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Abstract
Delle Rose et al. (COLT’23) introduced an effective version of the Vapnik-Chervonenkis dimen-
sion, and showed that it characterizes improper PAC learning with total computable learners. In
this paper, we introduce and study a similar effectivization of the notion of Littlestone dimension.
Finite effective Littlestone dimension is a necessary condition for computable online learning but is
not a sufficient one—which we already establish for classes of the effective Littlestone dimension
2. However, the effective Littlestone dimension equals the optimal mistake bound for computable
learners in two special cases: a) for classes of Littlestone dimension 1 and b) when the learner re-
ceives as additional information a bound on the numbers to be guessed. Interestingly, finite effective
Littlestone dimension also guarantees that the class consists only of computable functions.
Keywords: Online learning, Littlestone dimension, computable machine learning

1. Introduction

Two fundamental models of machine learning, PAC learning and online learning, have been re-
cently revisited from the viewpoint of computability theory (Agarwal et al. (2020), Sterkenburg
(2022), Delle Rose et al. (2023), Hasrati and Ben-David (2023)). In the classical setting, a learning
algorithm is understood as a function, getting a sample S and an input x and outputting its predic-
tion of the value on x. Although this is called an “algorithm”, it is not assumed to have a Turing
machine that computes it. The existence of a learning algorithm for a hypothesis class can then be
characterized by a combinatorial dimension of that class, namely, the VC dimension in the case of
PAC learning and the Littlestone dimension in the case of online learning.

What if we do require a learning algorithm to be computable by a Turing machine? We obtain
“computable counterparts” of PAC and online learning models that might no longer be characterized
just by a combinatorial dimension. For instance, Sterkenburg (2022) constructs a class with finite
VC dimension, given by a decidable set of functions with finite support, that has no computable PAC
learner, even if the learner is allowed to be improper (output functions outside the class). Likewise,
Hasrati and Ben-David (2023) observe that there is a class that has Littlestone dimension 1 and
consists of finitely supported functions but does not have an online learner, computable by a partial
Turing machine (it might not halt on non-realizable inputs) with finite number of mistakes.

Maybe for a characterization of a computable version of PAC or online learning, it is enough to
“effectivize” the corresponding combinatorial notion? One instance when the answer is yes has been
established by Delle Rose et al. (2023) for computable PAC learning. To this end, they introduced
the notion of the effective VC dimension of a hypothesis class H . The usual VC dimension is
defined as the maximal size of a subset of the domain where functions from H can realize all
dichotomies. Dually, one can define this notion as the minimal d such that for any subset of size
d+1 there exists a dichotomy, not realizable by H . In the effective version of VC dimension, there
must be a Turing machine that, given an (d + 1)-size subset, outputs a dichotomy, not realizable
by H . The minimal d for which such a Turing machine exists is called the effective VC dimension
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of H . As Delle Rose et al. (2023) show, classes admitting a computable PAC learner are exactly
classes having finite effective VC dimension. An important detail here is that they assume that the
learner has to be computed by a total Turing machine (another possibility is when a Turing machine
might not halt on some samples that are not realizable by the class).

In this paper, we introduce a similar “effectivization” of the Littlestone dimension and study its
relationship with the computable online learning. The usual Littlestone dimension of a hypothesis
class H is defined as the maximal d for which there exists a depth-d Littlestone tree with every
branch realizable by H . Following the idea of Delle Rose et al. (2023), we define the effective
Littlestone dimension of H as the minimal d for which there exists a Turing machine that, given a
Littlestone tree of depth d+ 1, indicates a branch not realizable by H .

Our contribution with respect to the effective Littlestone dimension consists of the following.

• In a similar manner, we define the notion of the effective threshold dimension and observe
that classes with finite effective Littlestone dimension coincide with classes of finite effective
threshold dimension.

• We observe that a class that admits an online learner, computable by a total Turing machine
(for brevity, a total computable online learner), that makes at most d mistakes, has effective
Littlestone dimension at most d.

• We show that the converse does not hold. We construct a class of effective Littlestone dimen-
sion 2 that does not admit even a partial computable online learner (“partial” meaning that the
Turing machine, computing it, might not halt on some non-realizable samples) with a finite
number of mistakes.

• On the positive side, we consider a weaker game, in which the Adversary can only give num-
bers bounded by some constant and show that effective Littlestone dimension characterizes
computable learnability in this setting.

• We also show that every class of finite effective Littlestone dimension consists of computable
functions. As a consequence, every class of effective Littlestone dimension 1 admits a total
computable online learner with 1 mistake.

Similar failure of the combinatorial characterization of computable learning was recently observed
by Gourdeau et al. (2024) for computable robust PAC learning.

2. Preliminaries

By hypothesis classes we mean sets of functions from N to {0, 1}. By samples we mean finite
sequences of pairs from N×{0, 1}. A sample S = (x1, y1) . . . (xk, yk) is consistent with a function
f : N → {0, 1} if f(x1) = y1, . . . , f(xk) = yk. A sample S = (x1, y1) . . . (xk, yk) is realizable by
a hypothesis class H if there is a function in H with which S is consistent.

A learner is a partial function L : (N × {0, 1})∗ × N → {0, 1} (thus, the first input to L is
a sample and the second input is a natural number). We say that a learner L is a learner for a
hypothesis class H if L(S, x) is defined for every sample S, realizable by H , and for every x ∈ N.
A total learner is a learner which is defined everywhere. By default, a learner can be partial, but
sometimes, to stress that a statement applies not only to total learners, we write “partial learner”.
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EFFECTIVE LITTLESTONE DIMENSION

A learner L is computable if there exists a Turing machine that outputs L(S, x) on (S, x) on
which L is defined, and does not halt for (S, x) on which L is not defined

For a given sample S, the learner induces a (possibly, partial) function LS : N → {0, 1} by
setting LS(x) = L(S, x), to which we refer as the hypothesis of L after the sample S.

A learner L for a hypothesis class H is called an online learner for H with at most d mistakes
if for any H-realizable sample S = (x1, y1) . . . (xk, yk) there exists at most d of i ∈ {1, . . . , k− 1}
such that

L((x1, y1) . . . (xi, yi), xi+1) ̸= yi+1.

Lemma 1 Let H be a hypothesis class an d L be an online learner for H with at most d mistakes,
for some d ∈ N. Then every function f ∈ H coincides with LS on some sample S, consistent with
f .

Proof Indeed, if there is no such sample, we can construct a sample, consistent with f , on which
L makes more than d mistakes. Namely, we start with the hypothesis of L after the empty sample.
It disagrees with f on some x1 ∈ N which we put to the sample as (x1, f(x1)), causing the first
mistake. The hypothesis of L after (x1, f(x1)) disagrees with f on some x2, and we add this
(x2, f(x2)) to the sample, forcing the second mistake. In this way, we can force arbitrarily many
mistakes.

This lemma implies that classes of finite Littlestone dimension are always countable, and that classes
that admit a computable online learner (even when it is not total) consist only of computable func-
tions.

By a Littlestone tree of depth d we mean a complete rooted binary tree of depth d where: (a)
edges are directed from parents to children, with each edge labeled by 0 or 1 such that every non-
leaf node has one out-going 0-edge and one out-going 1-edge; and (b) non-leaf nodes are labeled
by natural numbers. Every edge in such a tree can be assigned a pair (x, y) ∈ N×{0, 1} where x is
the label of the node this edge start at and y is the bit, labelling this edge. Thus, every directed path
in this tree can be assigned a sample, obtained by concatenating pairs, assigned to its edges.

The Littlestone dimension of a class H , denoted by Ldim(H), is the minimal d ≥ 0 such that in
every (d + 1)-depth Littlestone tree T there exists a leaf such that the sample, written on the path
from the root to this leaf, is not realizable by H . The effective Littlestone dimension of a class H ,
denoted by effLdim(H), is the minimal d ≥ 0 for which there exists a total Turing machine that,
given as input a complete rooted binary tree of depth d+ 1, outputs a leaf of this tree such that the
sample, written on the path to this leaf from the root, is not realizable by H .

Proposition 2 ((Littlestone, 1988)) For any class H , the minimal d ≥ 0 for which there exists an
online learner for H with at most d mistakes is equal to Ldim(H).

If H is a hypothesis class, then for x ∈ N and b ∈ {0, 1}, by Hx
b we denote the class {f ∈ H |

f(x) = b}.

Proposition 3 (Littlestone, 1988) For any hypothesis class H of finite positive Littlestone dimen-
sion, and for every x ∈ N, either Hx

0 or Hx
1 have smaller Littlestone dimension than H .
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We say that a learner L for a class H PEC-learns it if for every f ∈ H and for every probability
distribution D over N the following holds. If we consider an infinite sequence

(X1, f(X1))(X2, f(X2))(X3, f(X3)) . . .

where X1, X2, X3 . . . are sampled independently from D, then with probability 1 there exists n0

such that for all n ≥ n0, the hypothesis of L after the sample (X1, f(X1)) . . . (Xn, f(Xn)) coin-
cides with f on all x ∈ X that have positive probability w.r.t. D.

Given a learner L and a sample S = (x1, y1) . . . (xk, yk), the number of mind changes of L
on S is the number of i ∈ {0, 1, . . . , k − 1} such that the hypothesis of L after (x1, y1) . . . (xi, yi)
differs from those after (x1, y1) . . . (xi+1, yi+1). We say that a learner L for a class H makes at
most d mind changes on it if the number of mind changes of L on every L-realizable sample does
not exceed d.

3. Effective threshold dimension

Shelah (1982) found a deep connection between the Littlestone dimension of a class and the number
of thresholds which are contained by such class. Here we use a reformulation due to Alon et al.
(2022).

Let k ∈ N. We say that a hypothesis class H contains k thresholds if there are x1, . . . , xk−1 ∈ N
and h1, . . . , hk ∈ H such that

∀i, j ≤ k, hi(xj) = 0 ⇔ i ≤ j.

We then say that H has threshold dimension t if t is the largest number for which H contains t
thresholds.

Theorem 4 (Shelah (1982); Alon et al. (2022)) For any hypothesis class H and d ≥ 0:

1. if Ldim(H) ≥ 2d, then H has threshold dimension at least d;

2. if H has threshold dimension at least 2d, then Ldim(H) ≥ d.

Thus, H is online learnable if and only if H has finite threshold dimension.

We now establish the effective counterpart of the previous result. Let us define the effective
threshold dimension of a hypothesis class H as the minimal d ≥ 0 for which there is a total Turing
machine w which, on input any d + 1 points x0 ≤ · · · ≤ xd ∈ N, outputs a threshold (namely a
binary word of the form 0i1d−i for i ∈ {0, . . . , d}) τ such that h(x0) . . . h(xd) ̸= w(x0, . . . , xd).

Theorem 5 Let H be any hypothesis class. Then H has finite effective Littlestone dimension if and
only if it has finite effective threshold dimension.

Proof Assume that H has effective Littlestone dimension smaller than d, for d ≥ 1, as witnessed by
the algorithm w. We now show that we can turn w into an algorithm witnessing that the threshold
dimension of H is at most 2d − 1. On input x0, . . . , x2d−2 ∈ N, we construct a Littlestone tree T
of depth d corresponding to all thresholds on x0, . . . , x2d−2 as follows. T , in fact, corresponds to
the binary search tree over 0, . . . , 2d − 2: the root of T gets label x2d−1−1 and, if a node at distance
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EFFECTIVE LITTLESTONE DIMENSION

0 ≤ n < d has label xm, then its left child gets label xm+2d−m−1 , while its right child gets label
xm−2d−m−1 . Clearly, the i-th leftmost root-to-leaf path in T corresponds to the threshold 0i1d−1.
Therefore, it suffices to compute w(T ) and output the threshold corresponding to the path indicated
by w(T ).

Now assume that H has effective threshold dimension smaller than t, as witnessed by the algo-
rithm w. By Theorem 4, Ldim(H) < 2t. We claim that the effective Littlestone dimension of H is
also smaller than 2t. Given a Littlestone tree of depth 2t, let S be the set of all labels of nodes in T .
We compute the finite class

H ′ = {f ∈ {0, 1}S : (∀x0, . . . , xt ∈ S) f(x0) . . . f(xt) ̸= w(x0, . . . xt)},

namely the class of Boolean functions defined on S which respect the constraints imposed by w.
Observe that w witnesses that also the effective threshold dimension of H ′ is smaller than t: hence,
by Theorem 4, its Littlestone dimension is less than 2t. Thus, T must contain a root-to-leaf path
whose corresponding sample is not realized by H ′, and we can find it effectively by simply checking
all the finitely many functions from H ′. But such sample cannot be realized by H either, as H ′

contains all functions in {0, 1}S which are restrictions of hypothesis from H to the set S, since
every hypothesis in H agrees with w.

4. Effective Littlestone dimension vs. computable online learning

Proposition 6 For any hypothesis class H and for any d, we have the following. If H admits a total
computable online learner which makes at most d mistakes, then the effective Littlestone dimension
of H is at most d.

Proof Let L be a total computable online learner for H with at most d mistakes. Given a (d+ 1)-
depth Littlestone tree T , we find a leaf of it on which L makes d+ 1 mistakes. Namely, we give L
the number from the root, wait for its predictions (by totality of L, we will always receive it), go to
the child which contradicts this prediction, give the number from this child, and so on. The sample
on the path to this leaf cannot by H-realizable because L makes at most d mistakes on H-realizable
sample.

Main result of this section is the the converse of this proposition is strongly false already for
d = 2 (although, as we will see later, it is true fof d = 1).

Theorem 7 There exists a class H of effective Littlestone dimension 2 which, for all d, does not
have a partial computable online learner with at most d mistakes.

Proof We treat the set of functions f : N → {0, 1} as the Cantor space {0, 1}N with topology where
open sets are unions of sets called “cylinders”, and each cylinder is given by some sample S and
consists of all functions f : N → {0, 1}, consistent with S.

In our construction, H will have ordinary Littlestone dimension at most 2 and it will be “effec-
tively closed”, and these two things will guarantee that H has effective Littlestone dimension. Now,
“effectively closed” means that H will be given by an enumerable set of “local restrictions” (of the
form, “at these (finitely many) positions, you cannot have this combination of values”), and it will
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consist of all function that satisfy all these prohibitions. Equivalently, we are giving the complement
of H as an enumerable union of cylinders.

Let us show why these two properties (ordinary Littlestone dimension at most 2 and effective
closeness) imply that H has effective Littlestone dimension at most 2. We have to provide an algo-
rithm that, given a depth-3 Littlestone tree, gives a leaf of it such that the sample on the path from
the root to this leaf is not H-realizable. We know that such leaf ℓ exists because H has ordinary Lit-
tlestone dimension at most 2. The sample Sℓ, corresponding to ℓ, is not consistent with any function
from H . That is, the cone, corresponding to functions, consistent with Sℓ, belongs entirely to the
complement of H , that is, it is covered by the enumeration of open sets, defining the complement of
H . By compactness of the Cantor space, this means that this cone is covered by finitely many open
sets in this enumeration. Hence, if we start running this enumeration, after finitely many steps we
will find out for some leaf ℓ that the cone, induced by Sℓ, is already completely covered, meaning
that we can output ℓ.

We now give a construction of H . We fix a computable enumeration L1, L2, L3, . . . of all partial
computable learners. First, for a fixed Li, let us give a construction of an effectively closed class
Ĥi with at most 2 functions that fools Li in the following sense: either (a) there is a sequence
of examples from a function in Ĥi on which Li makes infinitely many mistakes; or (b) there is a
sample, consistent with a function in Ĥi, on which Li does not halt.

We first give 1 to Li for prediction, on the empty sample. We then start listing restrictions of
the form “f(1) = f(k)” for k = 2, 3, and so on (forbidding different values at 1 and k). If Li never
halts, we will list all such restrictions, forcing that Ĥi consists of two constant functions. Then Li

is fooled by not halting on the empty sample (realizable by Ĥi).
Assume now that Li halts on 1, predicting some value b1 ∈ {0, 1}. At this moment, we have

listed restrictions “f(1) = f(k)” for k up to some k1 ∈ N. We then set a restriction f(1) = ¬b1,
leaving in Hi exactly functions that are equal to ¬b1 on 1, . . . , k1 (with no restrictions so far on the
other numbers). This forces the first mistake of Li.

Next, we give k1 + 1 for prediction to Li, after the sample (1,¬b1). While it is working, we
start listing restrictions f(k1 + 1) = f(k1 + k) for k = 2, 3, and so on. Once again, if Li never
stops processing k1 + 1, all restrictions like that will be listing, leaving in Ĥi two functions: equal
to ¬b1 on 1, . . . , k1 and constant on {k1 + 1, k1 + 2, k1 + 3, . . .}. In this case Li is fooled by not
halting on the sample (1,¬b1), realizable by both of this function.

Next, if Li at some moment stops processing k1 + 1, predicting b2, we set a restriction f(k1 +
1) = ¬b2, leaving in Ĥi functions that are equal to ¬b1 on 1, . . . , k1 and are equal to ¬b2 on
k1 +1, . . . , k1 + k2, where k2 is the number of restrictions we have listed while Li was working on
k1 + 1.

We continue in the similar manner now with k1+k2+1, and so on. There will be two possibili-
ties. Either in the end Hi will consist of two functions, equal to some fixed values ¬b1,¬b2,¬b3, . . .
on some initial blocks of natural numbers, and constant on the rest of natural numbers. This happens
if Li never stops processing some realizable sample. The other option is we will eventually split
all natural numbers into finite blocks, where inside the jth block the value of functions f ∈ Ĥi is
fixed to ¬bj , forcing Ĥi to have exactly 1 function that causes infinitely many mistakes when first
numbers from the blocks are given Li for prediction.

We now have to combine this construction into a single effectively closed class H of Littlestone
dimension at most 2 that fools every Li. We partition natural numbers into infinitely many infinite
disjoint blocks in some computable way, assigning each Li one of the blocks. We will have two kind
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EFFECTIVE LITTLESTONE DIMENSION

of restrictions. First, for every pair of numbers from different blocks, we will forbid both of them
having label 1, forcing every function in H to have value 1 in at most one of the blocks. Restrictions
of the second type will involve only numbers from the same block. Namely, for every i in parallel,
we list restrictions that fool Li as in the definition of the class Ĥi, but using the set of numbers of
the ith block instead of {1, 2, 3, . . . , }. Additionally, we do it in a slightly different way that adds
the all-0 function to the class Ĥi if it was not there already (every prohibition will involve at least
one value 1 so that the all-0 function satisfies all of them).

Namely, every restriction that we have for Li, saying “you cannot have these values in these
positions”, is turned into infinitely many restrictions, where for every x from the i-th block, we
say “you cannot have such values in such positions and have 1 at position x simultaneously”. Any
function, satisfying old restrictions, satisfies all these new restrictions because the restrictions are
weakened. On the other hand, any function f with at least one value 1, violating some old restriction,
will violate a new restriction where as x we take some number on which f is equal to 1.

We need this modification because we want the following property for our construction: every
combination of values on the i-th block, satisfying all restrictions with the numbers of the i-th
block, is extendable with all 0s to other blocks, without violating restrictions of the first type and
restrictions inside other blocks. This property holds because all these other restrictions involve at
least one value 1 outside the i-th block.

As a result, the class H we obtain is as follows: it consists of the all-0 function and, for every i,
of the functions that have ones only in the block i, and the labels in this block are an exact copy of
the labels of one of the functions from Ĥi.

We conclude that, firstly, H fools every partial learner Li, meaning that Li either doesn’t halt
on some H-realizable sample, or it makes infinitely many mistakes on some sequence of examples
from a function in H . And secondly, one can represent

H = H1 ∪H2 ∪H3 . . .

where Hi is the set of functions from H that have only 0s outside the i-th block. And Hi consists
of functions whose projection to the i-th block belong to Ĥi (and that are 0 outside the i-th block)
and the all-zeros function. In particular, besides the all-zeros function, Hi has at most 2 functions,
for every i. This means that the Littlestone dimension of H is at most 2. Indeed, there is an online
(non-computable) learner for H with 2 mistakes, implying by Proposition 2 that Ldim(H) ≤ 2.
This learner first predicts 0 on every number. If it’s wrong, it is because there is a positive label
in some block. This leaves the algorithm with at most 2 possible functions left. The learner first
predicts according to one of them, and, in case of the second mistake, according to the second one.

5. Equivalence in the bounded regime

On the positive side, we consider a modification of online learning where the learner initially gets an
upper bound N on the numbers it will receive for prediction. It can be arbitrarily large, but the bound
on the number of mistakes d should not depend on N. We call it online learning in the bounded
regime. We show that effective Littlestone dimension characterizes computable learnability in this
setting. As a corollary, we get the separation between computable online learning in bounded and
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unbounded regime. For some class, online learning with bounded number mistakes is possible when
the learner gets an arbitrary bound on the numbers, but not possible without a bound.

To be precise, we say that L online learns H in the bounded regime with at most d mistakes
if, for any N ∈ N and any H-realizable sample S = (x1, y1), . . . , (xk, yk) with the property that
x1, . . . , xk ≤ N , there are at most d of i ∈ {1, . . . , k−1} such that L(N, (x1, y1), . . . , (xi, yi), xi+1) ̸=
yi+1.

Proposition 8 A hypothesis class H has effective Littlestone dimension at most d if and only if there
is a computable learner L which online learns H in the bounded regime with at most d mistakes.

Proof Assume that L is a computable learner which online learns H in the bounded regime with at
most d mistakes and let T be a Littlestone tree of depth d+ 1, where we have to output a leaf with
the non H-realizable sample. We take as N the largest number, appearing in T , and run the same
procedure as in the proof of Proposition 6, with L having N as the additional input.

Next, assume that H has effective Littlestone dimension at most d. Hence, there is an algorithm
A that, given a (d+1)-depth Littlestone tree T , outputs a leaf whose sample is not H-realizable. We
construct a learner L that, given N , goes through all Littlestone trees of depth d+1 with node labels
at most N , computes all samples that are indicated by A in these trees, and finds the set HN of all
functions on the first N natural numbers that are inconsistent with all these samples. The set HN

includes all functions that can be continued to a function in H . On the other hand, the Littlestone
dimension HN is at most d as “witnessed” by A. The class HN is over a finite domain, and we
have a complete description of it, so we find an online learner with at most d mistakes for it by the
brute-force.

One could wonder whether the similar equivalence could be proven for finite classes of functions but
exchanging ”computable” for some of form of time-bounded computability, such as ’polynomial-
time computable’. We leave this as an interesting direction for further research.

6. Effective Littlestone dimension and computability

Theorem 9 Let H be a hypothesis class with finite effective Littlestone dimension. Then all func-
tions in H are computable.

Proof We establish the theorem by induction on effLdim(H). When effLdim(H) = 0, we have an
algorithm that, given x ∈ N, outputs b ∈ {0, 1} such that f(x) ̸= b for all f ∈ H . Then ¬b will be
the value of f(x) for the unique function of H , giving us an algorithm to compute this function.

For the induction step, we need the following lemma, which is an analog of the Proposition 3
for effective Littlestone dimension.

Lemma 10 For any class H of finite positive effective Littlestone dimension, and for any x ∈ N,
either Hx

0 or Hx
1 have smaller effective Littlestone dimension that H .

Proof Let d = effLdim(H) > 0. There exists an algorithm A that, given a (d+1)-depth Littlestone
tree, outputs a leaf in it such that the sample on the path to this leaf is not H-realizable.

We now describe two algorithms, A0 and A1, and show that either A0 establishes that Hx
0 has

effective Littlestone dimension at most d − 1, or A1 establishes that Hx
1 has effective Littlestone

dimension at most d − 1. Namely, both algorithm receive on input a d-depth Littlestone tree (here

8



EFFECTIVE LITTLESTONE DIMENSION

we need a condition d > 0 so that the notion of “d-depth trees” makes sense). The algorithm A0 is
supposed to, in any such tree, to output a leaf which is not Hx

0 -realizable (this is a shortening of “the
sample on the path from the root to this leaf is not realizable by Hx

1 ”). Likewise, A1 is supposed to,
for any such tree, output a leaf which is not H1

x-realizable. We will show that this is true for at least
one of the algorithms.

The algorithm A0 works as follows. It receives a Littlestone tree T0 of depth d where it should
output a not Hx

0 -realizable leaf. For that, it goes over all depth-d Littlestone trees T1, and for each
of them, does the following. It constructs a tree T = (x, T0, T1), where the root is labeled by x, the
0-subtree coincides with T0, and the 1-substree coincides with T1. The algorithm gives this T to A.
If A outputs a leaf in the 0-subtree of T , that is, inside T0, the algorithm A0 outputs this leaf as its
answer and halts. Otherwise, A0 proceeds to the next T1.

Why is this algorithm correct? Samples that in T are written on the paths to the leafs in the
0-subtree include the pair (x, 0), written on the edge from x (the first edge of this paths). When A
outputs a leaf ℓ in the 0-subtree, this means that the corresponding sample without (x, 0) cannot be
realized by Hx

0 , otherwise adding a pair (x, 0) we get an H-realizable sample. But when we remove
(x, 0) from the sample, we get exactly the sample, written on the path to ℓ from the root of T0.

The problem with A0 is that it might not halt on some T0, when A outputs a leaf in the 1-subtree
for all T1. We now define a similar algorithm A1, receiving a depth-d Littlestone tree T1 (where it
should indicate a not Hx

1 -realizable leaf), and runs A on all trees of the form (x, T0, T1), waiting
until A indicates a branch in the 1-tree. By the same argument, this algorithm is correct.

The only case when both algorithms fail is when there exist T ′
0, T

′
1 such that A goes to the

1-subtree in all trees of the form (x, T ′
0, T1), and goes to the 0-subtree in all trees of the form

(x, T0, T
′
1). However, this means that A does not output anything in the tree (x, T ′

0, T
′
1), a contra-

diction.

Let us now finish the induction step. Let’s say we have a class H of effective Littlestone dimen-
sion d > 0, and for all smaller effective Littlestone dimensions, the theorem is already proved.

We take the algorithm A that, given a (d+1)-depth Littlestone tree A, outputs a not H-realizable
leaf. We first extend H with all functions that “agree” with A. Namely, a function f agrees with
A if in all trees A outputs a leaf whose sample is inconsistent with f . By definition, all functions
in H agree with A, but potentially there are other function, which we all add to H . The resulting
H still has effective Littlestone dimension d because of the same algorithm A. In other words, we
consider the maximal class for which the algorithm A works as a “witness” of effective Littlestone
dimension d. The resulting superclass is effectively closed, because its complement is a union of
cylinders and these cylinders can be effectively enumerated. Each of these cylinders corresponds
to a forbidden path given by A on some Littlestone tree T and such trees, as finite objects, can be
effectively enumerated.

For any x ∈ N, one of the two restrictions Hx
0 and Hx

1 have effective Littlestone dimension
smaller than d. In particular, by induction hypothesis, all functions in this restriction are computable.
Thus, there is potentially just one function f ∈ H missed in our considerations. Namely, this is a
function f such that for every x ∈ {0, 1} we have effLdim(Hx

f(x)) = d. It might be that such f does
not exist (if effLdim(Hx

0 ) < d and effLdim(Hx
1 ) < d for some x) or that f /∈ H , but these are easy

cases as in them there is nothing to prove. We therefore assume that such f exists and belongs to
H .
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First, consider the case when there exists n ∈ N for which there is no g ∈ H \ {f} such that
f(1) = g(1), . . . , f(n) = g(n). In other words, there exists some finite sample from f such that
no other function from H is consistent with this sample. Then f can be computed as follows. First,
into the program, we hardwire the values f(1), . . . , f(n). Then we give a procedure that computes
f(x) on a given x > n. Due to our condition, one of the two samples:

(1, f(1)) . . . (n, f(n))(x, 0) (1, f(1)) . . . (n, f(n))(x, 1)

is not realizable by H . And we can find out which one in finite time because H is effectively
closed. Indeed, one of the cylinders, corresponding to these two samples, belongs entirely to the
complement of H , meaning that it is covered by a finite number of cylinders in the enumeration of
this complement, by compactness of the Cantor space.

Assume now that every finite sample from f is consistent with some function g ∈ H , different
from f (and thus, by the induction hypothesis, computable). We will use an online learning algo-
rithm with “consistent oracle” (Kozachinskiy and Steifer, 2024; Assos et al., 2023). A consistent
oracle for a class H is a mapping that, given an H-realizable sample S, gives an function fS ∈ H ,
consistent with this sample (more precisely, it gives an oracle access to it, meaning that given S and
x ∈ N, it allows to evaluate fS(x)). Kozachinskiy and Steifer (2024) give an algorithm that for any
class H of Littlestone dimension d, given only access to a consistent oracle for H , online learns it
with at most O(256d) mistakes. This algorithm, to compute L(S, x), the prediction on x after the
sample S, uses consistent oracle only for S and its subsamples, making sure that it never applied to
a not H-realizable sample.

We get back to the class H in question, and we take any consistent oracle H that never uses
function f . Such oracle exists because any H-realizable sample is either inconsistent with S, so we
cannot use f for it in any case, or it is consistent, but then there is another function in H which is
also consistent with (and this function is computable!).

We consider the online learner L of Kozachinskiy and Steifer (2024), equipped with this con-
sistent oracle. By Lemma 1, there exists a sample S, consistent with f , such that LS coincides with
f , that is, L(S, x) = f(x) for all x ∈ N. We use this to give a program for f , namely, we show that
LS is computable. In computing L(S, x) we use consistent oracle only to S and its subsamples, so
we oracle access to finitely many functions from H . Since the consistent oracle, by constructions,
uses only computable functions, their programs can be hardwired into a program for LS , emulating
the computation of L(S, x).

Corollary 11 Let H be a class of effective Littlestone dimension 1. Then it has a total computable
online learner with at most 1 mistake.

Proof Assume first that H is finite. By Theorem 9, all finitely many functions of H are computable.
In this case, we can realize the standard optimal algorithm of Littlestone (1988) by a total Turing
machine. In case when Ldim(H) = 1, it works like this: given x ∈ N, it takes b ∈ {0, 1} such
that Ldim(Hx

b ) = 0 (existing by Proposition 3)and predicts ¬b so that when it is wrong, we are in
Hx

b where there is exactly one function. To realize this algorithm by a total Turing machine, we
need to be able to decide, whether a sample is realizable, and whether it is realizable by exactly one
function from H . We can achieve this by evaluating all functions from H on the numbers from the
sample.
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EFFECTIVE LITTLESTONE DIMENSION

From now on we assume that H is infinite, and we make it effectively closed by adding, if
necessary, all functions that agree with the algorithm A, “witnessing” that the effective Littlestone
dimension of H is 1. First, there is no x such that Ldim(Hx

0 ) = Ldim(Hx
1 ) = 0 because otherwise

H = Hx
0 ∪Hx

1 has size at most 2. Therefore, we can define a function f : N → {0, 1} by setting
f(x) such that Ldim(Hx

f(x)) = 1. We claim that this function belongs to H . Indeed, if not, since H
is closed, some finite sample

S = (x1, f(x1)) . . . (xk, f(xk),

consistent with f , is not extendable to a function from H . But then H can be represented as a union
Hx1

¬f(x1)
∪ . . . ∪Hxk

¬f(xk)
, where every of these k sets has Littlestone dimension 0, by construction

of f , meaning that in H there are at most k function.
Therefore, f ∈ H and hence is computable by Theorem 9. We give a total computable online

learner for H that works as follows. On samples, consistent with f , it predicts according to f . Now,
assume that we are given a sample, inconsistent with f . Then, by construction of f , we are in a
restriction of H of Littlestone dimension 0, which, thus, has at most one function. This means that
for any x ∈ N, either S(x, 0) or S(x, 1) is not extendable to a function in H . Given that, we start
enumerating cones whose union gives the complement of H (using that we have extended H to an
effectively closed class) until we find that cones we got so far already cover all extension of S(x, b),
for some b ∈ {0, 1}. We predict then ¬b on x. This learners can make at most 1 mistake on H (the
first moment it obtains an example, inconsistent with f ).
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