL-E R using monotonic alignment (Han
et al., 2024a), VALL-E 2 using grouped code modeling (Chen et al., 2024a), and MELLE using
mel-spectrogram features (Meng et al., 2024). Prosody information can also be modeled by LLMs
latent language mode Mega-TTS (Jiang et al., 2023) and Mega-TTS 2 (Jiang et al., 2024) introduced
prosody LLMs to generate more natural prosody. Meanwhile, diffusion-based models (e.g., Natu-
ralSpeech2/3 (Shen et al., 2024; Ju et al., 2024) and Voicebox (Le et al., 2024)) and prompt-based
models (e.g., Prompt-TTS2 (Guo et al., 2023; Leng et al., 2024)) are also known to be effective to
generate high-quality controllable speech. Beyond speech synthesis, several studies proposed audio
generation models such as UniAudio (Yang et al., 2023b), Audiobox (Vyas et al., 2023). In contrast,
this work explores post-training methods to reduce the frame rate of LLM-based models, aiming at
minute-long speech synthesis given a pre-trained NAC model such as Encodec.
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3 PRELIMINARIES

Neural audio codec. A NAC model typically consists of three components: an encoder Enc(·), a
vector quantizer VQ(·), and a decoder Dec(·). The quantizer is the core component that produces
discrete audio tokens. This work assumes that an RVQ module (Zeghidour et al., 2021) is used as
the quantizer, which is defined as follows:

zl = VQl(xl−1), (1) xl = xl−1 − z̃l, (2) h =

L∑
l=1

z̃l, (3)

where x0 = Enc(xin) ∈ Rd×n is the encoder output for the input audio xin, d is the latent di-
mension, n is the sequence length, VQl is a vector quantizer, zl ∈ Nn is a discrete token sequence,
z̃l = Embl(zl) ∈ Rd×n is a sequence of embeddings corresponding to zl obtained through a learn-
able embedding layer Embl(·)2, l ∈ {1, 2, · · · , L} is the layer index, and L is the number of layers.
The output h ∈ Rd×n is then fed into the decoder to reconstruct the input audio as y = Dec(h).

LLM-based TTS. An LLM-based TTS typically consists of two decoder-only language models: an
autoregressive (AR) model Tar and a non-autoregressive (NAR) model Tnar (Wang et al., 2023).
The speech synthesis procedure is given by the following equations:

ẑ1 = Tar(t, z
pr
1 ), (4) ẑl+1 = Tnar(t,h

pr
L , ĥl, l), (5) ĥl =

l∑
l′=1

ˆ̃zl′ , (6) ŷ = Dec([hpr
L , ĥL]), (7)

where [hpr
L , ĥL] denotes the concatenation of these two matrices along the time axis. In Eq. (4),

Tar generates an audio token sequence ẑ1 ∈ Nn′
corresponding to the first layer of RVQ given two

inputs: a text prompt t and an audio prompt zpr
1 = VQ1(Enc(xpr)) extracted from an audio input

xpr. In Eq. (5), Tnar iteratively generates token sequences ẑl+1 ∈ Nn′
from the accumulated hidden

features ĥl in Eq. (6) and the audio prompt’s hidden features hpr
L . Finally, in Eq. (7), speech ŷ is

generated. Note that Enc,VQ1, and Dec are from a frozen NAC model.

Preliminary experiments. LLM-based TTS models have a predefined context window size and are
typically trained with speech data ranging from several seconds to several tens of seconds. To gener-
ate long speech segments, a straightforward approach is to reduce the frame rate in the NAC model.
However, reducing the frame rate below 48 Hz significantly decreases speech reconstruction perfor-
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Figure 1: Preliminary experiments on vary-
ing the frame rate of Encodec.

mance as shown in Figure 1, where we evaluated the
performance of Encodec in terms of the estimated
Perceptual Evaluation of Speech Quality (PESQ)
scores (Kumar et al., 2023a) and word error rates
(WERs) as functions of frame rates. Specifically, it
is confirmed that training becomes entirely difficult
at 8Hz. Therefore, in this study, we propose a NAC
model that works even at an 8Hz, demonstrating a
significant improvement over existing limitations.

4 MREQ: MULTI-RESOLUTION REQUANTIZATION

This section introduces MReQ, a post-training framework for hierarchically reorganizing a pre-
trained RVQ module to reduce the frame rate. Specifically, MReQ incorporates a multi-resolution
residual vector quantization (MRVQ) module to a pre-trained NAC model as shown in Figure 2, and
continues training the NAC model in a teacher-student distillation manner. For a pre-trained 48Hz
Encodec model, MReQ reduces the frame rate at the first quantization layer to 8 Hz. This enables
LLM-based TTS models to handle longer contexts.

4.1 ARCHITECTURE

The MRVQ module is a nested structure of RVQ. Specifically, it consists of a residual structure
composed of multiple low frame-rate residual vector quantization (LRVQ) blocks, each of which is
itself a residual structure operating at a different frame rate. The definition is given as follows.

2In this paper, the tilde symbol (˜) denotes the embeddings corresponding to a token sequence.
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Figure 2: MReQ post-training based on teacher-student distillation. (a) Pre-trained RVQ module
is used to extract teacher embeddings ht. (b) MRVQ module consists of multiple LRVQ blocks and
learns to reduce the frame rates. Student embeddings hs are extracted. (c) Each LRVQ block
consists of a pre-quantizer PreQ, a sub-encoder E, a main quantizer Quant, a sub-decoder D, and
a post-quantizer PostQ to reduce frame rate from s0 to sk.

Definition 1 (MRVQ module). Let x0 ∈ Rd×n0 be an encoder output, where d is the latent
dimension and n0 = Ts0 is the sequence length depending on the time length T (sec) and the frame
rate s0 (Hz). The MRVQ module is defined as follows:

ck = LRVQ
(k)
α-β-γ(xk−1), (8) xk = xk−1 − c̃k, (9) h =

K∑
k=1

c̃k, (10)

where LRVQ
(k)
α-β-γ is an LRVQ block, K is the number of blocks, α-β-γ is a triplet of hyperparam-

eters to determine the block structure.

Definition 2 (LRVQ block). Each LRVQ block LRVQ
(k)
α-β-γ consists of five components: a pre-

quantizer PreQ(k)
α , a sub-encoder Ek for down sampling, a main quantizer Quant

(k)
β , a sub-decoder

Dk for upsampling, and a post-quantizer PostQ(k)
γ . The quantization procedure is given by

ak = PreQ(k)
α (xk−1), (11) bk = Quant

(k)
β (Ek(ãk)), (12) ck = PostQ(k)

γ (Dk(b̃k)), (13)

where ak, bk, ck are token sequences. The three quantizers PreQ(k)
α ,Quant

(k)
β and PostQ(k)

γ are
implemented using RVQ with α, β, and γ layers, respectively. Note that bk ∈ Nβ×nk is the token
sequence representing audio in a low frame rate. Its length is given by nk = Tsk, where sk is the
frame rate satisfying s1 < s2 < · · · < sK and sK = s0. The other two sequences ak and ck are
used only for facilitating training of NAR models used in LLM-based TTS models.

Table 1: Implementation
details
k sk α-β-γ Stride

1 8 1-6-1 6
2 16 2-6-2 3
3 24 2-4-2 2
4 48 3-0-0 -

Implementation details. Figure 2b shows the MRVQ module applied
to the Encodec model, where the frame rate is reduced from s0 = 48 Hz
to s1 = 8 Hz using 4 LRVQ blocks. Figure 2c shows the LRVQ block.
Each sub-encoder Ek consists of a convolution layer followed by two
bi-LSTM layers, which reduces the frame rate from s0 to sk. Each sub-
decoder Dk consists of two bi-LSTM layers followed by a transposed
convolution layer, which is symmetric to Ek. Table 1 lists frame rates
sk, hyperparameter triplets α-β-γ, and strides for the convolution and
transposed convolution layers. For k = 4, only the pre-quantize is used, and the other components
are replaced with identical functions, reducing Eqs. (12, 13) to b4 = a4 and c4 = b4, respectively.

4.2 POST-TRAINING WITH TEACHER-STUDENT DISTILLATION

Training NAC models with the MRVQ module is challenging because quantization layers with lower
frame rates are prone to be ignored. To address this, we introduce a post-training technique based
on teacher-student distillation, where a NAC model pre-trained with a high frame rate serves as the
teacher model. As shown in Figure 2a, teacher embeddings (in green) are extracted from the frozen
RVQ module, while student embeddings (in purple) are extracted from the MRVQ module. We then
minimize the feature-level distillation (FLD) loss and the hidden-state reconstruction (HSR) loss.
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Figure 3: HALL-E architecture. (a) AR model generates a low frame-rate token sequence b̂1. (b)
NAR model predicts b̂k+1 from b̂k iteratively by utilizing frozen sub-modules of MRVQ.

FLD loss. The FLD loss is an MAE loss between teacher and student embeddings, defined as

LFLD =
∑

(s,t)∈P

λFLD
(s,t)∥ĥs − ht∥1, (14) ĥs =

s∑
k=1

c̃k, (15) ht =

t∑
l=1

z̃l, (16)

where hs is a student embedding, ht is a teacher embedding, P is a set of student-teacher index
pairs, and λFLD

(s,t) is a weight coefficient. We use P = {(1, 1), (2, 3), (3, 5), (4, 8)} for RVQ with
eight layers and MRVQ with four LRVQ blocks. Note that c̃k and z̃l are obtained from Eqs. (8) and
Eqs. (1), respectively. The student-teacher pairs in P are determined so that the cumulative number
of student’s post-quantization layers matches that of the teacher’s quantization layers.

HSR loss. The HSR loss is introduced to further facilitate training of each LRVQ block:

LHSR =

K∑
k=1

λHSR
k ∥ãk −Dk(b̃k)∥1 (17)

where ãk, b̃k are from Eqs. (11, 12), and λHSR
k is a weight coefficient.

Total loss. The total loss is given by Ltotal = LNAC + LFLD + LHSR, where LNAC is the loss
used to train the NAC model. We continue to train the encoder and decoder with the MRVQ module
using a copied weight from the NAC model, which is used as a teacher model. Compared to training
from scratch, this allows for more efficient and stable convergence.

Discussion. Our post-training approach is designed to be independent of the encoder-decoder ar-
chitecture of the original NAC model, as we only assumed the use of RVQ. Consequently, by uti-
lizing state-of-the-art NAC models such as SpeechTokenizer (Zhang et al., 2024) instead of En-
codec (Défossez et al., 2022), it is possible to achieve higher performance at a lower frame rate.

5 HIERARCHICAL NEURAL CODEC LANGUAGE MODEL

This section introduces HALL-E, a hierarchical LLM-based TTS model that learns to generate hi-
erarchical tokens. Inspired by VALL-E (Wang et al., 2023), HALL-E consists of a pair of language
models: an AR model and an NAR model. There are two key differences compared to VALL-E.
First, our AR model handles low frame-rate sequences, as low as 8 Hz in our experiments, enabling
stable generation of audio tokens for longer speech segments. Second, we incorporate frozen sub-
modules obtained by decomposing the MRVQ module into the token prediction process using the
NAR model. This integration facilitates training and results in high-quality speech synthesis. The
whole inference process is illustrated in Figure 3.

AR model. Given a text prompt t and an audio xpr as a prompt, the AR model predicts a low frame-
rate token sequence b̂1 corresponding to t. This step is formulated as b̂1 = Tar(t, b

pr
1 ), similar to

Eq. (4) for VALL-E, where Tar is an AR transformer decoder and bpr1 is the audio prompt obtained
by the first LRVQ block.

NAR model. Given a token sequence b̂k, the NAR model predicts the next token sequence b̂k+1

iteratively. Specifically, b̂k+1 is predicted in three steps by utilizing frozen sub-modules obtained
from the MRVQ module. First, the sub-decoder and the post-quantizer are applied to b̂k to ob-
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tain ĉk = PostQ(k)
γ (Dk(

ˆ̃
bk)). Second, an NAR transformer decoder Tnar is employed to pre-

dict âk+1 from ĉk. Because MRVQ has a nested structure, this step requires applying the de-
coder αk+1 times, where αk+1 is the number of layers in the pre-quantizer at the block k + 1.
Specifically, for the layer l + 1 in block k + 1, denoted as âk+1,l+1, is computed αk+1 times
using the following equation: âk+1,l+1 = Tnar(t, h̄

pr
K,L, h̄k+1,l, ℓk+1,l) similar to Eq. (5), where

h̄k+1,l =
∑k

k′=1
ˆ̃ck′ +

∑l
l′=1

ˆ̃ak+1,l′ is the accumulated feature and h̄pr
K,L is the one for prompt.

The layer id ℓk+1,l =
∑k

k′=1 αk + l is the cumulative sum of the number of pre-quantization
layers. Finally, b̂k+1 is obtained by applying the sub-encoder and the main quantizer to âk+1 as
b̂k+1 = Quant(k+1)(Ek+1(ˆ̃ak+1)). This process enables the NAR model to effectively generate
high-fidelity token sequences.

Training. The AR model is trained using a cross-entropy loss LCE(b̂1, b1) measured between a
prediction b̂1 and the corresponding ground truth b1 obtained from training speech data. The delay
pattern used in MusicGen (Copet et al., 2023a) is also applied. The NAR model is also trained using
a cross-entropy loss LCE(âk+1,l+1,ak+1,l+1), where âk+1,l+1 is a prediction and ak+1,l+1 is the
ground truth. HALL-E is also post-trained given a pre-trained LLM-based TTS model.

Discussion. This work focuses on post-training for reducing frame rate, but further exploration in
token merging and grouping structures (Han et al., 2024a; Chen et al., 2024a) would also be inter-
esting in future research. Another architecture design involves incorporating learnable upsampling
layers into the NAR model to predict b̂k+1 from b̂k. However, handling different frame rates with
a single NAR transformer is challenging. Additionally, a sub-encoder and sub-decoder are placed
between b̂k+1 and b̂k, making the relationships between them more complex compared to the RVQ-
based approach. To mitigate this, we employ the MRVQ sub-modules like above, which simplify
the relationships to resemble the previous method, thereby improving the efficiency of the training.

6 MINUTESSPEECH BENCHMARK DATASET

This section introduces MinutesSpeech, a benchmark dataset for minutes-long TTS synthesis. Un-
like previous datasets such as LibriSpeech, which are primarily designed for automatic speech recog-
nition, our dataset is curated to advance TTS research from the following three perspectives.

1) Benchmarking Minutes-long TTS Synthesis. We provide two subsets for benchmarking:
MinutesSpeech-90s and MinutesSpeech-180s, consisting of speech segments ranging from 3 sec-
onds to 90 seconds and 3 seconds to 180 seconds, respectively. All test audio files are under Creative
Commons licenses. For each speech segment, we provide transcriptions created by two professional
native transcribers. Since LLM-based TTS models have been typically evaluated using audio seg-
ments ranging from 4 to 10 seconds from LibriSpeech in previous studies, our dataset promotes
research on longer speech synthesis by providing substantially longer segments.

2) Balanced Audio Length for Training. We also provide a training set consisting of 40,000 hours
of audio data. To successfully train TTS models capable of stably generating audio ranging from a
few seconds to over a minute in a single inference, we carefully designed the distribution of audio
lengths in the training dataset, covering durations from 3 seconds up to 180 seconds. Automatically
generated transcriptions are provided for this subset to facilitate large-scale training.

3) Variety of Speaking Styles. To encompass a variety of conversational speech styles, we curated
data from podcasts. Compared to the audiobook speech in LibriSpeech, synthesizing conversational
speech is more challenging due to its spontaneous nature. We believe this is an important research
direction that can help bridge the gap between LLMs and LLM-based TTS models.

Data Curation Pipeline. To create the training set, we first curated 296,464 podcast files, rang-
ing from 10 to 90 minutes, totaling about 186k hours. We evaluated these audio files using
the PESQ score estimated using TorchAudio-Squim (Kumar et al., 2023a). The audio was seg-
mented every 30 seconds, and the score was calculated for each segment. We then computed
the mean and standard deviation for each audio file, retaining only those with a mean score
higher than 2.5 and a standard deviation lower than 0.6. As a result, approximately 25% of
the data remained. We then applied automatic speech recognition and speaker diarization to ex-
tract speech segments, each associated with a single speaker. Specifically, Whisper distil Large
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Table 2: Dataset statistics calculated on audio segments longer than 3s. † marks the results at 8Hz.

Dataset Split Clips Audio duration Words Max Token length
Average (sec) Total (hours) Audio Text Sum

LibriSpeech train-clean-100 27949 12.90 ± 3.29 100.18 986k 1176 240 1416
LibriSpeech test-35s 1937 8.29 ± 5.10 4.46 43k 1680 340 2020

MinutesSpeech train-28s 7385k 19.11 ± 7.31 39.21k 407501k 1344 314 1658
MinutesSpeech train-90s 4181k 34.37 ± 28.32 39.92k 407689k 720† 933 1655
MinutesSpeech train-54s 4984k 28.82 ± 17.45 39.91k 409261k 2592 579 3171
MinutesSpeech train-180s 3762k 37.69 ± 41.94 39.39k 401816k 1440† 1733 3173
MinutesSpeech test-90s 685 45.28 ± 31.35 8.61 83k 720† 925 1645
MinutesSpeech test-180s 536 56.76 ± 55.24 8.45 81k 1440† 1715 3155

v33 was used for automatic transcriptions, and Pyannote4 was employed for speaker diarization.
We then segmented each audio file into segments ranging from 3 to 90 or 180 seconds. Lastly,
we removed a certain proportion of utterances with text lengths that were either too long or too
short, based on their respective distributions, resulting in a final dataset of approximately 40k
hours. For the test set, we manually collected audio files under Creative Commons licenses
and asked professional transcribers to select high-quality audio and create accurate transcriptions.

Figure 4: Duration and word count distributions.

Note that filtering based on the maximum and
minimum text lengths used in the training set
was also applied to each test set.

Dataset Statistics. Figure 4 shows the distri-
butions of speech durations and the number of
words per segment in the test sets. As shown,
our dataset provides a diverse range of speech
lengths, facilitating the development and evalu-
ation of TTS models capable of handling vary-
ing durations and linguistic content.

7 EXPERIMENTS

7.1 EXPERIMENTAL SETUP

Baseline models. As a competitive comparison, we chose VALL-E (Wang et al., 2023) using En-
codec (Défossez et al., 2022) at 48Hz as the baseline model, which is already lower than 75Hz used
in previous studies, based on our preliminary experiments (see Figure 1). We also demonstrate the
effectiveness of our approach on SpeechTokenizer (Zhang et al., 2024).

Datasets. For training, we used the MinutesSpeech training set, specifically train-90s and -180s
for HALL-E, and train-28s, -54s, -90s, and -180s for VALL-E. The train-28s and -54s are designed
for 48Hz to match the token length in train-90s and -180s at 8Hz (see Table 2). For evaluation,
MinutesSpeech test-90s, -180s, and LibriSpeech test clean set are used. The minimum audio length
was set to 4s, while the maximum audio lengths were set to 90s, 180s, and 35s, respectively. The
audio length for prompt was consistently set to 3s.

Evaluation metrics. Two evaluation metrics are used for speech reconstruction experiments:
WER and PESQ. WER is calculated using the conformer-transducer5. Zero-shot TTS experiments
are conducted in the continual setting (Wang et al., 2023). Seven evaluation metrics are used: WER,
speaker similarity (SIM), DNSMOS using ITU-T P.808 (ITU, 2018)6, UTMOS (Saeki et al., 2022),
Wasserstein distance (WD) with respect to the duration distribution, subjective evaluation of natu-
ralness (QMOS), and subjective evaluation of speaker similarity (SMOS). SIM is calculated using
WavLM-TDNN 7. WD is calculated between the duration distributions of the generated speech and
the ground truth speech. For QMOS and SMOS, 40 utterances were randomly selected from each

3
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test set, and three native English speakers rated their naturalness on a scale from 1 to 5. We then
calculated the mean and confidence intervals.

Training details. Encodec and SpeechTokenizer were pre-trained using the Adam optimizer for
100k iters with a batch size of 704 for Encodec and 674 for SpeechTokenizer on four H100 GPUs,
and a learning rate of 9 × 10−4. MReQ post-training was performed on a single H100 GPU for
160k iters with a batch size of 160 and a learning rate of 3 × 10−4. VALL-E was trained using the
AdamW optimizer for 100k iters on four H100 GPUs. To fully utilize GPU memory, the batch size
was adjusted based on the audio length of the training samples. A cosine annealing learning rate
schedule was employed with an initial learning rate of 1×10−4. HALL-E was trained using the same
settings, where VALL-E is used as a pre-trained model. More details are provided in Appendix A.

7.2 SPEECH RECONSTRUCTION Table 3: Speech reconstruction on LibriSpeech.

NAC(frame rate,Hz) WER↓ PESQ↑ STOI↑ SIM↑ UTMOS↑
GT 1.96 4.64 ± 0.00 1.00 ± 0.00 1.00 4.05±0.33

Encodec (8) 100.0 1.22±0.08 0.32±0.05 0.52 1.33±0.00

Encodec (24) 2.01 3.68±0.17 0.94±0.03 0.90 3.82±0.37

Encodec (48) 2.00 4.02±0.13 0.96±0.02 0.94 3.86±0.36

+MReQ(8,16,24,48) 2.02 3.89±0.15 0.95±0.02 0.92 3.89±0.36

SpeechTokenizer (48) 2.00 4.10±0.11 0.96±0.02 0.95 3.97±0.33

+MReQ(8,16,24,48) 1.99 3.96±0.14 0.95±0.02 0.93 4.01±0.32

Table 3 shows the speech re-
construction performance of En-
codec and SpeechTokenizer be-
fore and after applying MReQ.
MReQ maintains clarity and
naturalness in terms of WER,
STOI, SIM and UTMOS, while
significantly reducing the frame
rate at the first quantization layer
to as low as 8 Hz.

7.3 ZERO-SHOT SPEECH SYNTHESIS

MinutesSpeech evaluation. Table 4 compares performance of zero-shot TTS synthesis on the Min-
utesSpeech test sets. Overall, HALL-E significantly outperformed the VALL-E, achieving compa-
rable or even better WER and DNSMOS scores than the ground truth audio. This demonstrates the
effectiveness of our approach. VALL-E resulted in a high WER and a low QMOS score when trained
on train-28s because it cannot generate audio longer than 28 seconds. When trained on train-90s,
the WER decreased but still remained significantly higher than that of ground truth. This is because
training an AR model with a high frame rate is unstable, indicating that simply changing the training
data is not sufficient for successful training. Our approach addressed this issue by lowering the frame
rate via MReQ. In terms of SIM, VALL-E outperformed HALL-E because lowering the frame rate
sacrifices acoustic information. However, HALL-E surpassed VALL-E in SMOS, as it generates the
speaker’s important style element, duration, much more naturally than VALL-E (see Figure 6).

LibriSpeech evaluation. Table 5 shows results on LibriSpeech for short speech synthesis up to 35
seconds. As shown, VALL-E’s WER increased as the training audio length increases. In contrast,
HALL-E achieved a WER lower than 5% even with train-180s. The gap in WER between the model
and the ground truth is due to the difference between LibriSpeech, which primarily contains read
speech, and MinutesSpeech, which includes a significant amount of spontaneous speech. Balancing
speech synthesis of both read and spontaneous speech remains a challenge for future work.

NAC models. Table 6 compares the results obtained by Encodec and SpeechTokenizer. As shown,
all metrics except SIM improve with the use of SpeechTokenizer. Since SpeechTokenizer aims
to preserve more linguistic information in the first VQ layer, it is likely that this aligns well with
maintaining linguistic information better than acoustic information when the frame rate is reduced.
These results suggest the potential for further performance enhancement by employing more ad-
vanced NAC models in the future.

Computational efficiency. Table 5 compares the real-time factor (RTF) of VALL-E and HALL-E,
measured on an RTX 4090 GPU using the 4s to 10s segments from LibriSpeech. The results show
that HALL-E generates audio approximately 3.4 times faster than VALL-E. In LLM-based TTS,
the computational bottleneck typically lies in the AR model. Significant speed improvements were
achieved by HALL-E because it reduces the number of tokens required for generation by a factor of
six. This enhancement shows promising potential not only for LLM-based TTS but also for various
applications, such as spoken language modeling, as part of future work.
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Table 4: Zero-shot TTS performance on MinutesSpeech test sets. Best results are marked in bold.

TTS model NAC model Training WER↓ SIM↑ WD↓ DNSMOS↑ UTMOS↑ QMOS↑ SMOS↑
te

st
-9

0s
GT – – 10.30 – – 3.79 ± 0.24 3.28 ± 0.51 3.83 ± 0.30 -
VALL-E Encodec train-28s 39.77 0.726 23.62 3.84 ± 0.19 3.61 ± 0.48 2.29 ± 0.32 2.04 ± 0.25

VALL-E Encodec train-90s 16.14 0.712 2.68 3.87± 0.17 3.58 ± 0.60 2.48 ± 0.28 2.36 ± 0.26

HALL-E MReQ-Encodec train-90s 9.79 0.685 4.00 3.91 ± 0.21 3.74 ± 0.37 3.35 ± 0.26 3.15 ± 0.26

te
st

-1
80

s GT – – 10.20 – – 3.78 ± 0.25 3.25 ± 0.50 4.26 ± 0.22 -
VALL-E Encodec train-54s 36.52 0.706 25.66 3.55 ± 0.53 3.15 ± 0.97 1.68 ± 0.25 1.70± 0.26

VALL-E Encodec train-180s 21.71 0.702 12.52 3.76 ± 0.30 3.55 ± 0.62 2.11 ± 0.26 2.15± 0.26

HALL-E MReQ-Encodec train-180s 10.53 0.660 5.79 3.91 ± 0.19 3.74 ± 0.37 3.38 ± 0.25 3.31± 0.23

Table 5: Zero-shot TTS performance on LibriSpeech test clean set. Best results in the same group
(1 or 2) are marked in bold. QMOS and SMOS were conducted in the same group.

TTS model NAC model Training WER↓ SIM↑ WD↓ DNSMOS↑ UTMOS↑ QMOS↑ SMOS↑

GT1 - - 1.74 - - 3.84 ± 0.19 4.07 ± 0.31 4.19 ± 0.22 -
GT2 - - 1.74 - - 3.84 ± 0.19 4.07 ± 0.31 4.16 ± 0.19 -

VALL-E1 Encodec train-28s 4.05 0.740 0.442 3.86 ± 0.19 3.99 ± 0.35 2.71 ± 0.30 2.66±0.31

VALL-E2 Encodec train-54s 6.03 0.741 0.414 3.86 ± 0.20 3.95 ± 0.41 2.61 ± 0.25 2.60±0.28

VALL-E1 Encodec train-90s 7.17 0.678 1.12 3.78 ± 0.22 3.74 ± 0.48 2.08 ± 0.21 2.11±0.22

VALL-E2 Encodec train-180s 95.46 0.711 12.77 3.83 ± 0.21 3.81 ± 0.56 1.74 ± 0.19 1.71±0.21

HALL-E1 MReQ-Encodec train-90s 4.63 0.701 0.196 3.88 ± 0.19 3.84 ± 0.33 2.74 ± 0.26 2.79±0.27

HALL-E2 MReQ-Encodec train-180s 4.49 0.676 0.166 3.88 ± 0.21 3.81 ± 0.35 2.58 ± 0.27 2.58±0.27

Table 6: Results for Encodec and SpeechTokenizer. MinutesSpeech
train-90s and test-90s are used for training and testing, respectively.

TTS model NAC model WER↓ SIM↑ WD↓ DNSMOS↑ UTMOS↑
GT - 10.30 - - 3.79 ± 0.23 3.28 ± 0.51

VALL-E Encodec 39.77 0.726 23.62 3.84 ± 0.19 3.61 ± 0.48

HALL-E MReQ-Encodec 9.79 0.685 4.00 3.91 ± 0.21 3.74 ± 0.37

VALL-E SpeechTokenizer 35.62 0.724 24.20 3.86 ± 0.18 3.65 ± 0.38

HALL-E MReQ-SpeechTokenizer 9.12 0.678 3.09 3.95 ± 0.19 3.77 ± 0.33
Figure 5: Real-time factor
(RTF).

7.4 ANALYSIS AND ABLATION STUDIES

Table 7: Impact of varying hier-
archical structure.

Upsampling WER↓ SIM↑
(8,48) 10.27 0.693

(8,16,48) 10.71 0.693
(8,16,24,48) 9.79 0.685

Is the hierarchical structure essential? The results in Table 7
demonstrate the impact of different frame rates adopted in MReQ
on MinutesSpeech test-90s. For further details, please refer to Ap-
pendix C.1. From this table, it is evident that the proposed method
achieves the best WER, indicating the importance of gradually
increasing the frame rate in a hierarchical manner. We also ob-
served a trade-off between WER and SIM, as the SIM deteriorates
with a reduction in the number of 48Hz layers in the proposed
method.

Table 8: SIM as
a function of audio
prompt length.
Len. VALL-E HALL-E

3s 0.727 0.685
10s 0.801 0.750
20s 0.830 0.809
40s 0.851 0.846
60s 0.856 0.859

Long audio prompts. Table 8 shows the SIM as a function of the audio
length for prompt. The SIM values were calculated using audio segments
longer than 65 seconds from the MinutesSpeech test-90s. As expected,
longer audio length resulted in better performance. In zero-shot TTS, due
to the limited context, the voice-cloning results are typically inferior to stan-
dard fine-tuning (Anastassiou et al., 2024). Our proposed method has the
potential to push the limits of such zero-shot TTS capabilities.

Ablation study for MReQ: Table 9 shows the ablation study on the codec in the proposed method,
using the LibriSpeech test set. The results indicate that the HSR loss most contributes to recon-
struction performance. It is important to note that although the impact of the FLD loss may appear
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Table 9: Ablation study for MReQ
Model WER↓ PESQ↑ UTMOS↑
Proposed 2.02 3.89±0.15 3.89±0.36

w/o FLD loss 2.03 3.89±0.15 3.87±0.36

w/o HSR loss 2.15 3.79±0.17 3.86±0.37

w/o pre-training 2.08 3.83±0.17 3.85±0.37

minor, this does not mean that its influence on TTS is
negligible. The codec model has a hierarchical structure
with redundancy, meaning that information lost at the first
layer can be compensated for in subsequent layers. How-
ever, when training the AR model, it is crucial for suffi-
cient information to be present in the first layer, and the
FLD loss is essential for achieving this. For further de-
tails, please refer to Appendix C.1.

Table 10: Ablation study for HALL-E
Model WER↓ SIM↑ UTMOS↑
Proposed 9.79 0.685 3.74±0.37

w/o pre-training 49.80 0.647 2.55±0.30

w/ PreQ only training 10.36 0.682 3.52±0.38

w/ PostQ only training 10.11 0.683 3.73±0.36

Ablation study for HALL-E: Table 10 shows the ab-
lation study on HALL-E on MinutesSpeech test-90s.
As shown, all the proposed methods were found to
be effective. In particular, the results of training only
with PreQ or PostQ highlight the importance of using
the MRVQ sub-modules with NAR model as pointed
out in Section 5. This underscores the necessity of
designing the codec model with downstream tasks in mind, ensuring that it is optimized for the
specific requirements of those tasks.

Figure 6: Samples of generated waveforms. Each sentence
is displayed in a different color.

Qualitative results. Figure 6 shows
the ground truth audio from Min-
utesSpeech test-90s and audio gener-
ated by each models. Both HALL-E
and VALL-E models were trained on
MinutesSpeech train-90s. As shown,
the speech synthesized by HALL-E
has duration similar to the ground
truth, while VALL-E struggles with
duration prediction. Training the
model at a low frame rate not only
enables the generation of long speech
segments but also allows for capturing more natural long-term temporal dynamics. For more exam-
ples, please refer to Appendix D.1.

8 CONCLUSION

We introduced two novel approaches for minute-long zero-shot text-to-speech synthesis: MReQ
and HALL-E. MReQ reduced the frame rate of the Encodec model to 8 Hz by reorganizing audio
tokens via MRVQ. HALL-E efficiently synthesized minute-long speech by using 8Hz tokens in the
AR model and MRVQ sub-modules in the NAR model. We demonstrated the effectiveness of these
approaches on MinutesSpeech, the newly introduced dataset consisting of 40,000 hours of speech
data. Our work contributed to promote zero-shot TTS research.

Limitations and future work. By reducing the frame rate to 8 Hz, our AR model can utilize longer
contexts, enhancing the naturalness of the synthesized speech. We believe that to handle extended
context is particularly advantageous for larger AR models such as AudioLM (Borsos et al., 2023),
SpeechGPT (Zhang et al., 2023a), and PSLM (Mitsui et al., 2024). Demonstrating the effectiveness
of our approach not only in TTS but also with these models remains a future work. Furthermore,
as shown in Table 2, we have achieved shorter audio token length than the corresponding text token
length. However, in our current AR model, we concatenate these tokens, which results in the text
tokens becoming a bottleneck in terms of sequence length. Small-E (Lemerle et al., 2024) propose
methods to mitigate this issue by processing each token individually and fusing them using cross-
attention. Exploring such architectural enhancements is an important direction for future work.
Lastly, as shown in Table 6, our method brought significant improvements with SpeechTokenizer,
even more so than when applied to Encodec. It means that our approach can further enhance the ob-
jective of preserving linguistic information. This indicates that our method could serve as a replace-
ment for traditional SSL models (Hsu et al., 2021; Chen et al., 2022) or ASR encoders (Lakhotia
et al., 2021; Chu et al., 2023), marking an important direction for future research.
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A MODEL DETAILS

A.1 MREQ

Table 11: Hyper-parameters of Encodec

Module Hyper-Parameter Values

Encoder & Decoder ConvBlock Number 4
ConvBlock Filter Sizes [128, 256, 512, 1024]
ConvBlock Strides [10, 5, 5, 2]
ConvBlock Kernel size 7
ConvBlock Norm Weight norm
Activate Function ELU (Clevert, 2015)
LSTM number 2

RVQ Codebook Number 8
Codebook Dim 128
Codebook Vocabulary 1024

Discriminator MS-STFT (Défossez et al., 2022)
Window lengths [2048, 1024, 512, 256, 128]

Loss Function Adversarial Loss 4
Weight Coefficients Feature Matching Loss 4

L1 Loss 0.1
MS-SPEC Loss (Yamamoto et al., 2020) 2

Table 12: Hyper-parameters of MReQ-Encodec

Module Hyper-Parameter Values

Sub-Encoders ConvBlock Number 2
& Sub-Decoders ConvBlock Filter Sizes [512, 1024]

ConvBlock Strides
k = 1 [6, 1]
k = 2 [3, 1]
k = 3 [2, 1]

ConvBlock Kernel size 7
ConvBlock Norm Weight norm
Activate Function ELU (Clevert, 2015)
Bidiractional LSTM number 2

LRVQ Codebook Number α-β-γ
k = 1 1-6-1
k = 2 2-6-2
k = 3 2-4-2
k = 4 3-0-0

Codebook Dim 128
Codebook Vocabulary 1024

Loss Function FLD Loss (λFLD
(1,1), λ

FLD
(2,3), λ

FLD
(3,5), λ

FLD
(4,8)) = (8, 6, 4, 2)

Weight Coefficients HSR Loss (λHSR
1 , λHSR

2 , λHSR
3 , λHSR

4 ) = (8, 6, 4, 2)

Encodec: Table 11 lists the various hyperparameters of the Encodec used in this study. Essentially,
we utilized the configuration from the original Audiocraft (Copet et al., 2023b) implementation. The
main difference is the modification of the strides within the encoder and decoder from the original
[8, 5, 4, 2] to [10, 5, 5, 2]. This change increases the overall stride from 320 to 500, resulting in an
improvement in the frame rate of the generated token sequences from 75Hz to 48Hz.

MReQ-Encodec: Table 12 presents the list of hyperparameters for the proposed MReQ-Encodec
method. Modules added by MReQ, such as the sub-encoder, sub-decoder, and LRVQ, are the only
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ones listed, as all other modules are identical to those in Encodec. Essentially, the parameters
for the sub-encoder, sub-decoder, and LRVQ are based on the hyperparameters of the original en-
coder, decoder, and RVQ, respectively. We anticipate that applying MReQ to architectures other
than Encodec will similarly yield stable hyperparameters by basing them on those of the original
architecture, ensuring ease of adaptation.

In Section 4.2, we expressed the total loss function as Ltotal = LNAC+LFLD+LHSR. The detailed
formulation of LNAC in MReQ-Encodec is given by the following equation:

LNAC = λt · ℓt(xin, y) + λf · ℓf (xin, y) + λg · ℓg(y) + λfeat · ℓ(xin, y) + ℓw(w), (18)

where each λ represents the weight of its corresponding loss function. The terms ℓt and ℓf denote
the reconstruction errors calculated using L1 loss and MS-SPEC loss, respectively. The terms ℓg and
ℓfeat correspond to the adversarial loss and the feature matching loss, respectively. The last term,
ℓw, represents the quantization errors across all quantizers, specifically PreQ, PostQ, and Quant.

SpeechTokenizer: In this paper, the implementation of SpeechTokenizer is almost identical to the
Encodec architecture presented in Table 11. The only difference is that a bidirectional LSTM was
used instead of an LSTM. For the teacher used in the teacher forcing process of Layer 1’s RVQ, we
followed the original paper and employed Hubert base ls960 8.

In the original paper, 16,000Hz audio was used as the input data, with a stride of 320, resulting in a
frame rate of 50Hz. Additionally, the SSL model typically employs a window size of 20ms with a
16,000Hz input, also yielding a frame rate of 50Hz. This setup enabled the application of the teacher
forcing framework without any special adjustments in the temporal direction.

However, in this study, to ensure a fair comparison with Encodec, we adopted a 24,000Hz input
and a stride of 500. Consequently, the frame rate became 48Hz, creating a mismatch with the 50Hz
frame rate of the SSL model. To address this issue, we adjusted the audio input to the SSL model
by speeding it up by a factor of 50/48, ensuring that the duration of the SSL output aligns with that
of the first layer of RVQ.

Moreover, while the original work utilized not only the MS-STFT discriminator employed by En-
codec but also added a multi-period discriminator (MPD) and a multi-scale discriminator (MSD), as
in HiFi-Codec (Yang et al., 2023a), it was observed that the discriminators were too strong under the
aforementioned settings. As a result, using only the MS-STFT discriminator, similar to Encodec,
yielded the best performance.

MReQ-SpeechTokenizer: As described above, the SpeechTokenizer ultimately uses an SSL model
and, apart from the Bi-LSTM, matches the Encodec architecture in all respects. Therefore, when ex-
tending to MReQ, the architecture is identical to that of MReQ-Encodec, that is, the only difference
between MReQ-SpeechTokenizer and MReQ-Encodec lies in the pretrained weights used.

In this study, we did not use SSL models to train the MReQ-SpeechTokenizer. This is because an
SSL model was already utilized during the training of SpeechTokenizer, and since the features from
that model were used for distillation, we deemed it unnecessary to reapply the SSL model.

A similar concept can be applied to models like Language-Codec (Ji et al., 2024). The goal of this
model is to restrict the quantizers of the first three channels to learn only the compressed audio frame
information in the specified space by applying masking during RVQ training. However, since the
features obtained in this manner are used in MReQ training, there is no need to perform masking
again. In other words, MReQ is flexible enough to be easily adapted and extended to new NAC
models that may be developed in the future to learn better features.

A.2 HALL-E

VALL-E: Table 13 presents the hyperparameters of the AR LM in the VALL-E model. For this
implementation, we based our work on the LM of Audiocraft’s MusicGen (Copet et al., 2023b) and
referred to an unofficial VALL-E implementation 9.

Table 14 presents the hyperparameters of the NAR LM in the VALL-E model. The fundamental
hyperparameters are similar to those of the AR LM, with differences in the values for Dim, Heads,
8https://huggingface.co/facebook/hubert-base-ls960
9https://github.com/lifeiteng/vall-e
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Table 13: Hyper-parameters of AR LM in VALL-E

Module Hyper-Parameter Values

Transformer Dim 1280
Number of Heads 20
Number of Layers 36
Dim of FFN 5120
Norm Layer norm
Activate Function GELU (Hendrycks & Gimpel, 2016)
Positional Encoding sin (Vaswani et al., 2017)
Text Tokenizer Byte-Pair Encoding (BPE) (Sennrich, 2015)
Text Vocab 258

Table 14: Hyper-parameters of NAR LM in VALL-E

Module Hyper-Parameter Values

Transformer Dim 1024
Number of Heads 16
Number of Layers 24
Dim of FFN 4096
Norm Layer norm
Activate Function GELU (Hendrycks & Gimpel, 2016)
Positional Encoding sin (Vaswani et al., 2017)
Text Tokenizer Byte-Pair Encoding (BPE) (Sennrich, 2015)
Text Vocab 258

and Layers, resulting in a smaller number of parameters compared to the AR LM. It is generally
known that the task of generating acoustic tokens from acoustic input tokens handled by the NAR
LM is simpler than the task of generating tokens, including linguistic elements, from text handled
by the AR LM. Indeed, in our preliminary experiments, increasing the model size of the NAR LM
to match that of the AR LM resulted in minimal differences in performance.

HALL-E: The architecture of the AR LM in HALL-E is almost identical to that of VALL-E, as
shown in Table 13. The only difference lies in the input tokens being fed in a delayed format. This
method was introduced in MusicGen and adopted in TTS systems such as Lyth & King (2024). By
employing this approach, it becomes possible to efficiently train multi-layer token sequences within
the framework of next-token prediction.

In HALL-E’s AR LM, although it operates at a very low frame rate of 8Hz, it needs to handle six
layers of tokens. If this were trained in a flattened format, the sequence length would be equivalent
to 48Hz, rendering the frame rate reduction meaningless. However, by handling it in a delayed
format, the sequence length can be maintained at nearly the 8Hz frame rate, allowing for the optimal
utilization of tokens obtained through MReQ.

The architecture of HALL-E’s NAR model similarly shares many points with VALL-E’s NAR LM,
as shown in Table 14. There are two major differences: 1) a cross-attention layer is additionally
inserted into each transformer layer, using text tokens as input for the cross-attention, and 2) as
described in Section 5, the output tokens of PostQ and PreQ are combined for input and output.

1) In this study, HALL-E handles very long audio segments, such as 90s or 180s. However, as the
NAR LM processes tokens at 48Hz, it is difficult to train with all the tokens as input. Therefore, we
consider training with only a portion of these long tokens. Specifically, by clipping the audio length
corresponding to 90s or 180s so that it becomes 28s or 54s, it is possible to train sequences of the
same length as VALL-E’s NAR LM. However, VALL-E’s NAR LM requires the text corresponding
to the audio tokens to be concatenated with the audio tokens as input. In this study, where there is
no alignment between the text and audio, it is difficult to extract the corresponding text portion for
the clipped audio tokens and concatenate them.

To address this, we stopped using the traditional concatenation method for inputting text information
and instead used cross-attention to input the text information. This allows the attention mechanism
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to automatically learn the alignment with the input audio tokens. To our knowledge, no model in the
VALL-E framework has incorporated this kind of cross-attention mechanism to add text informa-
tion. Small-E (Lemerle et al., 2024) introduces this idea in a more refined form with Linear Causal
Language Models.

During inference, only audio up to 28s or 54s can be processed at most, so a method is employed
where new audio is generated sequentially by sliding 5s at a time. For more detailed inference
algorithms and other information, please refer to our publicly available GitHub repository10.

2) The technique of appropriately combining PostQ and PreQ for input, introduced in Section 5, was
implemented with the aim of promoting learning by bringing the structure closer to the original form
of the VALL-E NAR LM, as explained in that section. While this is indeed another major difference
from VALL-E, it should be noted that this operation involves using the modules acquired through
MReQ to properly transform tokens outside of the NAR LM, and no changes have been made to the
architecture of the NAR LM itself.

B DATASET DETAILS

B.1 MINUTESSPEECH TEST SET DETAILS

As mentioned in Section 6, the test set was gathered from broadcasts available under a Creative
Commons license. The goal was to collect redistributable data to facilitate future research on long-
form speech generation. The collection method involved first filtering English podcast descriptions
for those containing Creative Commons-related terms. Subsequently, podcasts explicitly labeled
with Creative Commons were manually selected. In most cases, the Creative Commons license
applied only to the music used in the broadcasts, with few instances of the license covering the
broadcasts themselves. Next, ASR was used to generate provisional transcripts, which were then
refined by native English speakers. Simultaneously, the quality of the audio was evaluated, and
broadcasts with high audio quality, suitable for speech synthesis, were selected. The list of podcast
broadcasts included in the final dataset is presented in Table 15.
Table 15: The list of podcast broadcasts under the Creative Commons license included in the Min-
utesSpeech test set

URLs Total Duration (h) License

https://anchor.fm/s/6f51ed88/
podcast/rss/

6.0 CC BY 4.0

https://feeds.captivate.fm/
research-culture//

1.8 CC BY-SA 4.0 &
CC BY-ND 4.0

https://anchor.fm/s/640d7168/
podcast/rss/

0.9 CC BY-NC-ND 4.0

https://feeds.hubhopper.com/
b38dfaea594789a83b87cb96d3f79004.
rss

0.4 CC BY-NC

B.2 EXAMPLES OF THE TRANSCRIPTS

Table 16 shows a portion of an actual transcript. This example from the MinutesSpeech test-90s
was generated by combining segments using ASR timestamps and speaker identification annota-
tions by native English speakers, ensuring that the maximum duration does not exceed 90 sec-
onds. As illustrated in this example, podcasts often feature a dialogue format between two in-
dividuals, which leads to variability in the duration of a single speaker’s continuous utterance.
In fact, even within this table, the durations range from a minimum of 3.68 seconds to a max-
imum of 79.82 seconds. For the complete dataset and further details, please refer to https:
//github.com/YutoNishimura-v2/HALL-E.

10https://github.com/YutoNishimura-v2/HALL-E
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Figure 7: Distribution of estimated PESQ scores.
B.3 QUALITY

Figure 7 shows the distribution of PESQ scores estimated by TorchAudio-Squim Kumar et al.
(2023a) for the MinutesSpeech training dataset, with an average score of 3.10. Compared to Lib-
riSpeech, which has an average score of 3.56, MinutesSpeech has lower-quality audio data. How-
ever, audio reconstructed by the Encodec and SpeechTokenizer models trained on MinutesSpeech
achieved scores of 3.45 and 3.52, respectively, as shown in Table 3. This indicates that the dataset
possesses sufficient quality for TTS purposes.

C ABLATION STUDIES

C.1 MREQ

Further information of the ablation study for a hierarchical structure in MReQ. In Section 7.4,
we demonstrated that the proposed method achieves better results compared to other upsampling
approaches. The parameters used are as follows: For (8, 48), K = 2, (α1, β1, γ1) = (1, 6, 1),
(α2, β2, γ2) = (7, 0, 0). For (8, 16, 48), K = 3, (α1, β1, γ1) = (1, 6, 1), (α2, β2, γ2) = (2, 6, 2),
(α3, β3, γ3) = (5, 0, 0).

Additionally, there is an important point that needs to be addressed. when the upsampling rate is (8,
48), the loss diverged after about 60% of training. This is likely due to the instability caused by the
difference in the 1st layer between the Encodec used for the pre-training and MReQ-Encodec used
for the post-training, which led to unstable learning. This highlights the importance of hierarchical
modeling to prevent sudden distribution shifts.

Table 17: Ablation study for FLD loss in MReQ

Model WER↓ SIM↑ WD↓ DNSMOS↑
HALL-E 9.79 0.685 4.00 3.91 ± 0.21

w/o FLD loss 9.07 0.704 4.51 3.88 ± 0.20

Is FLD loss needed? Table 17 com-
pares the case where MReQ-Encodec
was trained without using the FLD
loss and HALL-E was trained us-
ing it. Here, MinutesSpeech-90s was
used for evaluation. Interestingly,
when the FLD loss is excluded, the results do not worsen across all metrics—WER and SIM ac-
tually improve. However, WD and DNSMOS deteriorate to a non-negligible extent. This indicates
that using the FLD loss allows for generating more natural, human-like speech. Below, we will
discuss the reasons for this.

According to preliminary experiments, when MReQ is trained entirely without a pre-trained model,
LRVQ at frame rates like 8Hz is ignored, and the learning process progresses to supplement all the
information at higher frame rates. Since post-training with pre-trained model weights is applied
here, this issue is relatively mitigated, and relatively good results are achieved even without the FLD
loss.

On the other hand, when the frame rate is compressed, there is a tendency for finer temporal infor-
mation to be lost. This means, in principle, that acoustic information is more likely to be lost than

19



Published as a conference paper at ICLR 2025

Table 16: Example transcript from https://anchor.fm/s/6f51ed88/podcast/rss/

Start (s) End (s) Duration (s) Transcript
8.11 27.47 19.36 Welcome to Deconstructing Management, a podcast made by

college students for college students. We’ve interviewed the
chapter authors of the OpenStack’s Principles of Management
textbook...

34.57 92.55 57.98 I’m here with Chapter 7 author, Siri Terjesen. Dr. Terjesen holds
a postdoctoral degree from the Queensland University of Tech-
nology...

96.19 99.99 3.80 Very good, Eric. Thanks so much for inviting me to join you in
your class today.

100.53 104.65 4.12 Do you believe that successful entrepreneurs are born, or are they
made?

104.65 110.61 5.96 That’s a great question. And I think there are quite a lot of en-
trepreneurs that are born, right?

123.79 142.33 18.54 And we didn’t instigate that. But I think that they can also be
made...

156.81 168.57 11.76 I would have to agree with you because they could be born or,
like my cousin...

172.33 180.27 7.94 He’s going to start, like a party business, kind of like where he
has bouncy houses...

180.85 252.06 71.21 That’s neat. So really your cousin is a great example of a serial
or even a portfolio entrepreneur...

252.06 259.86 7.80 So going straight to another question, what are the most im-
portant traits a person must have to become a successful en-
trepreneur?

260.12 313.72 53.60 That’s a great question, Eric. And you may have seen this in
your cousin, right?...

318.13 357.97 39.84 Well, you’re never too old! So there’s a huge opportunity there...

365.94 445.76 79.82 That’s a great question. So, I think folks who have low-risk pref-
erences may not make good entrepreneurs...

459.27 526.33 67.06 That’s the first step, right? It’s thinking about what the business
would be...

527.01 541.68 14.67 It’s mainly, it’s also like, to start with like, shirts, like something
so simple, like shirts...

544.02 547.70 3.68 So, so like, the controllers for like, Xbox, and like, PS4.

linguistic information. The first layer of Encodec’s RVQ, which serves as the pre-trained model,
contains not only linguistic information but also a rich amount of acoustic information. Therefore,
applying the FLD loss facilitates learning that retains both linguistic and acoustic information. This
is believed to contribute to more natural speech generation. In contrast, when the FLD loss is not
used, more acoustic information is lost. As a result, while the retention of linguistic information
may improve WER, the overall outcome is less natural.

For this reason, we have adopted the FLD loss, which enables the generation of more natural speech.
Further improvements in WER and SIM while using this method remain a task for future work.

Is it possible to use an even lower frame rate? Table 18 shows the results of HALL-E trained using
a lower frame rate adopted in MReQ. The evaluation was conducted similarly using MinutesSpeech-
90s. Here, a very low frame rate of 4Hz was applied to the first LRVQ quantization. As the results
indicate, this caused a significant deterioration in WER. In general, the average duration of each
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phoneme is known to be around 100ms, which corresponds to approximately 10Hz. Therefore,
using a frame rate as low as 4Hz is likely to be fundamentally challenging.

Table 18: Ablation study for lower frame rate

Upsampling WER↓ SIM↑ WD↓ DNSMOS↑
(8, 16, 24, 48) 9.79 0.685 4.00 3.91 ± 0.21

(4, 8, 16, 24, 48) 20.07 0.690 1.95 3.90 ± 0.21

On the other hand, we can see a
substantial improvement in WD.
This suggests that lowering the
frame rate to 4Hz makes it easier
to learn longer-term temporal dy-
namics, enabling the generation of
more natural durations. From this, it is evident that while further lowering the frame rate involves
significant difficulties, the potential benefits are also considerable.

Table 19: Hyperparameter study
for lower bps in MReQ

βs WER↓ PESQ↑
(6, 6, 4, 0) 2.02 3.47
(3, 3, 2, 0) 2.13 3.42

Is it possible to reduce a bps? In MReQ, the number of Quant
layers can be freely adjusted. Therefore, we considered reducing
the number of Quant layers by half. In the original MReQ, the
bitrate is set to match that of Encodec, which is 3.84 kbps, but
by reducing the number of Quant layers in this way, it can be de-
creased to 2.64 kbps. Table 19 shows the performance changes
of MReQ on the LibriSpeech test set when the bitrate is reduced
in this manner. As the table indicates, significant performance degradation occurs even for a rela-
tively simple task like Speech Reconstruction. This suggests that it is preferable to reduce the bitrate
through improvements on the NAC model side, rather than by reducing the frame rate within the
MReQ framework.

Table 20 shows the performance of HALL-E using this MReQ evaluated on the MinutesSpeech-
90s dataset. As indicated by the WER degradation already observed in MReQ, WER wors-
ens significantly when training HALL-E. On the other hand, improvements are seen in all other
metrics besides WER. This can be attributed to the fact that the reduction in the number of

Table 20: Ablation study for lower bps in HALL-E

βs WER↓ SIM↑ WD↓ DNSMOS↑
(6, 6, 4, 0) 9.79 0.685 4.00 3.91 ± 0.21

(3, 3, 2, 0) 13.31 0.713 2.76 3.92 ± 0.21

layers handled by the AR LM—from 6
layers to 3—makes the training process
much easier, allowing for better learning
of aspects like duration. Additionally, re-
ducing the number of Quant layers, and
thereby the amount of information con-
tained in each block, results in smaller relative differences between blocks, making it easier for
the NAR LM to learn, which likely contributes to improvements in metrics like SIM. However, the
deterioration in WER is too significant to ignore, indicating that it is generally better to maintain the
same bitrate.

C.2 HALL-E

Table 21: Zero-shot TTS performances of HALL-E with different α-β-γ pairs

Dataset TTS model (α1, α2, α3, α4) WER↓ SIM↑ WD↓ DNSMOS↑
GT - 10.30 - - 3.79 ± 0.24

HALL-E (1, 1, 2, 4) 9.77 0.688 4.25 3.92 ± 0.23

MinutesSpeech-90s HALL-E (1, 1, 3, 3) 9.60 0.702 4.59 3.93 ± 0.22

HALL-E (1, 2, 2, 3) 9.79 0.685 4.00 3.91 ± 0.21

HALL-E (1, 2, 3, 2) 10.58 0.696 4.09 3.90 ± 0.19

GT - 1.74 - - 3.84 ± 0.19

HALL-E (1, 1, 2, 4) 4.37 0.706 0.201 3.89 ± 0.19

LibriSpeech HALL-E (1, 1, 3, 3) 4.67 0.703 0.165 3.88 ± 0.20

HALL-E (1, 2, 2, 3) 4.63 0.701 0.196 3.88 ± 0.19

HALL-E (1, 2, 3, 2) 5.68 0.688 0.178 3.89 ± 0.19

Is different α-β-γ pair more effective? Table 21 shows the performance changes when the α-β-γ
combinations used in each LRVQ of MReQ are modified. It should be noted that in all cases, the
bps is adjusted to be equal to that of Encodec, and β4 = γ4 = 0. As the results indicate, there is no
consistently strong combination across all metrics. On the other hand, when α4 = 2, the results are
consistently the worst. This implies that reducing the number of layers corresponding to 48Hz too
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much leads to performance degradation. As shown in Figure 1, significant performance deterioration
starts from 48Hz in Encodec, suggesting that this layer should be retained as much as possible.

In this study, we propose (1, 2, 2, 3) as the recommended method, as it consistently achieved bal-
anced and good results across both datasets. However, other configurations also produced satisfac-
tory results, demonstrating the robustness of our method to variations in hyperparameters.

D MORE QUALITATIVE RESULTS

D.1 DURATION ANALYSIS

Figure 8 shows an qualitative example with manually annotated segments for each word. In the first
sentence, highlighted in red, the duration of the proper noun “Cam Ross” differs significantly across
the models. In the speech generated by HALL-E, this phrase is pronounced more slowly, closely
resembling the ground truth. This effect can be attributed to the low sampling rate tokens, which
likely made it easier to learn contextual relationships between words. Additionally, VALL-E tends
to introduce more filler sounds and breaths in the latter part of the utterance, potentially disrupting
the duration prediction.

Figure 8: Qualitative example with transcription (zoom in to view details).

Figure 9 shows the waveform of a different sample compared to Figure 6. Similar to the observa-
tions in Figure 6, VALL-E generates an unnatural waveform with almost no silence, while HALL-E
produces a more natural waveform, closely resembling the ground truth with appropriate amounts
of silence.

Figure 10 presents the duration distribution for the entire dataset, calculated from MinutesSpeech
test-90s and test-180s. As consistently demonstrated by the WD in Table 4, HALL-E’s distribution is
consistently closer to the GT compared to VALL-E. In addition to the issue of failing to insert silent
pauses, VALL-E tends to overly repeat breathing sounds and fillers, resulting in longer durations.
HALL-E, by utilizing a very small frame rate of 8Hz, overcomes these issues specific to AR models
and achieves a more natural duration.
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Figure 9: A sample from MinutesSpeech test-180s. Both the HALL-E and VALL-E models were
trained using MinutesSpeech train-180s.

Figure 10: Comparison of the distribution of generated speech durations across different methods
in the MinutesSpeech test sets. The left plot shows the distribution for the test-90s set, while the
right plot shows the distribution for the test-180s set. Both the HALL-E and VALL-E models were
trained using the corresponding training sets (train-90s and train-180s).

Table 22: The comparison of filler generation abilities between HALL-E and VALL-E. The left table
presents the analysis results for the MinutesSpeech test-90s, while the right table shows the results
for the test-180s. In each case, HALL-E and VALL-E are trained on the corresponding train-90s and
train-180s datasets.

TTS model Avg. Fillers per text Total Fillers

GT 3.74 ± 3.66 2567

HALL-E 3.45 ± 3.35 2364
VALL-E 3.22 ± 3.30 2207

TTS model Avg. Fillers per text Total Fillers

GT 4.64 ± 5.22 2493

HALL-E 4.19 ± 4.66 2254
VALL-E 3.87 ± 7.05 2081

D.2 FILLER ANALYSIS

Fillers are an essential component for generating more natural human-like speech (Mitsui et al.,
2023). In this study, we propose and use the MinutesSpeech dataset collected from podcasts. This
dataset includes numerous instances of human dialogue, naturally containing many fillers. The abil-
ity to generate fillers at a frequency similar to human speech could be considered a future benchmark
for TTS systems.

Here, using the MinutesSpeech test set, we demonstrate the spontaneous speech generation capabil-
ity of HALL-E by analyzing and comparing the frequency of filler words in both ground truth and
generated speech. The list of filler words present in the MinutesSpeech test set is shown in Table 23.
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Table 23: Filler Words List used in MinutesSpeech test set

The list of filler words

so you know like actually right well i mean um you see basically literally uh

Table 22 shows the statistics of fillers in each MinutesSpeech test set. In all cases, HALL-E generates
fillers at a frequency closer to the ground truth compared to VALL-E. This improvement is likely
due to the use of an 8Hz frame rate, which facilitates better language understanding in the AR LM.

Notably, in the 180s results for VALL-E, the standard deviation is significantly large. This is because
VALL-E, as an AR model, sometimes exhibits repeated generation, producing fillers consecutively.
Such cases were not observed in HALL-E, suggesting that a lower frame rate is crucial for suppress-
ing repeats.

However, there is still a gap between the generated results and the GT. This is likely because more
advanced role-playing capabilities are needed. It is expected that utilizing models such as SLMs,
which extend LLMs to speech, could enable more human-like filler generation with their advanced
language processing abilities.

E COMPARISON WITH NAR TTS

Table 24 analyzes the performance of MaskGCT (Wang et al., 2024b) by speech duration using
the pre-trained model provided by the authors. We observed that the performance of MaskGCT
significantly decreases as the length of synthesized speech increases. This indicates that even with
NAR TTS, generating long speech in a single inference procedure is challenging. Tables 25 and 26
compare VALL-E, HALL-E and MaskGCT in the test-30s and test-90s settings, respectively. In the
30-second test setting, the WER of MaskGCT is lower than that of VALL-E and HALL-E. However,
its UTMOS is worse compared to HALL-E. In the 90-second test setting, only HALL-E achieves a
WER lower than 10.0%, along with the highest UTMOS. These results highlight the effectiveness
of the proposed method.

Table 24: MaskGCT performance by test duration.

TTS Model Duration (sec) WER↓ SIM↑ DNSMOS↑ UTMOS↑
MaskGCT 30 7.74 0.763 3.95 ± 0.23 3.42 ± 0.46
MaskGCT 45 10.75 0.763 3.94 ± 0.22 3.39 ± 0.49
MaskGCT 60 23.08 0.757 3.92 ± 0.23 3.30 ± 0.54
MaskGCT 90 51.12 0.691 3.57 ± 0.51 2.57 ± 1.02

Table 25: Performance comparison on test-30s.

TTS Model WER↓ SIM↑ DNSMOS↑ UTMOS↑
GT 10.65 - 3.74 ± 0.29 3.20 ± 0.51
VALL-E (train-28s) 11.84 0.731 3.84 ± 0.19 3.61 ± 0.41
VALL-E (train-90s) 14.83 0.695 3.82 ± 0.20 3.46 ± 0.50
HALL-E (train-90s) 10.88 0.685 3.87 ± 0.21 3.61 ± 0.38
MaskGCT 7.74 0.763 3.95 ± 0.23 3.42 ± 0.46

Table 26: Performance comparison on test-90s.

TTS Model WER↓ SIM↑ DNSMOS↑ UTMOS↑
GT 10.30 - 3.79 ± 0.24 3.28 ± 0.51
VALL-E (train-28s) 39.77 0.726 3.84 ± 0.19 3.61 ± 0.48
VALL-E (train-90s) 16.14 0.712 3.87 ± 0.17 3.58 ± 0.60
HALL-E (train-90s) 9.79 0.685 3.91 ± 0.21 3.74 ± 0.37
MaskGCT 51.12 0.691 3.57 ± 0.51 2.57 ± 1.02
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