
A Deterministic lower bound

While there remains a small gap between our main lower bound of Theorem 3 and the deterministic
quantised gradient descent of Section 6, we can show that the gap cannot be closed by improved
deterministic algorithms where the coordinator learns value of objective function F (x) in addition to
the minimiser x. That is, our quantised gradient descent is the communication-optimal deterministic
algorithm for variant (1) for objectives with constant condition number.

Recall that in the N -player equality over universe of size d, denoted by EQd,N , each player i is
given an input bi 2 {0, 1}d, and the task is to decide if all players have the same input. That is,
EQd,N (b1, . . . , bN) = 1 if all inputs are equal, and 0 otherwise. It is known [33] that the deterministic
communication complexity of EQd,N is CC(EQd,N) = ⌦(Nd).
Theorem 8. Given parameters N , d, ", �0 and � = �0N satisfying d�/" = ⌦(1), any deterministic

protocol solving (1) for quadratic input functions x 7! �0kx� x0k22 has communication complexity

⌦
�
Nd log(�d/")

�
, if the coordinator is also required to output estimate r 2 R for the minimum

function value such that
PN

i=1 fi(z)  r 
PN

i=1 fi(z) + ".

Proof. Assume ⇧ is a deterministic protocol solving (1) with communication complexity C⇧. We
show that ⇧ can then solve N -party equality over a universe of size D = ⌦(d log(�d/")), implying

C⇧ = ⌦(ND) = ⌦
�
Nd log(�d/")

�
.

More specifically, let S be the set given by Lemma 2 with � = (2"/�)1/2, and let D = dlog |S|e =
⇥(d log(�d/")). Note that since we assume d�/" = ⌦(1), the set S has at least two elements and
D � 1. For technical convenience, assume |S| = 2D, and identify each binary string b 2 {0, 1}D
with an element ⌧(b) 2 S.

Next, assume that each node i is given a binary string bi 2 {0, 1}D as input, and we want to compute
EQD,N (b1, b2, . . . , bN). The nodes simulate protocol ⇧ with input function fi for node i, where
fi(x) = �0kx � ⌧(bi)k22. Let us denote F =

Pd
i=1 fi. Upon termination of the protocol, the

coordinator learns a point y 2 [0, 1]d satisfying F (y)  F (x⇤) + " and an estimate r 2 R satisfying
r  F (y) + ", where x

⇤ is the true global minimum. The coordinator can now adjudicate equality
based on F (y) as follows:

(1) If all inputs bi are equal, then the functions fi are also equal, and F (x⇤) = 0. In this case, we
have F (y)  2", and the coordinator outputs 1.

(2) If there are nodes i and j such that i 6= j, then for all points x 2 [0, 1]d, we have fi(x)+fj(x) >
2" by the definition of S, and thus F (x⇤) > 2". In this case, we have r > 2", and the coordinator
outputs 0.

Since communication is only used for the simulation of ⇧, this computes EQD,N (b1, b2, . . . , bN)
with C⇧ total communication, completing the proof.

B Lower bound for non-convex functions

We now show a simple lower bound for optimisation over non-convex objective functions. We reduce
from the N -player set disjointness over universe of size d, denoted by DISJd,N : each player i is given
an input bi 2 {0, 1}d, and the coordinator needs to output 0 if there is a coordinate ` 2 [d] such that
bi(`) = 1 for all i 2 [N], and 1 otherwise.
Theorem 11 ([6]). For � > 0, N � 1 and d = !(logN), the randomised communication complexity

of set disjointness is RCC�(DISJd,N) = ⌦(Nd).

Again consider for fixed ", d and � the set S given by Lemma 2 with � = 2"/�. This gives a set S
with size at least (�d1/2/2C")d = exp(⌦(d log(�d)/"). Let us identify the points in S with indices
in [|S|]. For a binary string b 2 {0, 1}|S|, define the function fb by

fb(x) =

⇢
�kx� sk2 if kx� sk2 < "/� for s with bs = 1,
" otherwise.

14

Since the distance between points in S is at least 2"/�, the functions fT are well-defined, continuous
and �-Lipschitz.
Theorem 12. Given parameters N , d, " and � satisfying d�/" = ⌦(1) and (�d1/2/2C")d =
!(logN), any protocol solving 1 with error probability � > 0 when the inputs are guaranteed to be

functions fb for b 2 {0, 1}|S|
has communication complexity N exp(⌦(d log(�d)/")).

Proof. Assume there is a protocol ⇧ with the properties stated in the claim, and worst-case commu-
nication cost C⇧. We now show that we can use ⇧ to solve set disjointness over universe of size |S|
with C⇧ total communication, which implies

C⇧ � RCC�(DISJ|S|,N) = ⌦(N exp(⌦(d log(�d)/")) ,

yielding the claim.

First, we note that after running ⇧, the coordinator can send the final estimate z of the optimum to all
nodes, and receive approximations of the local function values fi(z) from all nodes with additive
O(Nd log d�/") overhead, e.g. using quantisation of Corollary 9. We can without loss of generality
assume that this does not exceed the total communication cost of ⇧.

For b1, b2, . . . bN 2 {0, 1}|S| that all contain 1 in some position s, then we have
PN

i=1 fbi(x) = 0.
Otherwise, for any point x 2 [0, 1]d, consider the closest point s 2 S to x; there is at least one bi

with bs = 0, and for that function fbi(x) = " by definition. Thus, if b1, b2, . . . bN are a YES-instance
for set disjointness, then infx2[0,1]d

PN
i=1 fbi(x) � ", and if b1, b2, . . . bN are a NO-instance, then

infx2[0,1]d
PN

i=1 fbi(x) = 0.

By definition, ⇧ can be used to distinguish between the two cases, and thus to solve set disjointness.

C Communication-optimal quantised gradient descent, full version

We now describe in detail our deterministic upper bound. Our algorithm uses quantised gradient
descent, loosely following the outline of Magnússon et al. [25]. However, there are two crucial
differences. First, we use a carefully-calibrated instance of the quantisation scheme of Davies
et al. [11] to remove a log d factor from the communication cost, and second, we use use two-step
quantisation to avoid all-to-all communication.

Preliminaries on gradient descent. We will assume that the input functions fi : [0, 1]d ! R are
↵0-strongly convex and �0-strongly smooth. This implies that F =

PN
i=1 fi is ↵-strongly convex

and �-strongly smooth for ↵ = N↵0 and � = N�0. Consequently, the functions fi and F have
condition number bounded by  = �/↵.

Gradient descent optimises the sum
PN

i=1 fi(x) by starting from an arbitrary point x(0) 2 [0, 1]d,
and applying the update rule

x
(t+1) = x

(t) � �

NX

i=1

rfi(x
(t)) ,

where � > 0 is a parameter.

Let x⇤ denote the global minimum of F . We use the following standard result on the convergence of
gradient descent; see e.g. Bubeck [8].
Theorem 13. For � = 2/(↵+ �), we have that kx(t+1) � x

⇤k2  �1
+1kx

(t) � x
⇤k2.

Preliminaries on quantisation. For compressing the gradients the nodes will send to coordinator,
we use the recent quantisation scheme of Davies et al. [11]. Whereas the original uses randomised
selection of the quantisation point to obtain a unbiased estimator, we can use a deterministic version
that picks an arbitrary feasible quantisation point (e.g. the closest one). This gives the following
guarantees:
Corollary 14 ([11]). Let R and " be fixed positive parameters, and q 2 Rd

be an estimate vector,

and B 2 N be the number of bits used by the quantisation scheme. Then, there exists a determin-

istic quantisation scheme, specified by a function Q",R : Rd ⇥ Rd ! Rd
, an encoding function

15

enc",R : Rd ! {0, 1}B , and a decoding function dec",R : Rd ⇥ {0, 1}B ! Rd
, with the following

properties:

(1) (Validity.) dec",R(q, enc",R(x)) = Q",R(x, q) for all x, q 2 Rd
with kx� qk2  R.

(2) (Accuracy.) kQ",R(x, q)� xk2  " for all x, q 2 Rd
with kx� qk2  R.

(3) (Cost.) If " = �R for any � < 1, the bit cost of the scheme satisfies B = O(d log ��1).

C.1 Algorithm description

We now describe the algorithm, and overview its guarantees. We assume that the constants ↵ and
� are known to all nodes, so the parameters of the quantised gradient descent can be computed
locally, and use W to be an upper bound on the diameter on the convex domain D, e.g. W = d

1/2 if
D = [0, 1]d. We assume that the initial iterate x

(0) is arbitrary, but the same at all nodes, and set the
initial quantisation estimate q

(0)
i at each i as the origin.

We define the following parameters for the algorithm. Let � = 2/(↵+ �) and ⇠ = �1
+1 be the step

size and convergence rate of gradient descent, and let W be such that kx(0) � x
⇤k  W . We define

µ = 1� 1

+ 1
, � = ⇠(1� ⇠)/4, R

(t) =
2�

⇠
µ
t
W ,

where µ will be the convergence rate of our quantised gradient descent, and � and R
(t) will be

parameters controlling the quantisation at each step. For the purposes of analysis, we assume that
 � 2. Note that this implies that 1/3  ⇠ < 1, µ < 1, and 0 < � < 1.

The algorithm proceeds in rounds t = 1, 2, . . . , T . At the beginning of round t + 1, each node i

knows the values of the iterate x
(t), the global quantisation estimate q

(t), and its local quantisation
estimate q

(t)
i for i = 1, 2, . . . , N . At step t, nodes perform the following steps:

(1) Each node i updates its iterate as x(t+1) = x
(t) � �q

(t).
(2) Each node i computes its local gradient over x(t+1), and transmits it in quantised form to the

coordinator as follows. Let "1 = �R
(t+1)

/2N and ⇢1 = R
(t+1)

/N .

(a) Node i computes rfi(x(t+1)) locally, and sends message mi = enc"1,⇢1(rfi(x(t+1))) to
the coordinator.

(b) The coordinator receives messages mi for i = 1, 2, . . . , N , and decodes them as q(t+1)
i =

dec"1,⇢1(q
(t)
i ,mi). The coordinator then computes r(t+1) =

PN
i=1 q

(t+1)
i .

(3) The coordinator sends the quantised sum of gradients to all other nodes as follows. Let "2 =
�R

(t+1)
/2 and ⇢2 = 2R(t+1).

(a) The coordinator sends the message m = enc"2,⇢2(r
(t+1)) to each node i.

(b) Each node decodes the coordinator’s message as q(t+1) = dec"2,⇢2(q
(t)
,m).

After round T , all nodes know the final iterate x
(T).

C.2 Analysis

For simplicity, we will split the analysis into two parts. The first describes and analyses the algorithm
in an abstract way; the second part describes the details of implementing it in the coordinator model.
For technical convenience, assume  � 2; for smaller condition numbers, we can run the algorithm
with  = 2.

Convergence. Let � = 2/(↵+�), let x(0) 2 [0, 1]d, q(0)i 2 Rd and q
(0)
i 2 Rd for i = 1, 2, . . . , N be

arbitrary initial values. From the algorithm description, we see that the update rule for our quantised
gradient descent is

x
(t+1) = x

(t) � �q
(t)

,

q
(t+1)
i = Q"1,⇢1

�
rfi(x

(t+1)), q(t)i

�
for "1 = �R

(t+1)
/2N and ⇢1 = R

(t+1)
/N ,

16

r
(t+1) =

NX

i=1

q
(t+1)
i ,

q
(t+1) = Q"2,⇢2

�
r
(t+1)

, q
(t)
�

for "2 = �R
(t+1)

/2 and ⇢2 = 2R(t+1).

Lemma 15. The inequalities

kx(t) � x
⇤k2  µ

t
W , (Q1)

krfi(x
(t))� q

(t)
i k2  �R

(t)
/2N , (Q2)

krF (x(t))� q
(t)k2  �R

(t) (Q3)

hold for all t, assuming that they hold for x
(0)

, q
(0)

and q
(0)
i for i = 1, 2, . . . , N .

Proof. We apply induction over t; we assume that the inequalities (Q1-Q3) hold for t, and prove that
they also hold for t+ 1. Since we assume the inequalities hold for t = 0, the base case is trivial. By
elementary computation, the following hold:

0 < ⇠ < 1 , 0 < � < 1 , 2�/⇠ + ⇠ = µ , ��  2 , µR
(t) = R

(t+1)
.

Convergence (Q1): First, we observe that 2�
⇠ + ⇠ = 1

2 (1 + ⇠) = 1� 1
+1 = µ and ��  2. We now

have that

kx(t+1) � x
⇤k2 = kx(t) � �q

(t) + �rF (x(t))� �rF (x(t)) + x
⇤k2 (def.)

 k�q(t) � �rF (x(t))k2 + k(x(t) � �rF (x(t)))� x
⇤k2 (triangle-i.e.)

 �krF (x(t))� q
(t)k2 + ⇠kx(t) � x

⇤k2 (norm, Thm. 13)

 ��R
(t) + ⇠µ

t
W (by Q1, Q3 for t)

= (���/⇠ + ⇠)µt
W (expand R

(t))

 (2�/⇠ + ⇠)µt
W = µ

t+1
W . (��  2)

Local quantisation (Q2): First, let us observe that to prove that (Q2) holds for t+ 1, it is sufficient
to show krfi(x(t+1))� q

(t)
i k2  R

(t+1)
/N , as the claim then follows from the definition of q(t+1)

i
and Corollary 9. We have

krfi(x
(t+1))� q

(t)
i k2 = krfi(x

(t+1))�rfi(x
(t)) +rfi(x

(t))� q
(t)
i k2

 krfi(x
(t+1))�rfi(x

(t))k2 + krfi(x
(t))� q

(t)
i k2 (triangle-i.e.)

 �0kx(t+1) � x
(t)k2 + �R

(t)
/N (smoothness, Q3)

 �0

�
kx(t+1) � x

⇤k2 + kx(t) � x
⇤k2

�
+ �R

(t)
/N (triangle-i.e.)

 2�0µ
t
W + �R

(t)
/N (by Q1 for t, t+ 1)

= 2�µt
W/N + �R

(t)
/N (� = �0N)

= ⇠R
(t)
/N + �R

(t)
/N (definition of R(t))

= (⇠ + �)R(t)
/N (rearrange)

 (⇠ + 2�/⇠)R(t)
/N (2/⇠ � 1)

= µR
(t)
/N = R

(t+1)
/N . (2�/⇠ + ⇠ = µ)

Global quantisation (Q3): To prove (Q3), we start by giving two auxiliary inequalities. First, we
prove that krF (x(t+1))� r

(t+1)k2  �R
(t+1)

/2:

krF (x(t+1))� r
(t+1)k2 = k

NX

i=1

rfi(x
(t+1))�

NX

i=1

q
(t+1)
i k2 (def.)


NX

i=1

krfi(x
(t+1))� q

(t+1)
i k2 (triangle-i.e.)

17

 N�R
(t+1)

/2N = �R
(t+1)

/2 . (by Q2 for t+ 1)

Next, we want to prove kr(t+1) � q
(t+1)k2  �R

(t+1)
/2. Again, it is sufficient to show kr(t+1) �

q
(t)k2  2R(t+1), as the claim then follows from the definition of q(t+1) and Corollary 9. We have

kr(t+1) � q
(t)k2 = kr(t+1) +rF (x(t+1))�rF (x(t+1)) +rF (x(t))�rF (x(t))� q

(t)k2
 kr(t+1) �rF (x(t+1))k2 + krF (x(t+1))�rF (x(t))k2 + krF (x(t))� q

(t)k2
 �R

(t+1)
/2 + �kx(t+1) � x

(t)k2 + �R
(t)

,

where the last inequality follows from smoothness of F , equation (Q2) for t+ 1 and equation (Q3)
for t. It holds that

�kx(t+1) � x
(t)k2 + �R

(t)  �
�
kx(t+1) � x

⇤k2 + kx(t) � x
⇤k2

�
+ �R

(t) (triangle-i.e.)

 2�µt
W + �R

(t) (by Q1 for t, t+ 1)

= ⇠R
(t) + �R

(t) (definition of R(t))

 (⇠ + 2�/⇠)R(t) (2/⇠ � 1)

= µR
(t) = R

(t+1)
.

Combining the two previous inequalities, we have

kr(t+1) � q
(t)k2  �R

(t+1)
/2 +R

(t+1)  2R(t+1)
,

as desired.

Finally, putting things together, we have

krF (x(t+1))� q
(t+1)k2 = krF (x(t+1))� r

(t+1) + r
(t+1) � q

(t+1)k2
 krF (x(t+1))� r

(t+1)k2 + kr(t+1) � q
(t+1)k2

 �R
(t+1)

/2 + �R
(t+1)

/2 = �R
(t+1)

,

completing the proof.

Lemma 16. For any " > 0 and t � (+ 1) log W
" , we have kx(t) � x

⇤k2  ".

Proof. By Lemma 15, we have kx(t) � x
⇤k2  µ

t
W = (1� (1�µ))tW  e

�(1�µ)t
W . Assuming

t � 1
1�µ log W

" , we have

e
�(1�µ)t

W  e
�(1�µ)(1�µ)�1 logW/"

W = e
log "/W

W = "W/W = " .

The claim follows by observing that 1
1�µ = + 1 by definition.

Communication cost. Finally, we analyse the distributed implementation described at the beginning
of this section, and analyse its total communication cost. Recall that we assume that the parameters ↵
and � are known to all nodes, so the parameters of the quantised gradient descent can be computed
locally, and use W = d

1/2. Note that W is the only parameter depending on the input domain, so the
algorithm also applies for arbitrary convex domain D ✓ Rd, setting W to be the diameter of D.

Since � < 1, we have by Lemma 9 that the each of the messages sent by the nodes has length at most
O(d log ��1) bits. Assuming  � 2, we have ⇠ � 1/3 and

log ��1 = log
2(+ 1)

⇠
 log 6(+ 1)  log 7 .

Since the nodes send a total of 2N messages of O(d log ) bits each, the total communication cost of
a single round is O(Nd log ) bits.

To get F (x(T)) � F (x⇤)  ", we need kx(T) � x
⇤k2  ("/�)2. By Lemma 16, selecting T =

O( log �W
") is sufficient. Finally, using W = O(d1/2), we have that the total communication cost

of the optimisation is O
�
Nd log  log �d

"

�
.

18

D Subsampling

In this section, we show that the condition �d/N
2
" = ⌦(1) in our main lower bound is, to a degree,

necessary.
Lemma 17. Let S = {x1, x2, . . . , xN} ✓ [0, 1]d, and let X1, X2, . . . , XM be i.i.d. random

variables, each selected uniformly at random from S. Writing x̂ = 1
N

PN
i=1 xi and X = 1

M

PM
i=1 Xi,

we have

E
⇥
kX � x̂k2

⇤
= 0 , and Var

�
kX � x̂k2

�
=

d

M
.

Proof. The first part follows immediately by the definition of the expectation. For the second part,
we first note that since all points within [0, 1]d are at most d1/2 apart, and thus by the definition of
variance, it follows that

Var(kX � x̂k2) = E[kX � x̂k22]� E[kX � x̂k2]2 = E[kX � x̂k22]� 0

 E
h 1

M2

MX

i=1

kXi � x̂k22
i
=

1

M2

MX

i=1

E
⇥
kXi � x̂k22

⇤

 1

M2
Md =

d

M
.

Theorem 18. Assume the input functions fi of the nodes are promised to be quadratic functions

x 7! �0kx� x
⇤k22 for some constant �0 > 0, let � = �0N , and assume we can select M  N to be

an integer satisfying �d/M"  1/8. The there is a randomised algorithm solving (1) using

O

⇣
Md log

�d

"

⌘
bits of communication,

with probability at least 1/2.

Proof. We start by having the coordinator select a multiset I of M nodes uniformly at random
with replacement. Let x̂ denote the global optimum of

PN
i=1 fi, and let Ŷ be the random variable

for the global optimum of
P

i2I fi. By Lemma 17, Chebyshev’s inequality and the assumption
�d/N"  1/8, we have that

Pr
h
kŶ � x̂k2 � 1

2

⇣
"

�

⌘1/2i
 4d�

"M
 1/2 .

Let ŷ be the actualised value of Ŷ . We now apply the algorithm of Theorem 10 to find a point z
such that kz� ŷk2  1/2("/�)1/2, where, if the multiset I contains duplicates, those nodes simulate
multiple copies of themselves. This uses O(Md log �d/") bits of communication. We now have with
probability at least 1/2 that kz � x̂k  ("/�)1/2, and thus

PN
i=1 fi(z) 

PN
i=1 fi(x̂) + ".

19

Checklist
(1) For all authors...

(1) Do the main claims made in the abstract and introduction accurately reflect the paper’s
contributions and scope? [Yes]

(2) Did you describe the limitations of your work? [Yes]
(3) Did you discuss any potential negative societal impacts of your work? [Yes]
(4) Have you read the ethics review guidelines and ensured that your paper conforms to them?

[Yes]
(2) If you are including theoretical results...

(1) Did you state the full set of assumptions of all theoretical results? [Yes]
(2) Did you include complete proofs of all theoretical results? [Yes]

(3) If you ran experiments...
(1) Did you include the code, data, and instructions needed to reproduce the main experimental

results (either in the supplemental material or as a URL)? [N/A]
(2) Did you specify all the training details (e.g., data splits, hyperparameters, how they were

chosen)? [N/A]
(3) Did you report error bars (e.g., with respect to the random seed after running experiments

multiple times)? [N/A]
(4) Did you include the total amount of compute and the type of resources used (e.g., type of

GPUs, internal cluster, or cloud provider)? [N/A]
(4) If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...

(1) If your work uses existing assets, did you cite the creators? [N/A]
(2) Did you mention the license of the assets? [N/A]
(3) Did you include any new assets either in the supplemental material or as a URL? [N/A]
(4) Did you discuss whether and how consent was obtained from people whose data you’re

using/curating? [N/A]
(5) Did you discuss whether the data you are using/curating contains personally identifiable

information or offensive content? [N/A]
(5) If you used crowdsourcing or conducted research with human subjects...

(1) Did you include the full text of instructions given to participants and screenshots, if applica-
ble? [N/A]

(2) Did you describe any potential participant risks, with links to Institutional Review Board
(IRB) approvals, if applicable? [N/A]

(3) Did you include the estimated hourly wage paid to participants and the total amount spent on
participant compensation? [N/A]

20

	Introduction
	Contribution
	Discussion

	Related work
	Preliminaries and background
	Main lower bound
	Deterministic lower bound
	Communication-optimal quantised gradient descent
	Discussion and future work
	Deterministic lower bound
	Lower bound for non-convex functions
	Communication-optimal quantised gradient descent, full version
	Algorithm description
	Analysis

	Subsampling

