A Deterministic lower bound

While there remains a small gap between our main lower bound of Theorem 3 and the deterministic
quantised gradient descent of Section 6, we can show that the gap cannot be closed by improved
deterministic algorithms where the coordinator learns value of objective function F'(z) in addition to
the minimiser . That is, our quantised gradient descent is the communication-optimal deterministic
algorithm for variant (1) for objectives with constant condition number.

Recall that in the N-player equality over universe of size d, denoted by EQg x/, each player ¢ is
given an input b; € {0,1}%, and the task is to decide if all players have the same input. That is,
EQan (b1,...,by) = 1lifall inputs are equal, and 0 otherwise. It is known [33] that the deterministic
communication complexity of EQy n is CC(EQq n) = Q(Nd).

Theorem 8. Given parameters N, d, €, By and 8 = BoN satisfying dj3/e = Q(1), any deterministic
protocol solving (1) for quadratic input functions x — Bo||x — x¢||3 has communication complexity
Q(N dlog(8d/ 5)) if the coordinator is also required to output estimate r € R for the minimum

Sfunction value such that Zfil filz) <r< Ziil fi(z) + e

Proof. Assume I is a deterministic protocol solving (1) with communication complexity Cr. We
show that IT can then solve N-party equality over a universe of size D = Q(dlog(/5d/¢)), implying

Cn = Q(ND) = Q(Ndlog(Bd/e)) .

More specifically, let S be the set given by Lemma 2 with § = (2¢//3)'/2, and let D = [log |S|] =
O(dlog(Bd/e)). Note that since we assume df/e = Q(1), the set S has at least two elements and
D > 1. For technical convenience, assume |S| = 27, and identify each binary string b € {0, 1}?
with an element 7(b) € S.

Next, assume that each node i is given a binary string b; € {0, 1} as input, and we want to compute
EQp,n(b1,b2,...,bn). The nodes simulate protocol IT with input function f; for node 7, where
fi(x) = Bollz — 7(b;)||3. Let us denote F = Z?Zl fi- Upon termination of the protocol, the
coordinator learns a point y € [0, 1]¢ satisfying F(y) < F(z*) + € and an estimate r € R satisfying
r < F(y) + ¢, where x* is the true global minimum. The coordinator can now adjudicate equality
based on F'(y) as follows:

(1) If all inputs b; are equal, then the functions f; are also equal, and F'(z*) = 0. In this case, we
have F(y) < 2¢, and the coordinator outputs 1.

(2) If there are nodes i and j such that i # j, then for all points = € [0, 1]%, we have f;(z) + f;(z) >
2¢ by the definition of S, and thus F'(z*) > 2e. In this case, we have r > 2¢, and the coordinator

outputs 0.
Since communication is only used for the simulation of II, this computes EQp n(b1,b2,...,bn)
with Cfy total communication, completing the proof. O

B Lower bound for non-convex functions

We now show a simple lower bound for optimisation over non-convex objective functions. We reduce
from the IV-player set disjointness over universe of size d, denoted by DISJ4, n: each player 7 is given

an input b; € {0, 1}, and the coordinator needs to output 0 if there is a coordinate ¢ € [d] such that
b;i(¢) = 1forall i € [N], and 1 otherwise.

Theorem 11 ([6]). Foré > 0, N > 1 and d = w(log N), the randomised communication complexity
of set disjointess is RCC°(DISJq n) = Q(Nd).

Again consider for fixed ¢, d and 3 the set S given by Lemma 2 with § = 2¢/(. This gives a set S
with size at least (3d'/?/2Ce)? = exp(Q(dlog(/3d)/¢). Let us identify the points in S with indices
in [|S]]. For a binary string b € {0, 1}!%], define the function f;, by

o) = Bl —sll2  if |x — s||2 < ¢/ for s with b = 1,
L = otherwise.
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Since the distance between points in S is at least 2¢/3, the functions fr are well-defined, continuous
and (-Lipschitz.

Theorem 12. Given parameters N, d, € and f3 satisfying df/e = Q(1) and (3d*/?/2Ce)* =
w(log N), any protocol solving 1 with error probability § > 0 when the inputs are guaranteed to be
functions fy for b € {0, 1}5 has communication complexity N exp(Q(dlog(Bd)/e)).

Proof. Assume there is a protocol 1I with the properties stated in the claim, and worst-case commu-
nication cost Cr;. We now show that we can use IT to solve set disjointness over universe of size |.S|
with Cfy total communication, which implies

Cn > RCC‘S(DISJ|S|’N) = Q(N exp(Q(dlog(Bd)/e)) ,
yielding the claim.

First, we note that after running 11, the coordinator can send the final estimate z of the optimum to all
nodes, and receive approximations of the local function values f;(z) from all nodes with additive
O(NdlogdfB/e) overhead, e.g. using quantisation of Corollary 9. We can without loss of generality
assume that this does not exceed the total communication cost of II.

For by, by, ...by € {0,1}] that all contain 1 in some position s, then we have Zfil fo, () = 0.
Otherwise, for any point z € [0, 1]d, consider the closest point s € S to x; there is at least one b;
with by = 0, and for that function f, (z) = € by definition. Thus, if by, b, ... by are a YES-instance

for set disjointness, then inf, (g 1}¢ Zfil fo, (@) > &, and if by, ba, ... by are a NO-instance, then
. N
lnf;cE[O,l]d Zz‘:l fbi (I) =0.

By definition, II can be used to distinguish between the two cases, and thus to solve set disjointness.
O

C Communication-optimal quantised gradient descent, full version

We now describe in detail our deterministic upper bound. Our algorithm uses quantised gradient
descent, loosely following the outline of Magnusson et al. [25]. However, there are two crucial
differences. First, we use a carefully-calibrated instance of the quantisation scheme of Davies
et al. [11] to remove a log d factor from the communication cost, and second, we use use two-step
quantisation to avoid all-to-all communication.

Preliminaries on gradient descent. We will assume that the input functions f;: [0,1]¢ — R are

ag-strongly convex and fy-strongly smooth. This implies that F' = vazl fi 1s a-strongly convex
and (-strongly smooth for « = Nag and 5 = N5y. Consequently, the functions f; and F' have
condition number bounded by k = 3/ «.

Gradient descent optimises the sum vazl fi(z) by starting from an arbitrary point 2(*) € [0, 1]¢,
and applying the update rule

N
2 = 20 3 3V ),

i=1
where v > 0 is a parameter.

Let * denote the global minimum of F'. We use the following standard result on the convergence of
gradient descent; see e.g. Bubeck [8].

Theorem 13. For v = 2/(a + f3), we have that |2+ — z*||5 < :—I_iﬂx(t) —z*|o.
Preliminaries on quantisation. For compressing the gradients the nodes will send to coordinator,
we use the recent quantisation scheme of Davies et al. [11]. Whereas the original uses randomised
selection of the quantisation point to obtain a unbiased estimator, we can use a deterministic version
that picks an arbitrary feasible quantisation point (e.g. the closest one). This gives the following
guarantees:

Corollary 14 ([11]). Let R and ¢ be fixed positive parameters, and q¢ € R? be an estimate vector,
and B € N be the number of bits used by the quantisation scheme. Then, there exists a determin-
istic quantisation scheme, specified by a function Q¢ gr: R? x R? — RY, an encoding function
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enc. g: R? — {0,1}5, and a decoding function dec. r: R? x {0,1}2 — R%, with the following
properties:

(1) (Validity.) dec. g(q,enc. r(z)) = Qe r(x,q) for all ,q € R with ||z — q|2 < R.
(2) (Accuracy.) |Qc (7, q) — x||2 < & forall x,q € R with ||z — ql2 < R.
(3) (Cost.) If e = AR for any \ < 1, the bit cost of the scheme satisfies B = O(dlog \™1).

C.1 Algorithm description

We now describe the algorithm, and overview its guarantees. We assume that the constants « and
£ are known to all nodes, so the parameters of the quantised gradient descent can be computed
locally, and use W to be an upper bound on the diameter on the convex domain I, e.g. W = d'/2 if

D= [0, 1}‘1. We assume that the initial iterate (9 is arbitrary, but the same at all nodes, and set the
(0)

initial quantisation estimate ¢; ’ at each ¢ as the origin.

We define the following parameters for the algorithm. Let v = 2/(« + 3) and £ = :—I_i be the step
size and convergence rate of gradient descent, and let W be such that ||z(?) — z*|| < W. We define

1

24
—, §=¢£(1-9)/4, RO = ='W,
o §1-¢)/ e
where 1 will be the convergence rate of our quantised gradient descent, and 6 and R(Y) will be
parameters controlling the quantisation at each step. For the purposes of analysis, we assume that

k > 2. Note that this implies that 1/3 < { < 1, u < 1,and 0 < § < 1.

p=1-

The algorithm proceeds in rounds ¢ = 1,2,...,7. At the beginning of round ¢ + 1, each node ¢
knows the values of the iterate z(*), the global quantisation estimate ¢(*), and its local quantisation

(

estimate qit) fori =1,2,..., N. Atstep t, nodes perform the following steps:

(1) Each node i updates its iterate as z(*t1) = z(t) — 4¢(*),

(2) Each node i computes its local gradient over z(**1), and transmits it in quantised form to the
coordinator as follows. Let £, = §R(**1) /2N and p; = R**YV/N.

(2) Node i computes V f;(x(*+1)) locally, and sends message m; = enc., ,, (V f;(z(‘+1)) to
the coordinator.
(b) The coordinator receives messages m; for¢ = 1,2, ..., N, and decodes them as qEHl) =

N q(t+1)

dece, p, (qi(t), m;). The coordinator then computes r(*+1) = 37 ¢}

(3) The coordinator sends the quantised sum of gradients to all other nodes as follows. Let g2 =
SR /2 and py = 2R+,
(a) The coordinator sends the message m = ence, ,, (r(*+1) to each node 1.

(b) Each node decodes the coordinator’s message as ¢**1) = dec,, ,,(¢'"), m).

After round T, all nodes know the final iterate z(1).

C.2 Analysis

For simplicity, we will split the analysis into two parts. The first describes and analyses the algorithm
in an abstract way; the second part describes the details of implementing it in the coordinator model.
For technical convenience, assume « > 2; for smaller condition numbers, we can run the algorithm
with Kk = 2.

Convergence. Let v = 2/(a+ ), let 20 € [0,1]%, ¢\” € R?and ¢” € R¥ fori = 1,2,..., N be
arbitrary initial values. From the algorithm description, we see that the update rule for our quantised
gradient descent is

LD — () )

- 749 )
oY = Qcy (Vi (2D, ) fore; = SR /2N and p; = RFV/N,
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T(t+1 Z q(t+1)

¢ = Q. (rTY, ¢V) for o = SR /2 and py = 2RUHD,

Lemma 15. The inequalities

2 — z*||s < p'W, Q1)
IV fi(z®) — 7]l < 6R® /2N, Q2)
|VF(@@®) —¢®, < §R® (Q3)

hold for all t, assuming that they hold for 9, ¢(©) and quo) fori=1,2,... N.

Proof. We apply induction over ¢; we assume that the inequalities (Q1-Q3) hold for ¢, and prove that
they also hold for t 4 1. Since we assume the inequalities hold for £ = 0, the base case is trivial. By
elementary computation, the following hold:

0<é<, 0<do<1, 20/6+E€=pu, B8<2, uR“”zR“*”.
Convergence (Q1): First, we observe that 25—‘5 +&= %(1 +&)=1- Tﬂ = pand y8 < 2. We now
have that
20D — 2%y = @ — 4¢) + 4V F(2M) = yVF(@®) + 2*|2 (def.)
<lvg™ = AVE@@D) |2 + [[(2 =4 VF(@®)) =", (wiangle-ie.)
<AIVE@E®) — ¢ |lg + £lJz® — 2*||2 (norm, Thm. 13)
< ASRY 4+ eptw (by Q1, Q3 for t)
= (YBS/E+ u'W (expand R")
< (20/6+ Ou'W = p W (78 <2)

Local quantisation (Q2): First, let us observe that to prove that (Q2) holds for ¢ 4 1, it is sufficient

to show ||V i (z(1+1) — ¢P||, < R+ /N, as the claim then follows from the definition of ¢" ™"
and Corollary 9. We have

IV £(2D) = s = |V £i(@D) = Vfi(@®) + V £;(2D) — ¢z

< Vi D) = V)| + IV £i(D) — g2 (triangle-i.e.)
< Bollz® Y — 2@y + 6RO /N (smoothness, Q3)
< Bo(JlztY —z*||a + =@ — 2*|2) + SR /N (triangle-i.e.)
< 2Bou'W + 6R® /N (by Ql fort, t +1)
= 28uW/N + 6RW /N (B =BoN)
= ¢RW/N + 6RY /N (definition of R())
= (6+6)RY/N (rearrange)
< (£+26/§)RV/N (2/¢>1)
= uRY /N = RN . (20/¢+&=p)

Global quantisation (Q3): To prove (Q3), we start by giving two auxiliary inequalities. First, we
prove that | VF (z(t+1) — (1) ||, < §ROFD /2:

N
[VEEE) =D, = |3 Vi) Zq““ (def.)
i=1
N
< Z”Vfi(x(tH)) - qi(tH)HQ (triangle-i.e.)
i=1
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< NSRUHD JaN = gRHD) /2, (by Q2 fort + 1)

Next, we want to prove ||r(*+1) — g+, < SR+ /2. Again, it is sufficient to show [|r(t+1) —
q®||s < 2R+ as the claim then follows from the definition of ¢(**1) and Corollary 9. We have

[P = gy = 1D + VF (D) = VF(@D) + VF(@®) - VE@®) ¢,
< D = VRl + | VE D) = VEEO)[|2 + [ VE(Y) - ¢,
< 5R(t+1)/2 + 5||x(t+1) — 37(t)||2 +6RW |

where the last inequality follows from smoothness of F, equation (Q2) for ¢ + 1 and equation (Q3)
for ¢. It holds that

Bl — 2@y + 6RO < 8|z — z*||o + 2@ — 2*|2) + sR® (triangle-i.e.)
< 2B8u'W + §RW (by Q1 for ¢, t + 1)
= ¢R® 4+ §R® (definition of R®)
< (£+25/¢)RW (2/6>1)

— MR(t) — Rp+1)
Combining the two previous inequalities, we have
||7'(t+1) _ q(t)||2 < 5R(t+1)/2 + RUHD < op(t+1)
as desired.
Finally, putting things together, we have
[VP@+D) = D = [V @HD) = oD 4 040 — glet D

< VE@ED) =Dl 4 [ — g+ D]

< SRV /2 4 R /2 = RUFD
completing the proof. O

Lemma 16. Forany s > O andt > (k + 1)log W, we have ||z — 2*||5 < e.

g

Proof. By Lemma 15, we have ||z(!) — || < W = (1 — (1 — p))!W < e~ ("=}, Assuming

t> % log W we have
—u €

e—(l—u)tW < e—(l—u)(l—u)71 logW/EW — eloga/WW _ 6W/W —c.
The claim follows by observing that ﬁ = Kk + 1 by definition. O

Communication cost. Finally, we analyse the distributed implementation described at the beginning
of this section, and analyse its total communication cost. Recall that we assume that the parameters o
and (3 are known to all nodes, so the parameters of the quantised gradient descent can be computed
locally, and use W = d'/2. Note that W is the only parameter depending on the input domain, so the
algorithm also applies for arbitrary convex domain D C R?, setting W to be the diameter of ID.

Since 6 < 1, we have by Lemma 9 that the each of the messages sent by the nodes has length at most
O(dlog §~1) bits. Assuming x > 2, we have £ > 1/3 and

2(k+1)

logé~! =log <logb(k+1) <logTk.

Since the nodes send a total of 2N messages of O(d log ) bits each, the total communication cost of
a single round is O(Nd log k) bits.

To get F(z(M)) — F(2*) < ¢, we need ||2(7) — 2*|| < (¢/8)?. By Lemma 16, selecting T =

O(klog %) is sufficient. Finally, using W = O(d'/?), we have that the total communication cost
of the optimisation is O(Nd/—@ log x log %)
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D Subsampling

In this section, we show that the condition Sd/N 2e = Q(1) in our main lower bound is, to a degree,
necessary.

Lemma 17. Let S = {z1,79,...,2x} C [0,1]% and let X1, Xo,..., X be iid. random
variables, each selected uniformly at random from S. Writing & = % Zf\il xiand X = ﬁ Zf\il X,
we have J

E[HX - £||2] =0, and Var(||X — j||2) =3

Proof. The first part follows immediately by the definition of the expectation. For the second part,
we first note that since all points within [0, 1]¢ are at most d'/? apart, and thus by the definition of
variance, it follows that

Var(||X — #[l2) = E[|X — (3] - E[|X - &[2]* = E[| X - &[3] - 0

1 M 1 M
< E[MZ 1x: — a3 = a7 2 Bl - 2l

1 d
< — = —.
_MQMd U
O

Theorem 18. Assume the input functions f; of the nodes are promised to be quadratic functions
x = Bollx — x*||3 for some constant By > 0, let 3 = By N, and assume we can select M < N to be
an integer satisfying Bd/Me < 1/8. The there is a randomised algorithm solving (1) using

d
O (Md log B—) bits of communication,
€
with probability at least 1/2.

Proof. We start by having the coordinator select a multiset I of M nodes uniformly at random
with replacement. Let & denote the global optimum of vazl fi, and let Y be the random variable
for the global optimum of ). _, f;. By Lemma 17, Chebyshev’s inequality and the assumption
Bd/Ne < 1/8, we have that

. 1/e\1/21  4d3
— > (= < —< .
Pl -l > 5(5) < S <1

Let ¢ be the actualised value of Y. We now apply the algorithm of Theorem 10 to find a point z
such that ||z — /|| < 1/2(¢/B)'/?, where, if the multiset I contains duplicates, those nodes simulate
multiple copies of themselves. This uses O(M dlog 8d/<) bits of communication. We now have with

probability at least 1/2 that ||z — &|| < (¢/8)"/2, and thus 320 | fi(2) < N, fi(&) + . O
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