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A SUBTLETIES OF BATCH NORMALISATION

Most modern convolutional neural networks use batch normalisation |loffe and Szegedy (2015).
Whilst we refer the reader to |loffe and Szegedy| (2015) for a full description of batch normalisation,
a subtlety which is introduced is that the output of a network for one sample depends on the samples
in the mini-batch (as they are used to compute the statistics). Since these statistics are used to
normalise and center the layers, they have a large effect on the curvature calculation. In our software
package, we give the user two options to deal with this. We denote one Train Mode and the other
Evaluation Mode. We detail them both below

A.1 TRAIN MODE

With batch norm in train mode the output of the network for one sample depends on other samples in
the mini-batch. This effect influences the result of hessian-vector product computation on a dataset.
In particular, if the order of samples in the dataset is changed, then the set of mini-batches also
changes and the hessian-vector product will be different. We take this effect into account and fix the
order of samples in the dataset, so that hessian-vector product for different networks is computed
on the same set of mini-batches. Conceptually, one can use the following interpretation of a neural
network with batch norm layers in train mode: the input of such a network is not a single sample
but a mini-batch of samples. Instead of thinking about a dataset of samples we should think about a
dataset of mini-batches. With the fixed order of samples, we guarantee that all models are evaluated
on the same dataset of mini-batches.

A.2 EVALUATIONMODE

One can also use BN layers in eval mode with BN statistics computed over the whole dataset. With
BN layers in eval mode the output of a network on sample does not depend on other samples in
the mini-batch. Our code the mode of BN layers can be specified as a parameter for hessian-vector
product computation.

B LEARNING TO LOVE LANCZOS

The Lanczos Algorithm, on which our package is based, (Algorithm [I)) is an iterative algorithm for
learning a subset of the eigenvalues/eigenvectors of any Hermitian matrix, requiring only matrix
vector products. It can be regarded as a far superior adaptation of the power iteration method, where
the Krylov subspace # (H,v) = span{v, H?, H?v...} is orthogonalised using Gram-Schmidt.
Beyond having improved convergence to the power iteration method (Bai et al.,[1996) by storing the
intermediate orthogonal vectors in the corresponding Krylov subspace, Lanczos produces estimates
of the eigenvectors and eigenvalues of smaller absolute magnitude, known as Ritz vectors/values.
Despite its known superiority to the power iteration method and relationship to orthogonal poly-
nomials and hence when combined with random vectors the ability to estimate the entire spectrum
of a matrix, these properties are often ignored or forgotten by practitioners. We compare against
diaognal approximations for random and synthetic matrices in Appendix [E.

The Lanczos method be be explicitly derived by considering the optimization of the Rayleigh quo-
tient (Golub and Van Loan, |[2012)
_ vl Hv

r(v) = 5)

vTv

over the entire Krylov subspace KC,,,(H,v) as opposed to power iteration which is a particular
vector in the Krylov subspace u = H™w. Despite this, practitioners looking to learn the leading
eigenvalue, very often resort to the power iteration, likely due to its implementational simplicity.
We showcase the power iterations relative inferiority to Lanczos with the following convergence
theorems

Theorem 1. Let H*F be a symmetric matrix with eigenvalues \1 > .. > \p and corresponding
orthonormal eigenvectors zy,..zp. If 01 > .. > 0, are the eigenvalues of the matrix T, obtained
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M/A2 m=5 m=10 m=15 m=20

1.5 1.1x10~4 2x10"1° 3.9x10° 16 7.4x10~22
: 3.9x10-2  6.8x10—4% 1.2x10-5 2.0x10—7
1.1 2.7x10°2  5.5x10°° 1.1x10~7 2.1x10" %0
: 4.7x10— 1 1.8X10— 1L 6.9x10—2 2.7x10—2
1.01 5.6x10"! 1.0x10~ 1 1.5x10~2 2.0x10~3

9.2x10—1 8.4x10~1 7.6x10—1 6.9x10~1

Table 6: Ly, 1 /Ry —1 For different values of spectral gap A1 /A2 and iteration number m, Table from (Golub and Van Loan}[2012)

after m Lanczos steps and q1, ...qm, the corresponding Ritz eigenvectors then

(A1 — \p) tan?(0;)

(em—1(1+42p1))?

(A1 — A\n) tan?(60y)
(em-1(1+2p1))?

A1 >0 > —
(6)

Ap <Ok < A+

where c,, is the Chebyshev polyomial of order k. cos 0y = |q z1| & p1 = (M1 — X2)/ (A2 — A\p)

Proof. see (Golub and Van Loan, [2012)). O

Theorem 2. Assuming the same notation as in Theorem|[I| after m power iteration steps the corre-
sponding extremal eigenvalue estimate is lower bounded by

2m—1
)\1 2 01 Z )\1 — ()\1 — )\n) tan2(91)(f\\2> (7)
1

From the rapid growth of orthogonal polynomials such as Chebyshev, we expect Lanczos superiority
to significantly emerge for larger spectral gap and iteration number. To verify this experimentally,
we collect the non identical terms in the equations [6] and [7] of the lower bounds for A; derived by
Lanczos and Power iteration and denote them Lj;_; and Ry _; respectively. For different values of
A1/A9 and iteration number m we give the ratio of these two quatities in Table @ As can be clearly
seen, the Lanczos lower bound is always closer to the true value, this improves with the iteration
number m and its relative edge is reduced if the spectral gap is decreased.

B.1 THE PROBLEM OF MOMENTS: SPECTRAL DENSITY ESTIMATION USING LANCZOS

In this section we show that that the Lanczos Tri-Diagonal matrix corresponds to an orthogonal
polynomial basis which matches the moments of v” H™v and that when v is a zero mean random
vector with unit variance, this corresponds to the moment of the underlying spectral density.

Stochastic trace estimation Using the expectation of quadratic forms, for zero mean, unit vari-
ance random vectors

E,Tr(v? H™v) = TR, (vol H™) = Tr(H™)

P
=> A= P/ A" dp(N)
P AED

where we have used the linearity of trace and expectation. Hence in expectation over the set of
random vectors, the trace of the inner product of v and H™v is equal to the m’th moment of the
spectral density of H.

®)

Lanczos-Stieltjes The Lanczos tri-diagonal matrix T" can be derived from the Moment matrix M,
corresponding to the discrete measure da()\) satisfying the moments p; = v7 H'v = [ Ada())
(Golub and Meurant, |1994)

1 vTHv ... vTH™ W

vTHv vT H?*v
vITH™ 1y . ... vTHZM2y
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and hence for a zero mean unit variance initial seed vector, the eigenvector/eigenvalue pairs of T’
contain information about the spectral density of H as shown in section |B.1. This is given by the
following Theorem

Theorem 3. The eigenvalues of Ty, are the nodes t; of the Gauss quadrature rule, the weights w;
are the squares of the first elements of the normalized eigenvectors of Ty,

Proof. See|Golub and Meurant (1994) O

A quadrature rule is a relation of the form,

b M
| FONd() = 3 pss(e) + RL ©

for a function f, such that its Riemann-Stieltjes integral and all the moments exist on the measure
du(A), on the interval [a, b] and where R|[f] denotes the unknown remainder. The first term on the
RHS of equation E] using Theorem can be seen as a discrete approximation to the spectral density
matching the first m moments vT H™v (Golub and Meurant, |1994; |Golub and Van Loan, 2012)

For n,, starting vectors, the corresponding discrete spectral density is given as

=13 (Zm&”ﬂm - Ai”)) (10)

n
V=1 “k=1

where T,El) corresponds to the first entry of the eigenvector of the k-th eigenvalue, A, of the Lanczos

tri-diagonal matrix, T, for the [-th starting vector (Ubaru and Saad; Lin et al., 2016).

B.2 COMPUTATIONAL COMPLEXITY

For large matrices, the computational complexity of the algorithm depends on the Hessian vector
product, which for neural networks is O(mNP) where P denotes the number of parameters in
the network, m is the number of Lanczos iterations and N is the number of data-points. The full
re-orthogonalisation adds two matrix vector products, which is of cost O(m?P), where typically
m?2 < N. Each random vector used can be seen as another full run of the Lanczos algorithm, so for
d random vectors the total complexity is O(dmP(N + m))

Importance of keeping orthogonality The update equations of the Lanczos algorithm lead to a
tri-diagonal matrix T' = R™*"™, whose eigenvalues represent the approximated eigenvalues of the
matrix H and whose eigenvectors, when projected back into the the Krylov-subspace, % (H, v),
give the approximated eigenvectors of H. In finite precision, it is known (Meurant and Strakos|
20006) that the Lanczos algorithm fails to maintain orthogonality between its Ritz vectors, with corre-
sponding convergence failure. In order to remedy this, we re-orthonormalise at each step (Bai et al.|
1996) (as shown in line 9 of Algorithm I)) and observe a high degree of orthonormality between the
Ritz eigenvectors. Orthonormality is also essential for achieving accurate spectral resolution as the
Ritz value weights are given by the squares of the first elements of the normalised eigenvectors. For
the practitioner wishing to reduce the computational cost of maintaining orthogonality, there exist
more elaborate schemes (Meurant and Strakos, 2006; |Golub and Meurant, [1994)).

We also explicitly debunk some key persistent myths, given below.

* We can learn the negative and interior eigenvalues by shifting and inverting the matrix sign
H— -H+ul

* Lanczos learns the largest m [\, w;] pairs of H € RP*¥ with high probability (Dauphin
et al.,[2014)

Since these two related beliefs are prevalent, we disprove them explicitly in this section, with Theo-
rems @ and [l

Theorem 4. The shift and invert procedure H — —H + ulI, changes the Eigenvalues of the Tri-
diagonal matrix T (and hence the Ritz values) to \; = —X\; + 1
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Algorithm 1 Lanczos Algorithm

1: Input: Hessian vector product { Hv}, number of steps m
2: Output: Ritz eigenvalue/eigenvector pairs {\;, u; } & quadrature weights 7;
3: Setv :=v//(vTv)

4: Set B:= 0,054 :=v

5:SetV(:;,1):=v

6: for jinl,..,mdo

7 w=Hv — v,y

8: T(,j)=a=wlv

99 w=w-ow-VV©iw

10: B =vVwTw

11: Vold =V

122 v=w/p

132 V(QEj+1)=wv

4 T+ 1) =TG+1,1) =4

15: end for

16: {\;,e;} = eig(T)

17: w; =Ve;

18: 7, = (el'[1,0,0...0])?

Proof. Following the equations from Algorithm

wi = (—H + pIl)vy & oy = vi Hvy + ul
we =wy —aqv; = (H + pl)vy — (fovl + pl)vy

wy = (H — v] Hv, vy & vy = ws/||wy| (11
ap = vI (—H + pl)vy = —vl Hvy +
P2 = ||lwo]l

Assuming this for m — 1, and repeating the above steps for m we prove by induction and finally
arrive at the modified tridiagonal Lanczos matrix T

T =-T+ pul

- (12)

)\iif/\i+}iv1§i§m
Remark. No new Eigenvalues of the matrix H are learned. Although it is clear that the addition bf
the identity does not change the Krylov subspace, such procedures are commonplace in code per-
taining to papers attempting to find the smallest eigenvalue. This disproves the first misconception.

Theorem 5. For any matrix H € RP*P such that \y > Xy > ... > Ap and Z:il A <
Zim 41 i in expectation over the set of random vectors v the m eigenvalues of the Lanczos Tridi-

agonal matrix T do not correspond to the top m eigenvalues of H

Proof. Let us consider the matrix H-=-H- WI s

{)\Z>0, Vi <m (13)

A <0, Vi>m

Under the assumptions of the theorem, Tr(I~{ ) < 0 and hence by Theorem [3|and Equation (8| there

exist no w; > 0 such that
m P

E k 1§ k
Y — 1< < 14
11wlAz P Az _k;_m ( )

i=1
is satisfied for k = 1, as the LHS is manifestly positive and the RHS is negative. By Theorem 4| this
holds for the original matrix H. O
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Remark. Given that Theoremis satisfied over the expectation of the set of random vectors, which
by the CLT is realised by Monte Carlo draws of random vectors as d — oo the only way to really
span the top m eigenvectors is to have selected a vector which lies in the m dimensional subspace
of the P dimensional problem corresponding to those vectors, which would correspond to knowing
those vectors a priori, defeating the point of using Lanczos at all.

Remark. Given the relationship between the moments of the spectral density and the expectation
over the set of random vectors, one may be curious to ask how we expect the deviation to be de-
pending on the number of random vectors actually used in practice. Whilst usually packages using
Lanczos use a number of random vectors (increasing the corresponding computational cost), in
Appendix |C| we demonstrate that we expect the difference to reduce as we increase the problem
dimension P. This informs our choice of only using a single random vector in our package, we
compare results for different random vectors in Appendix [Cand find minimal differences.

C EFFECT OF VARYING RANDOM VECTORS

Given that the proofs for the moments of Lanczos matching those of the underlying spectral density,
are true over the expectation over the set of random vectors and in practice we only use a Monte
Carlo average of random vectors, or in our experiments using stem plots, just a single random vector.
We justify this with the following Lemma

Lemma 1. Let u € RP*! random vector, where w; is zero mean and unit variance and finite 4’th
moment E[u}] = my. Then for H € RF*F | then

i)Elu! Hu] = Tr H
ii)Var[u? Hu) < (2 +my) Tr(HT H)

Proof.
P P
E[u? Hu) = Z H,; ;Elu;v;] = Z H,;=TrH (15)
ij=1 =
Elllu” Hull!] = Y2 3 Hiy B Elu] w]
2,7 k,l
Z Z Hi,jlejl [5i,j5k,l + 05,1051 + 05 105, + m4§i,j’k7ﬂ (16)
ikl

= (Tr H)? + (2 + my4) Tr(H?)

O
Remark. Let us consider the signal to noise ratio for some positive definite H > cI
Var[uT Hu] \ > 1 B 1
E[u” Hu] 227 Aidj 1 Pl
P2 (A% (17)
1

where (..) denotes the arithmetic average. For the extreme case of all eigenvalues being identical,
the condition number £ = 1 and hence this reduces to 1/P — 0 in the P — oo limit, whereas for a
rank-1 matrix, this ratio remains 1. For the MP density, which well models neural network spectra,
 is not a function of P as P — oo and hence we also expect this benign dimensional scaling to

apply.

We verify this high dimensional result experimentally, by running spectral visualisation but using
two different random vectors. We plot the results in Figure[5] We find both figures [Sa] & [5b] to be
close to visually indistinguishable. There are minimal differences in the extremal eigenvalues, with
former giving {\1, A, } = {6.8885, —0.0455} and the latter {6.8891, —0.0456}, but the degeneracy
at 0, bulk, triplet of outliers at 2.27 and the large outlier at 6.89 is unchanged.
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Figure 5: VGG16 Epoch 300 end of training Lanczos stem plot for different random vectors

C.1 WHY WE DON’T KERNEL SMOOTH

Concurrent work, which has also used Lanczos with the Pearlmutter trick to learn the Hessian (Yao!
et al.,[2018;|Ghorbani et al.,[2019), typically uses n,, random vectors and then uses kernel smoothing,
to give a final density. In this section we argue that beyond costing a factor of n, more computa-
tionally, that the extra compute extended in order to get more accurate moment estimates, which
we already argued in Section [C|are asymptotically error free, is wasted due to the kernel smoothing
(Granziol et al.||2019). The smoothed spectral density takes the form:

;5(/\):/k (A= X)p(\)dN = Zwl (18)

We make some assumptions regarding the nature of the kernel function, k, (A— A;), in order to prove
our main theoretical result about the effect of kernel smoothing on the moments of the underlying
spectral density. Both of our assumptions are met by (the commonly employed) Gaussian kernel.

Assumption 1. The kernel function k. (\ — ;) is supported on the real line [—oo, o]
Assumption 2. The kernel function k, (A — \;) is symmetric and permits all moments.

Theorem 6. The m-th moment of a Dirac mixture Y ., w;6(\ — X;), which is smoothed by a
kernel k, satisfying assumptzons [|and & [2] is perturbed from its unsmoothed counterpart by an

amount Y| w; Zj 1 (2])]Ek (A)()\Qj))\;ndj, where v = m if m is even and m — 1 otherwise.
E, () (A*) denotes the 2j-th central moment of the kernel function kq(X).

Proof. The moments of the Dirac mixture are given as,

A = "w; /5(>\ — X)ATAN =) wiA (19)
i=1 =1

The moments of the modified smooth function (Equation equation [I8)) are

/k (A — A)A™dA

M=
Z / YO 4+ A)™dN (20)

n r/2

(™) +ZWZ< >Ek oy (AN,

We have used the binomial expansion and the fact that the infinite domain is invariant under shift
reparametarization and the odd moments of a symmetric distribution are 0. O
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Remark. The above proves that kernel smoothing alters moment information, and that this process
becomes more pronounced for higher moments. Furthermore, given that w; > 0, Eg_(») (A\%) >0
and (for the GGN lambda; > 0, the corrective term is manifestly positive, so the smoothed moment
estimates are biased.

D LOCAL LOSS LANDSCAPE

The Lanczos algorithm with enforced orthogonality initialised with a random vector gives a moment
matched discrete approximation to the Hessian spectrum. However this information is local to the
point in weight space w and the quadratic approximation may break down within the near vicinity.
To investigate this, we use the loss landscape visualisation function of our package: We display
this for the VGG-16 on CIFAR-100 in Figure[8] We see for the training loss [6a]that the eigenvector
corresponding to the largest eigenvalue A = 6.88 only very locally corresponds to the sharpest
increase in loss for the training, with other extremal eigenvectors, corresponding to the eigenvalues
A = {2.67,2.35} overtaking it in loss change relatively rapidly. Interestingly for the testing loss, all
the extremal eigenvectors change the loss much more rapidly, contradicting previous assertions that
the test loss is a “shifted” version of the training loss (He et al., [2019; [Izmailov et al., 2018)). We
do however note some small asymettry between the changes in loss along the opposite ends of the
eigenvectors. The flat directions remain flat locally and some of the eigen-vectors corresponding to
negative values correspond to decreases in test loss. We include the code in ??

—e— =-0.0470

0.5 _

26 —eo— =-0.0452
—e— =-0.0442
0.4 —o— =-0.0348
24 —— =-0.0136
0.3 —e— =-0.0004
22 = 0.0002
02" / —— =0.0059
f 2.0 = 1.8656
b —e— =2.3449
0.1 \ )/ —— =2.6695
1.8 R o —e— =6.8819

0.0 Hitseihcleorereny

-0.2-0.1 0.0 0.1 0.2 -0.2-0.1 0.0 0.1 0.2
(a) Training Loss (b) Testing Loss

Figure 6: VGG-16 CIFAR-100 Loss surface visualised along 6 negative and position eigenvalues

CIFAR-10 DATASET

To showcase the ability of our software to handle multiple datasets we display the Hessian of the
VGG-16 trained in an identical fashion as its CIFAR-100 counterpart of CIFAR-10 in Figure 22,
along with the a plot of a selection of Ritz vectors traversing the training loss surface in Figure [8a]
and testing loss surface in Figure [8b] along with also the training accuracy surface (Figure [9a) and
testing accuracy surface (Figure [9b).

E EXAMPLES ON SMALL RANDOM MATRICES

In this section, we use some examples on small random matrices to showcase the power of our
package that uses the Lanczos algorithm with random vectors to learn the spectral density. Here,
we look at known random matrices with elements drawn from specific distributions which converge
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Figure 7: VGG-16 CIFAR-100 Accuracy surface visualised along 6 negative and position eigenvalues
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Figure 8: VGG-16 CIFAR-10 Loss surface visualised along 6 negative and position eigenvalues

to known spectral densities in the asymptotic limit. Here we consider Wigner Ensemble (Wigner|
1993)) and the Marcenko Pastur (Marchenko and Pastur, [1967)), both of which are extensively used
in simulations or theoretical analyses of deep neural network spectra (Pennington and Bahril, 2017}

[Choromanska et al., 2015a; [Anonymous) [2020).

E.1 WIGNER MATRICES

Wigner matrices can be defined in Definition and their distributions of eigenvalues are governed
by the semi-circle distribution law (Theorem|7]).

Definition E.1. Let {Y;} and {Z;;}1<i<; be two real-valued families of zero mean, i.i.d random
variables, Furthermore suppose that EZ32, = 1 and for each k € N

mazx(E|Zty, E|Y1|*) < oo (2D
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Figure 9: VGG-16 CIFAR-10 Accuracy surface visualised along negative and positive eigenvalues
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(a) Stem m = 30, P = 225 (b) Histogram, P = 225 (c) Stem m = 30, P = 104 (d) Histogram, P = 104

Figure 10: Lanczos stem plot for a single random vector with m = 30 steps compared to actual eigenvalue histogram for matrices of the form
H e RP*P where each element is a drawn from a normal distribution with unit variance, converging to the Wigner semi circle.

Consider a P x P symmetric matrix M p, whose entries are given by

{MP(iai) =Y

22
Mp(i,j) = Zij = Mp(j,i), ifr>1 (22)

The Matrix Mp is known as a real symmetric Wigner matrix.

Theorem 7. Let {Mp}¥_, be a sequence of Wigner matrices, and for each P denote Xp =
Mp/ V/'P. Then X, converges weakly, almost surely to the semi circle distribution,

1
o(x)dx = 2—\/4 — 221 3<2 (23)
p <

For our experiments, we generate random matrices H € RP*? with elements drawn from the
distribution A/(0,1) for P = {225,10000} and plot histogram of the spectra found by eigende-
composition, along with the predicted Wigner density (scaled by a factor of v/P) in Figures &
[T0d)and compare them along with the discrete spectral density approximation learned by lanczos in
m = 30 steps using a single random vector d = 1 in Figures & It can be seen that even
for a small number of steps m < P and a single random vector, Lanczos impressively captures not
only the support of the eigenvalue spectral density but also its shape. We note as discussed in section
[B2 that the 30 Ritz values here do not span the top 30 eigenvalues even approximately.

E.2 MARCENKO-PASTUR

An equally important limiting law for the limiting spectral density of many classes of matrices con-
strained to be positive definite, such as covariance matrices, is the Marcenko-Pastur law (Marchenko
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(@) Stem m = 30, P = 10* (b) Histogram, P = 10%

Figure 11: Lanczos stem plot for a single random vector with m = 30 steps compared to actual eigenvalue histogram for matrices of the form
H e R~ P, where H = XXT/k, where each element of X T k, k = 0.5P is a drawn from a normal distribution with unit variance,
converging to the Marcenko-Pastur distribution with ¢ = 0.5.

Hhﬁm

0 0.5 1 15 2 25

11

(a) Stem m = 30, P = 225 (b) Histogram, P = 225 (c) Stem m, = 30, P = 10% (d) Histogram, P = 10

Figure 12: Lanczos stem plot for a single random vector with m = 30 steps compared to actual eigenvalue histogram for matrices of the form
H e RPX P, where H = XXT/k, where each element of X k, k = 2P is a drawn from a normal distribution with unit variance,
converging to the Marcenko-Pastur distribution with ¢ = 2.

and Pastur, [1967). Formally, given a matrix X € RP*T with i.i.d zero mean entires with vari-

ance 0 < oo. Let A\; > Xo,... > Ap be eigenvalues of Y,, = %XXT. The random measure
[LP(A) = %#{/\] € A}, AeR

Theorem 8. Assume that P, N — oo and the ratio P/IN — q € (0,00) (this is known as the
Kolmogorov limit) then up —  in distribution where

(1- %)HOEA +v174(A), ifg>1

VO; D)@ A

Ar2mo?

(24)

dv, = A =02(1+/q)? (25)

Here, we construct a random matrix X € P x T with independently drawn elements from the dis-
tribution A/ (0, 1) and then form the matrix %X X7, which is known to converge to the Marcenko-
Pastur distribution. We use P = {225, 10000} and T' = 2P and plot the associated histograms from
full eigendecomposition in Figures|12b|& [12d|along with their m = 30, d = 1 Lanczos stem coun-
terparts in Figures & Similarly we see a faithful capturing not just of the support, but also
of the general shape. We note that both for Figure[I0]and Figure [I2] the smoothness of the discrete
spectral density for a single random vector increases significantly, even relative to the histogram.

We also run the same experiment for P = 10000 but this time with 7" = 0.5P so that exactly half
of the eigenvalues will be 0. We compare the Histogram of the eigenvalues in Figure[ITb]against its
m = 30,d = 1 Lanczos stem plot in Figure|l1ajand find both the density at the origin, along with
the bulk and support to be faithfully captured.

E.3 COMPARISON TO DIAGONAL APPROXIMATIONS

As a proxy for deep neural network spectra, often the diagonal of the matrix (Bishop, 2006) or the
diagonal of a surrogate matrix, such as the Fisher information, or that implied by the values of the
Adam Optimizer (Chaudhari et al., 2016) is used. We plot the true eigenvalue estimates for random
matrices pertaining to both the Marcenko-Pastur (Fig. [I4a) and the Wigner density (Fig. in
blue, along with the Lanczos estimate in red and the diagonal approximation in yellow. We see here
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Figure 13: Generated matrices H € R1000X1000 \with known eigenspectrum and Lanczos stem plots for different values of m =
{5,15,30}

(a) Marcenko-Pastur (b) Wigner-Semi Circle

Figure 14: Two randomly generated matrices H € R®0*5090 with the histogram of the true eigenvalues in blue, the Lanczos estimate
m = 30, d = 1 inred and the diagonal approximation in yellow

that the diagonal approximation in both cases, fails to adequately the support or accurately model the
spectral density, whereas the lanczos estimate is nearly indistinguishable from the true binned eigen-
spectrum. This is of-course obvious from the mathematics of the un-normalised Wigner matrix. The
diagonal elements are simply draws from the normal distribution A/(0,1) and so we expect the
diagonal histogram plot to approximately follow this distribution (with variance 1). However the
second moment of the Wigner Matrix can be given by the Frobenius norm identity

1« 1 & 1

2\ _ 2 _ 2 —

E(PZAZ.) _E<P .Zlﬂz,j> _]E(PXP2> =P (26)
i ij=

Similarly for the Marcenko-Pastur distribution, We can easily see that each element of H follows a

chi-square distribution of 1/7x2., with mean 1 and variance 2/7".

E.4 SYNTHETIC EXAMPLE

The curvature eigenspectrum of neural network often features a large spike at zero, a right-skewed
bulk and some outliers (Sagun et al., [2016; 2017) In order to simulate the spectrum of a neural
network, we generate a Matrix H € R'000X1000 with 470 eigenvalues drawn from the uniform
distribution from [0, 15], 20 drawn from the uniform [0, 60] and 10 drawn from the uniform [—10, 0].
The matrix is rotated through a rotation matrix U, i.e H = UDU? where D is the diagonal matrix
consisting of the eigenvalues and the columns are gaussian random vectors which are orthogonalised
using Gram-Schmidt orthogonalisation. The resulting eigenspectrum is given in a histogram in
Figure and then using the same random vector, successive Lanczos stem plots for different
number of iterations m = [5, 30] are shown in Figure[13] Figure for a low number of steps,
the degeneracy at A = 0 is learned, as are the largest and smallest eigenvalues, some information
is retained about the bulk density, but some of the outlier eigenvalues around A ~ 20 and A =~ 30
are completely missed out, along with all the negative outliers except the largest. For m = 30
even the shape of the bulk is accurately represented, as shown in Figure [I[3d] Here, we would like
to emphasise that learning the outliers is important in the neural network context, as they relate to
important properties of the network and the optimisation process (Ghorbani et al., 2019).

On the other hand, we note that the diagonal estimate in Figure [[3c gives absolutely no spectral
information, with no outliers shown (maximal and minimal diagonal elements being 5.3 and 3.3

3Some examples of this can be found in later sections on real-life neural network experiments - see Figures

[E]andE}
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respectively and it also gets the spectral mass at 0 wrong. This builds on section as further-
ing the case against making diagonal approximations in general. In neural networks, the diagonal
approximation is similar to positing no correlations between the weights. This is a very harsh as-
sumption and usually a more reasonable assumption is to posit that the correlations between weights
in the same layer are larger than between different layers, leading to a block diagonal approximation
(Martens| [2016), however often when the layers have millions of parameters, full diagonal approxi-
mations are still used. (Bishop, 2006} (Chaudhari et al.,[2016).

E.5 COMPARISON TO BACKPACK

For 16-layer VGG network, on the CIFAR-100 dataset the GGN diagonal computations/Dangel et al.
(2019) require over 125GB of GPU memory. Hence we use their Monte Carlo approximation to the
GGN diagonal against both our GGN-Hessian-Lanczos spectral visualizations. We plot a histogram
of the Monte Carlo approximation of the diagonal GGN (Diag-GGN) against both the Lanczos GGN
(Lanc-GGN) and Lanczos Hessian (Lanc-Hess) in Figure@ Note that as the Lanc-GGN and Lanc-
Hess are displayed as stem plots (with the discrete spectral density summing to 1 as opposed to
the histogram area summing to 1). We note that the Gauss-Newton approximation quite closely
resembles its Hessian counterpart, capturing the majority of the bulk and the outlier eigenvectors at
A1 =~ 6.88 and the triad near \; ~ 2.29. The Hessian does still have significant spectral mass on
the negative axis, around 37%. However most of this is captured by a Ritz value at —0.0003, with
this removed, the negative spectral mass is only 0.05%. However the Diag-GGN gives a very poor
spectral approximation. It vastly overestimates the bulk region, which extends well beyond A ~ 1
implied by Lanczos and adds many spurious outliers between 3 and the misses the largest outlier of
6.88. Computational Cost Using a single NVIDIA GeForce GTX 1080 Ti GPU, the Gauss-Newton
takes an average 26.5 seconds for each Lanczos iteration with the memory useage 2850Mb. Using
the Hessian takes an average of 27.9 seconds for each Lanczos iteration with 2450Mb memory
usage.

o' 102
10:; 11092
18-5 10"
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o I Lo Il I
-0.050 2.260 4.570 6.882 0.00 2.29 4.59 6.88
(a) Diag-GGN & Lanc-GGN (b) Diag-GGN & Lanc-Hess

Figure 15: Diagonal Generalised Gauss-Newton monte carlo approximation (Diag-GGN) against m = 100 Lanczos using Gauss-Newton
vector products (Lanc-GGN) or Hessian vector products (Lanc-Hess)
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