
A Proofs of Theorems

In this section, we prove the theoretical results in the Section 4.1.

A.1 Proof of Theorem 1

Lemma 1. Let (Ω,F ,P) be a probability space and let (Ai)i∈{1...n} be a partition of Ω. Let C be
the set of partitions of Ω whose elements have the same probabilities as (Ai)i∈{1...n}, that is:

C = {(Ui)i∈{1...n} /
⋃
i

Ui = Ω; ∀(i, j), i 6= j, Ui ∩ Uj = ∅; ∀i,P(Ui) = P(Ai)}. (8)

If n = 2 or P(A1) ≥ 1/2 then:

min
(Bi)i∈{1...n}∈C

∑
i

P(Bi ∩Ai) ≥ 2× P (A1)− 1. (9)

Proof. If n > 2 and P(A1) ≥ 1/2, then we can write A′1 = A1 and A′2 = (
⋃

i=2...,nAi) and reason
similarly as in the case where n = 2 with (A′1, A

′
2) and (B′1, B

′
2).

In the case n = 2, we have:

P(A1 ∩B1) + P(A2 ∩B2) = 1− P(A1 ∩B2)− P(A2 ∩B1)

≥ 1− P(B2)− P(A2)

≥ 1− 2× (1− P (A1))

≥ 2× P(A1)− 1

The intuition is that no matter how the partitions are built, if P (A1) > 1/2 and P (B1) > 1/2, there
is necessarily an overlap between the two subsets such that A1 ∩B1 6= ∅.

Theorem 1. If we assume that:

• Z d
= Z ′;

• (Z | Ys = k)
d
= (Z ′ | Y ′s = k),∀k ∈ {1, ...,K};

then the accuracy of the main task classifier is lower-bounded:

P(πm(Z ′) = Y ′m) ≥
∑
ys

P(Ys = ys) max

{
0, 2

(
max
ym

P(Ym = ym | Ys = ys)−
1

2

)}
. (10)

Proof. Using that
⋃

ys
{Y ′s = ys} = Ω, we obtain using the law of total probability that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(πm(Z ′) = Ym
′ | Ys′ = ys)P(Ys

′ = ys)

=
∑
ys

P(Ys
′ = ys)

∑
ym

P({πm(Z ′) = ym} ∩ {Ym′ = ym} | Ys′ = ys).

(11)

Let us introduce A(ys)
ym = {Y ′m = ym | Y ′s = ys} and B(ys)

ym = {πm(Z ′) = ym | Y ′s = ys}. It is
important to note that P(A

(ys)
ym ) = P(B

(ys)
ym ). Indeed, we know that:

P(B(ys)
ym

) = P(πm(Z ′) = ym | Y ′s = ys). (12)
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Moreover, we assume conditional distribution to be aligned, and πm not to be retrained, as a result
equation (12) can be written as:

P(B(ys)
ym

) = P(πm(Z) = ym | Ys = ys)

= P(Ym = ym | Ys = ys)

= P(Y ′m = y′m | Y ′s = y′s)

= P(A(ys)
ym

).

(13)

Then, we can rewrite equation (11), namely the accuracy, as:
Accuracy︷ ︸︸ ︷

P(πm(Z ′) = Ym
′) =

∑
ys

P(Ys
′ = ys)

∑
ym

P(A(ys)
ym
∩B(ys)

ym
). (14)

Finally, without loss of generality, we can assume that the indexes of (A
(ys)
ym )ym and (B

(ys)
ym )ym are

ordered such that:

1. ∀ys ∈ {1...Ks}, P(A
(ys)
1 ) ≥ P(A

(ys)
2 ) ≥ ... ≥ P(A

(ys)
Km

);

2. ∀ys ∈ {1...Ks}, ∀i ∈ {1...Km}, P(A
(ys)
i ) = P(B

(ys)
i ).

Let us now define C(ys), the set of partitions of Ω whose elements have the same probabilities as
(A

(ys)
i )i∈{1...Km}. That is,

C(ys) = {(Ui)i∈{1...Km} /
⋃
i

Ui = Ω; ∀(i, j), i 6= j, Ui ∩ Uj = ∅; ∀i,P(Ui) = P(A
(ys)
i )}.

(15)

It is clear that: (B
(ys)
i )i∈{1...Km} ∈ C(ys).

Hence, it is also clear that:∑
ys

P(Ys
′ = ys)

∑
i

P(A
(ys)
i ∩B(ys)

i ) ≥
∑
ys

P(Ys
′ = ys) min

(U
(ys)
i )∈C(ys)

∑
i

P(A
(ys)
i ∩U (ys)

i ) (16)

Therefore, we can lower bound the accuracy in equation (14) using the inequality (16) above, such
that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) ≥
∑
ys

P(Ys
′ = ys) min

(U
(ys)
i )∈C(ys)

∑
i

P(A
(ys)
i ∩ U (ys)

i ) (17)

Let us now separate two cases:

1. Km > 2 and P(A
(ys)
1 ) < 1/2;

2. Km ≤ 2 or P(A
(ys)
1 ) ≥ 1/2.

We shall henceforth ignore the index (ys) for better clarity.

In case 1, we simply use that:

∀(U (ys)
i )i∈{1...Km} ∈ C

(ys),
∑
i

P(A
(ys)
i ∩ U (ys)

i ) ≥ 0. (18)

In case 2 , we show that (cf. Lemma 1):

min
(Bi)i∈{1...Km}∈C

∑
i

P(Bi ∩Ai) ≥ 2× P (A1)− 1. (19)
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The final result comes from the fact that:

P(A1) < 1/2 =⇒ P (A1)− 1/2 < 0

Hence the two cases are summarized by the formula:

min
(Bi)i∈{1...Km}∈C

∑
i

P(Bi ∩Ai) ≥ max

{
0, 2

(
max

i
P(Ai)−

1

2

)}
.

Finally, as the joint laws are assumed equal in distribution, namely (Ym, Ys)
d
= (Y ′m, Y

′
s ), it comes

that:

P (A
(ys)
1 ) = max

ym

P(Y ′m = ym | Y ′s = ys)

= max
ym

P(Ym = ym | Ys = ys).
(20)

A.2 Proof of Theorem 2

Lemma 2. If Y ⊥⊥ X | Z and X,Y, Z are discrete random variables then,

∀(x, y, z) ∈ (X(Ω)× Y (Ω)× Z(Ω)) with P(X = x ∩ Z = z) > 0,

P(Y = y | X = x, Z = z) = P(Y = y | Z = z)

Proof. ∀(x, y, z) ∈ (X(Ω)× Y (Ω)× Z(Ω)) such that P(X = x ∩ Z = z) > 0 :

P(Y = y | X = x, Z = z) =
P(X = x, Y = y, Z = z)

P(X = x, Z = z)

=

cf. Assumption︷ ︸︸ ︷
P(X = x | Y = y, Z = z) P(Y = y, Z = z)

P(X = x, Z = z)

=
P(X = x | Z = z)P(Y = y, Z = z)

P(X = x, Z = z)

=
P(X = x | Z = z)P(Y = y | Z = z)

P(X = x | Z = z)

P(Y = y | X = x, Z = z) = P(Y = y | Z = z)

Theorem 2. If we assume that:

• Z d
= Z ′;

• (Z | Ys = k)
d
= (Z ′ | Y ′s = k),∀k ∈ {1, ...,K};

• Z ′ ⊥⊥ Y ′m | Y ′s ;

then the accuracy of the model is:

P(πm(Z ′) = Y ′m) =
∑
ys

[
P(Ys = ys)

∑
ym

P(Ym = ym | Ys = ys)
2

]
. (21)

Proof. Let (Ω,F ,P) be a probability space. Let Ym(Ω) = Y ′m(Ω) = {1, ...,Km} and Ys(Ω) =
Y ′s (Ω) = {1, ...,Ks}. In the following, for the sake of clarity we shall try to omit writing Ys(Ω) and
Ym(Ω). Thus,when no confusion is possible we shall write

⋃
ys

instead of
⋃

ys∈Y (Ω) .
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Using the law of total probability, with
⋃

ys
{Y ′s = ys} = Ω, it comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Y ′m) =

∑
ys

P(πm(Z ′) = Y ′m | Y ′s = ys)︸ ︷︷ ︸
A(ys)

P(Y ′s = ys). (22)

Similarly, we reformulate A(ys) with the law of total probability, using that
⋃

ym
{Y ′m = ym | Y ′s =

ys} = Ω, and it comes that:

A(ys) =
∑
ym

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym)P(Ym

′ = ym | Ys′ = ys).

We now replace A(ys) in equation 22, which is the accuracy, and it comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Y ′m) =

∑
ys

P(Ys
′ = ys)

∑
ym

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym)P(Ym

′ = ym | Ys′ = ys).

(23)

If Y ′m ⊥⊥ Z ′ | Y ′s (assumption 3), it can easily be shown (cf. Lemma 2) for all (ys, ym) such that
P(Y ′s = ys, Y

′
m = ym) > 0, we have:

P(πm(Z ′) = ym | Ys′ = ys, Ym
′ = ym) = P(πm(Z ′) = ym | Y ′s = ys) (24)

Furthermore, it is clear that

P(Y ′s = ys, Y
′
m = ym) = 0 =⇒ P(Y ′s = ys | Y ′m = ym) = 0.

Hence, we can rewrite equation 23, namely the accuracy, using equation 24 for all (ys, ym), and it
comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)

∑
ym

P(πm(Z ′) = ym | Ys′ = ys)P(Ym
′ = ym | Ys′ = ys).

(25)

From assumption 2 on conditional features alignment, namely ∀k ∈ Ys(Ω), (Z | Ys = k)
d
= (Z ′ |

Y ′s = k), and given that the classifier πm is fixed, it comes that:

∀(ym, ys), P(πm(Z ′) = ym | Y ′s = ys) = P(πm(Z) = ym | Ys = ys). (26)

We assumed that the classifier πm is perfect on the training set, such that:

∀(ym, ys), P(πm(Z) = ym | Ys = ys) = P(Ym = ym | Ys = ys). (27)

Hence, combining equality 27 and equality 26, it comes that:

∀(ym, ys), P(πm(Z ′) = ym | Y ′s = ys) = P(Ym = ym | Ys = ys). (28)

We now rewrite the accuracy, that is equation 25, using the equality 28 above, and it comes that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)

∑
ym

P(Ym = ym | Ys = ys) P(Ym
′ = ym | Ys′ = ys)︸ ︷︷ ︸

Joint distributions of labels

.

(29)
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We assumed that the joint distributions of the labels were constant over time, i.e., (Ym ∩ Ys)
d
=

(Y ′m ∩ Y ′s ). Consequently, we replace the test time joint distribution by their training counterpart in
equation 29, such that:

Accuracy︷ ︸︸ ︷
P(πm(Z ′) = Ym

′) =
∑
ys

P(Ys
′ = ys)︸ ︷︷ ︸

Prior distribution

∑
ym

P(Ym = ym | Ys = ys)P(Ym = ym | Ys = ys). (30)

Finally, we assumed that the prior distributions of the labels are constant over time, i.e., Ys
d
= Y ′s

Therefore, we replace the test time prior by the training time prior in equation 30 and it gives:

P(πm(Z ′) = Ym
′) =

∑
ys

P(Ys = ys)
∑
ym

P(Ym = ym | Ys = ys)
2. (31)

B Implementation Details

Joint Training. We use the same hyper-parameters as [44] to train the ResNet-50 on the classifica-
tion and contrastive tasks jointly. We set the batch size to 256 and the weight of the self-supervised
task λ to 0.1 in all experiments. We train the model for 1,000 epochs on CIFAR-10 and CIFAR-100
from scratch. On VisDA, we reduce the number of epochs to 100 and warm start the training from a
pre-trained ResNet-50 due to limited training data.

Test-Time Adaptation. At test-time, we adapt the encoder using stochastic gradient descent with
a learning rate of 0.001 and momentum of 0.9. We use a batch size of 256 for the self-supervised task
and online feature alignment. Our experiments are conducted on GeForce RTX 3090.

Contrastive Task. We use the same data augmentation strategy as [12]. For random cropping, we
first create crops of random size and aspect ratio from raw images and subsequently resize them to
the original size. For color distortion, we set the strength of color jitter to 0.5. We set the temperature
parameter to 0.5 for CIFAR-10, CIFAR10-C, CIFAR-100 and CIFAR100-C, and 0.1 for the VisDA
dataset.

C Additional Experiments

C.1 Additional Results on Common Corruption Datasets

In addition to the bar plot in Figure 3 from the main paper, we summarize the classification errors on
CIFAR10-C with different severity levels of corruptions in Tables C.1-C.3. Across all three levels,
our proposed TTT++ outperforms other strong baselines [8, 35, 36] by a clear margin. Specifically,
our method leads to ∼23% lower classification errors on average than prior state-of-the-art methods.

C.2 Additional Results with Different Random Seeds

We follow the evaluation protocol of previous work [6, 8] and run all methods on the same pre-trained
model with the same seed. As shown in Table C.4, the variance across different random seeds is
minimal. We therefore report our main experimental results with only one random seed.

C.3 Additional Qualitative Results

In addition to Figure 3 from the main paper, we visualize the learned representation of test images on
three other types of corruption in Figures C.1. These qualitative results confirm that while TTT-C
itself leads to semantically more separated feature clusters, it cannot resolve the distributional shifts
in the feature space. In comparison, the full version of our proposed TTT++ is able to improve both
the feature alignment and the discriminative power of the test-time representations simultaneously.
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Table C.1: Classification error (%) on CIFAR10-C, level-5 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 7.01 13.27 11.84 23.38 29.41 28.24 48.73 50.78 57 19.46 23.38 47.88 44 21.93 10.84 29.14
BN [35] 8.22 8.27 9.66 19.54 19.95 19.5 17.11 25.95 27.7 13.67 13.72 11.50 16.17 15.88 7.93 15.65
TENT[8] 7.14 7.16 8.28 16.86 14.49 11.99 14.64 21.39 22.1 12.01 11.28 9.6 13.34 12.16 7.15 12.64
SHOT [36] 8.01 7.95 9.51 18.93 18.88 13.15 16.42 24.74 26.27 13.55 13.39 11.23 15.38 15.55 7.74 14.71

TFA 7.44 7.40 8.89 15.73 12.82 11.49 12.94 18.46 19.13 11.66 10.77 9.93 12.67 11.73 7.03 11.87
TTT-C 5.32 5.7 8.05 15.37 8.39 11.11 14.63 19.87 12.41 9.54 8.76 11.93 13.06 9.91 7.1 10.74
TTT++ 5.20 5.43 7.73 13.08 8.09 9.73 12.73 15.70 12.45 10.39 8.52 8.87 11.07 8.75 6.31 9.60

Table C.2: Classification error (%) on CIFAR10-C, level-4 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 5.88 7.45 8.32 13.04 13.02 20.07 43.31 52.34 43.78 17.12 16.72 26.45 34.34 19.31 8.12 21.95
BN [35] 7.33 7.48 8.19 13.46 13.10 11.50 15.63 25.36 21.65 12.11 12.35 8.98 12.91 16.70 7.05 12.92
TENT [8] 6.71 6.62 7.08 11.73 9.13 10.66 13.61 20.39 17.12 10.77 10.02 8.56 11.04 13.41 6.59 10.90
SHOT [36] 6.71 6.90 7.66 12.31 11.22 10.77 14.30 22.49 18.68 11.33 11.13 8.51 11.58 15.05 6.68 11.69

TFA 6.55 6.51 7.38 11.76 9.96 10.03 12.65 18.46 15.39 10.45 10.36 8.36 10.69 12.79 6.47 10.52
TTT-C 4.85 5.02 6.14 10.17 6.00 8.47 12.84 19.90 11.48 10.58 8.17 7.43 10.24 10.44 6.15 9.19
TTT++ 4.34 4.81 5.68 9.52 5.91 7.74 12.08 15.92 9.47 9.34 7.71 6.93 9.26 9.08 5.80 8.24

Table C.3: Classification error (%) on CIFAR10-C, level-3 corruptions.

brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

Test 5.64 6.47 5.73 7.69 8.98 18.54 36.96 35.53 26.86 15.54 16.68 13.10 28.00 16.89 7.54 16.68
BN [35] 6.95 6.96 7.03 9.27 10.19 11.21 13.53 16.53 15.84 10.91 12.20 8.42 12.12 14.90 7.26 10.89
TENT [8] 6.51 6.44 6.36 8.63 7.90 9.87 11.88 14.26 12.99 10.38 10.58 7.24 9.97 11.87 6.67 9.44
SHOT [36] 6.58 6.66 6.80 8.67 9.12 10.46 12.14 15.17 14.06 10.40 10.93 7.74 10.72 12.78 6.59 9.92

TFA 6.32 6.46 6.63 8.61 8.78 10.17 11.10 13.23 11.54 9.99 10.20 7.49 10.21 12.03 6.70 9.30
TTT-C 4.51 4.81 4.77 6.79 5.34 8.99 11.38 12.93 8.63 9.86 8.09 6.49 9.49 8.70 5.95 7.78
TTT++ 4.26 4.50 4.68 6.47 5.18 7.84 9.92 10.99 8.06 8.51 7.66 5.97 8.43 7.78 5.46 7.05

Table C.4: Classification error (%) of TTT+ with different random seeds on CIFAR10-C, level-5 corruptions.

Seed brit contr defoc elast fog frost gauss glass impul jpeg motn pixel shot snow zoom Average

0 5.20 5.43 7.73 13.08 8.09 9.73 12.73 15.70 12.45 10.39 8.52 8.87 11.07 8.75 6.31 9.60
1 5.09 5.37 7.47 12.62 7.95 9.44 12.63 16.19 12.25 10.40 8.59 8.51 11.22 8.71 6.12 9.50
2 5.25 5.50 7.69 13.04 8.17 9.46 13.05 16.21 11.95 10.49 8.57 8.48 11.14 8.76 6.34 9.61

Std 0.08 0.07 0.14 0.25 0.11 0.16 0.22 0.29 0.25 0.06 0.04 0.22 0.08 0.03 0.12 0.06

(a) Test (b) TENT (c) SHOT (d) TFA (e) TTT-C (f) TTT++

Figure C.1: T-SNE visualization of the representation for the CIFAR10 images with the level-5 elastic transform
corruption. Top row: per-class feature distribution. Bottom row: marginal feature distribution on the original test
images (red) and corrupted test images (blue).
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