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As a summary, we organize the supplementary material as follows. We first restate basic notations
and definitions in Section 1, then move on to restate the HSPG method in Section 2. Next we
restate convergence analysis theorems with corresponding proofs in Appendix C. Finally, we present
additional experimental setting and numerical results in Appendix D. For ease of reference, we
highlight the referenced points appeared in the main body of paper as below:

• The sufficient decrease of Half-Space Step (Lemma 1 in the main body) is restated as
Lemma 1 with detailed proof in Appendix C.1.

• The projection region of Half-Space Step is presented in Appendix A.

• The Non-Lipschitz continuity of Ψ around the origin point is revealed in Appendix B.

• Proofs of Theorem 1 and 2 are shown in Appendix C.2 and C.3 respectively.

• Proofs of (Proposition 1 in the main body) is reordered as Proposition 2 provided in
Appendix C.4.

• Additional linear and logistic regression experiments are reported in Appendix D.1 and D.2.

• The procedure of fine tuning ε and final f comparison in non-convex experiments are
described in Appendix D.3.

1 BASIC NOTATIONS AND DEFINITIONS

Consider the mixed `1/`2-regularized optimization problem (Group Lasso) in the form

minimize
x∈Rn

{
Ψ(x)

def
= f(x) + λΩ(x) =

1

N

N∑
i=1

fi(x) + λ
∑
g∈G
‖[x]g‖

}
, (1)

where λ > 0 is a weighting factor, ‖·‖ denotes `2-norm, f(x) is the average of numerous N
continuously differentiable instance functions fi : Rn → R.

Since that fundamental to Half-Space Step is the manner in which we handle the zero and non-zero
group of variables, we define the following index sets for any x ∈ Rn:

I0(x) := {g : g ∈ G, [x]g = 0} and I 6=0(x) := {g : g ∈ G, [x]g 6= 0}, (2)

where I0(x) represents the indices of groups of zero variables at x, and I 6=0(x) indexes the groups
of nonzero variables at x.

To proceed, we further define an artificial set that x lies in:

S(x) :=
{
z ∈ Rn : [z]>g [x]g ≥ ε ‖[x]g‖2 if g ∈ I 6=0(x), and [z]g = 0 if g ∈ I0(x)

}⋃
{0}, (3)

which consists of half-spaces and the origin. Hence, x inhabits S(xk), i.e., x ∈ S(xk), only if: (i)
[x]g lies in the upper half-space for all g ∈ I 6=0(xk) for some prescribed ε ∈ [0, 1); and (ii) [x]g
equals to zero for all g ∈ I0(xk).

In HSPG, Half-Space Step involves minimizing Ψ(x) over Sk as follows:

xk+1 = arg min
x∈Sk

Ψ(x) = f(x) + λΩ(x). (4)
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A novel group projection operator is used to solve (4) and effectively promote group sparsity, so
we need the following definition of the novel half-space group projection operator which projects a
group of variables to zero if it falls outside of Sk:[

ProjSk(z)
]
g

:=

{
[z]g if [z]>g [xk]g > ε ‖[xk]g‖2 ,
0 otherwise.

(5)

The above projector of form (5) is not the standard Euclidean projection operator in most cases, but
still satisfies the following two advantages: (i) the progress to the optimum is made via sufficient
decrease property; and (ii) effectively project groups of variables to zero simultaneously. In contrast,
the Euclidean projection operator is far away effective to promote group sparsity, as shown in Figure 1
in the main body of this paper.

2 THE HSPG METHOD

In this section, we restate our main algorithm HSPG (Algorithm 1), and the subroutines to proceed
a Prox-SG Step (Algorithm 2) and a Half-Space Step (Algorithm 3).

Algorithm 1 Outline of HSPG for solving (1).

1: Input: x0 ∈ Rn, α0 ∈ (0, 1), ε ∈ [0, 1), and NP ∈ Z+.
2: for k = 0, 1, 2, . . . do
3: if k < NP then
4: Compute xk+1 ← Prox-SG(xk, αk) by Algorithm 2.
5: else
6: Compute xk+1 ← Half-Space(xk, αk, ε) by Algorithm 3.
7: Update αk+1.

Algorithm 2 Prox-SG Step.

1: Input: Current iterate xk, and step size αk.
2: Compute the stochastic gradient of f on mini-batch Bk

∇fBk
(xk)← 1

|Bk|
∑
i∈Bk

∇fi(xk). (6)

3: Return xk+1 ← ProxαkλΩ(·) (xk − αk∇fBk
(xk)) .

Algorithm 3 Half-Space Step

1: Input: Current iterate xk, step size αk, and ε.
2: Compute the stochastic gradient of Ψ on I 6=0(xk) by mini-batch Bk

[∇ΨBk
(xk)]I 6=0(xk) ←

1

|Bk|
∑
i∈Bk

[∇Ψi(xk)]I 6=0(xk) (7)

3: Compute [x̃k+1]I 6=0(xk) ← [xk − αk∇ΨBk
(xk)]I 6=0(xk) and [x̃k+1]I0(xk) ← 0.

4: for each group g in I 6=0(xk) do
5: if [x̃k+1]>g [xk]g ≤ ε ‖[xk]g‖2 then
6: [x̃k+1]g ← 0.
7: Return xk+1 ← x̃k+1.
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A PROJECTION REGION

In this Appendix, we derive the projection region of HSPG, and reveal that is a superset of those
of Prox-SG, Prox-SVRG and Prox-Spider under the same αk and λ.
Proposition 1. The Half-Space Step of HSPG yields next iterate xk+1 based on the trial iterate
x̂k+1 = xk − αk∇fBk

(xk) as follows for each g ∈ I 6=0(xk)

[xk+1]g =

{
[x̂k+1]g − αkλ [xk]g

‖[xk]g‖ if [x̂k+1]>g [xk]g > (αkλ+ ε) ‖[xk]g‖
0 otherwise.

(8)

Consequently, if ‖[x̂k+1]g‖ ≤ αkλ, then [xk+1]g = 0 for any ε ≥ 0.

Proof. For g ∈ I 6=0(xk)
⋂
I 6=0(xk+1), by Algorithm 3, it is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g > ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ > ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g > (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(9)

Similarly, g ∈ I 6=0(xk)
⋂
I0(xk+1) is equivalent to[

xk − αk∇fBk
(xk)− αkλ

[xk]g
‖[xk]g‖

]>
g

[xk]g ≤ ε ‖[xk]g‖2 ,

[x̂k+1]>g [xk]g − αkλ ‖[xk]g‖ ≤ ε ‖[xk]g‖2 ,
[x̂k+1]>g [xk]g ≤ (αkλ+ ε ‖[xk]g‖) ‖[xk]g‖ .

(10)

If ‖[x̂k+1]g‖ ≤ αkλ, then

[x̂k+1]>g [xk]g ≤ ‖[x̂k+1]g‖ ‖[xk]g‖ ≤ αkλ ‖[xk]g‖ . (11)

Hence [xk+1]g = 0 holds for any ε ≥ 0 by (10), which implies that the projection region of Prox-SG
and its variance reduction variants, e.g., Prox-SVRG, Prox-Spider and SAGA are the subsets
of HSPG’s.
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B NON-LIPSCHITZ CONTINUITY OF ∇Ψ(x) ON Rn

The first-derivative of Ψ(x) at x 6= 0 can be written as

∇Ψ(x) = ∇f(x) + λ
∑
g∈G

[x]g
‖[x]g‖

(12)

We next show [x]g
‖[x]g‖ is not Lipschitz continuous on Rn if |g| ≥ 2. Take a example for [x]g =

(x1, x2)> ∈ R2, and select x1 = (t, a1t), x2 = (t, a2t), a1 6= a2 and t ∈ R. Then suppose there
exists a positive constant L <∞ such that Lipschitz continuity holds as follows∥∥∥∥ x1

‖x1‖
− x2

‖x2‖

∥∥∥∥ ≤ L ‖x1 − x2‖∥∥∥∥∥ (1, a1)√
1 + a2

1

− (1, a2)√
1 + a2

2

∥∥∥∥∥ ≤ L|a1 − a2| · |t|
(13)

holds for any t ∈ R, and note the left hand side is a positive constant. However, letting t→ 0, we
have that L→∞ which contradicts the L <∞. Therefore, [x]g

‖[x]g‖ is not Lipschitz continuous on R2,
specifically the region surrounding the origin point.

Although [∇Ψ(x)]I 6=0(x) is not Lipscthiz continuous on Rn, the Lipschitz continuity still holds on by
excluding a fixed size `2-ball centered at the origin for the group of non-zero variables I 6=0(x) from
Rn. For our paper, we define the region where Lipscthiz continuity of [∇Ψ(x)]I 6=0(x) still holds as

X = {x : ‖[x]g‖ ≥ δ1 for each g ∈ I 6=0(x), and [x]g = 0 for each g ∈ I0(x)}. (14)
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C CONVERGENCE ANALYSIS PROOF

Our analysis uses the following assumption that is assumed to hold throughout this section.
Assumption 1. Each fi : Rn → R, for i = 1, 2, · · · , N , is differentiable and bounded below. Their
gradients ∇fi(x) are Lipschitz continuous, and let L be the shared Lipschitz constant.

Denote the sets of groups which are projected or not onto zero as

Ĝk := I 6=0(xk)
⋂
I0(xk+1), and (15)

G̃k := I 6=0(xk)
⋂
I 6=0(xk+1). (16)

Denote X := {x : ‖[x]g‖ ≥ δ1 for each g ∈ G} where the Lipschitz continuity of∇ΨB(x) still holds
by excluding a `2-ball centered at the origin with radius δ1 from Rn. Let M denote one upper bound
of ‖∂Ψ‖ and ‖ξ‖.
Additionally, establishing some convergence results require the below constants to measure the least
and largest magnitude of non-zero group variables in x∗,

0 < δ1 :=
1

2
min

g∈I 6=0(x∗)
‖[x∗]g‖ , and (17)

0 < δ2 :=
1

2
max

g∈I 6=0(x∗)
‖[x∗]g‖ . (18)

and a subsequent results of strict complementary assumption on any B uniformly,

0 < δ3 :=
1

2
min

g∈I0(x∗)
(λ− ‖[∇fB(x∗)]g‖) (19)

And denote the following frequently used constant R describing the size of neighbor around x∗.

R := min

{
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ2

1

ε
, δ1

}
> 0. (20)

Remark: (20) is well defined as 0 < ε <
δ21
δ2

, and degenerated to δ1 as ε = 0.

C.1 SUFFICIENT DECREASE OF PROX-SG STEP AND HALF-SPACE STEP

Our convergence analysis relies on the following sufficient decrease properties of Half-Space Step
and Prox-SG Step.

Sufficient Decrease of Half-Space Step: We restate Lemma 1 presented in the paper main body
formally as the below Lemma 1 with corresponding proof as follows.
Lemma 1. Suppose xk ∈ X as (14). Algorithm 3 yields the next iterate xk+1 as ProjSk(xk −
αk∂ΨBk

(xk)) and the search direction dk := (xk+1 − xk)/αk, then

(i) dk is a descent direction for ΨBk
(xk), i.e., d>k ∂ΨBk

(xk) < 0; and

(ii) the objective function value ΨBk
(xk+1) satisfies

ΨBk (xk+1) ≤ ΨBk (xk)−
(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∂ΨBk (xk)]g‖2−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(21)

Proof. It follows Algorithm 3 and the definition of G̃k and Ĝk as (16) and (15) that xk+1 = xk+αkdk
where dk is

[dk]g =


−[∂ΨBk

(xk)]g if g ∈ G̃k = I 6=0(xk)
⋂
I 6=0(xk+1),

−[xk]g/αk if g ∈ Ĝk = I 6=0(xk)
⋂
I0(xk+1),

0 otherwise.
(22)
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We also notice that for any g ∈ Ĝk, the following holds

[xk − αk∂ΨBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 ,

(1− ε) ‖[xk]g‖2 < αk[∂ΨBk
(xk)]>g [xk]g.

(23)

For simplicity, let I 6=0
k := I 6=0(xk). Since [dk]g = 0 for any g ∈ I0(xk), then by (22) and (23), we

have

d>k ∂ΨBk
(xk) = [dk]>I 6=0

k

[∂ΨBk
(xk)]I 6=0

k

= −
∑
g∈G̃k

‖[∂ΨBk
(xk)]g‖2 −

∑
g∈Ĝk

1

αk
[xk]>g [∂ΨBk

(xk)]g

≤ −
∑
g∈G̃k

‖[∂ΨBk
(xk)]g‖2 −

∑
g∈Ĝk

1

α2
k

(1− ε) ‖[xk]g‖2 < 0,

(24)

holds for any ε ∈ [0, 1), which implies that dk is a descent direction for ΨBk
(xk).

Now, we start to prove the suffcient decrease of Half-Space Step. By the descent lemma, xk ∈ X
and the Lipschitz continuity of [∂ΨBk

]I 6=0
k

on X , we have that

ΨBk
(xk + αkdk) ≤ ΨBk

(xk) + αk[∂ΨBk
(xk)]>I 6=0

k

[dk]I 6=0
k

+
L

2
α2
k

∥∥∥[dk]I 6=0
k

∥∥∥2

. (25)

Then it follows (22) that (25) can be rewritten as follows

ΨBk
(xk + αkdk)

≤ΨBk
(xk) + αk[∂ΨBk

(xk)]>I 6=0
k

[dk]I 6=0
k

+
L

2
α2
k

∥∥∥[dk]I 6=0
k

∥∥∥2

=ΨBk
(xk)−

∑
g∈G̃k

‖[∂ΨBk
(xk)]g‖2

(
αk −

L

2
α2
k

)
−
∑
g∈Ĝk

{
[∂ΨBk

(xk)]>g [xk]g −
L

2
‖[xk]g‖2

}
(26)

Consequently, combining with ε ∈ [0, 1) and (23), (26) can be further shown as

ΨBk
(xk+1) ≤ ΨBk

(xk)−
(
αk −

α2
kL

2

) ∑
g∈G̃k

‖[∂ΨBk
(xk)]g‖2 −

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 ,

(27)
which completes the proof.

Sufficient Decrease of Prox-SG Step: The second lemma is well known for proximal operator
under our notations. We include this proof for completeness.

Lemma 2. Line 3 of Algorithm 2 yields that xk+1 = xk − αkξαk,Bk
(xk), where

ξαk,Bk
(xk) ∈ − (∇fBk

(xk) + λ∂Ω(xk+1)) . (28)

And the objective value ΨBk
satisfies

ΨBk
(xk+1) ≤ ΨBk

(xk)−
(
αk −

α2
kL

2

)
‖ξαk,Bk

(xk)‖2 . (29)

Proof. It follows from the line (3) in Algorithm 2 and the definitions of proximal operator that

xk+1 = arg min
x∈Rn

1

2αk
‖x− (xk − αk∇fBk

(xk))‖2 + λΩ(x)

= arg min
x∈Rn

∇fBk
(xk)>(x− xk) + λΩ(x) +

1

2αk
‖x− xk‖2

(30)

6
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By the optimal condition, we have

0 ∈ 1

αk
(xk+1 − xk) +∇fBk

(xk) + λ∂Ω(xk+1). (31)

Since xk+1 = xk − αkξαk,Bk
(xk), we have

0 ∈ −ξαk,Bk
(xk) +∇fBk

(xk) + λ∂Ω(xk+1), (32)

which implies that
ξαk,Bk

(xk) ∈ ∇fBk
(xk) + λ∂Ω(xk+1). (33)

And thus there exists some v ∈ ∂Ω(xk+1) such that

ξαk,Bk
(xk) = ∇fBk

(xk) + λv. (34)

By Lipschitz continuity of∇fBk
and convexity of Ω(·), we have

fBk
(xk+1) = fBk

(xk − αkξαk,Bk
(xk))

≤ fBk
(xk)− αk∇fBk

(xk)>ξαk,Bk
(xk) +

α2
kL

2
‖ξαk,Bk

(xk)‖2
(35)

and

λΩ(xk+1) = λΩ(xk − αkξαk,Bk
(xk))

≤ λΩ(xk) + λv>(xk − αkξαk,Bk
(xk)− xk)

= λΩ(xk)− αkλv>ξαk,Bk
(xk).

(36)

Hence, by (34), (35) and (36), the objective ΨBk
(xk+1) satisfies

ΨBk
(xk+1) = fBk

(xk+1) + λΩ(xk+1)

≤fBk
(xk)− αk∇fBk

(xk)>ξαk,Bk
(xk) +

α2
kL

2
‖ξαk,Bk

(xk)‖2 + λΩ(xk)− αkλv>ξαk,Bk
(xk)

=ΨBk
(xk)− αk(∇fBk

(xk) + λv)>ξαk,Bk
(xk) +

α2
kL

2
‖ξαk,Bk

(xk)‖2

=ΨBk
(xk)−

(
αk −

α2
kL

2

)
‖ξαk,Bk

(xk)‖2 ,

which completes the proof.

According to Lemma 1 and Lemma 2, the objective value on a mini-batch tends to achieve a sufficient
decrease in both Prox-SG Step and Half-Space Step given αk is small enough. By taking the
expectation on both sides, we obtain the following result characterizing the sufficient decrease from
Ψ(xk) to E [Ψ(xk+1)].

Corollary 1. For iteration k, we have

(i) if kth iteration conducts Prox-SG Step, then

E [Ψ(xk+1)] ≤ Ψ(xk)−
(
αk −

α2
kL

2

)
E
[
‖ξαk,Bk

(xk)‖2
]
. (37)

(ii) if kth iteration conducts Half-Space Step, xk ∈ X , then

E [Ψ(xk+1)] ≤ Ψ(xk)−
∑
g∈G̃k

(
αk −

α2
kL

2

)
E
[
‖∂ΨBk

(xk)‖2
]
−
(

1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .

(38)

Corollary 1 shows that the bound of Ψ depends on step size αk and norm of search direction. It
further indicates that both Half-Space Step and Prox-SG Step can make some progress to optimality
with proper selection of αk.

7
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C.2 PROOF OF THEOREM 1

Toward that end, we first show that if the optimal distance from xk to the local minimizer x∗ is
sufficiently small, then HSPG already covers the supports of x∗, i.e., I 6=0(x∗) ⊆ I 6=0(xk).

Lemma 3. If ‖xk − x∗‖ ≤ R, then I 6=0(x∗) ⊆ I 6=0(xk).

Proof. For any g ∈ I 6=0(x∗), by the assumption of this lemma and the definition of R as (20) and δ1
as (17), we have that

‖[x∗]g‖ − ‖[xk]g‖ ≤ ‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R ≤ δ1
‖[xk]g‖ ≥ ‖[x∗]g‖ − δ1 ≥ 2δ1 − δ1 = δ1 > 0

(39)

Hence ‖[xk]g‖ 6= 0, i.e., g ∈ I 6=0(xk). Therefore, I 6=0(x∗) ⊆ I 6=0(xk).

The next lemma shows that if the distance between current iterate xk and x∗, i.e., ‖xk − x∗‖ is
sufficiently small, then x∗ inhabits the reduced space Sk := S(xk).

Lemma 4. Under Assumption 1, if 0 ≤ ε < δ21
δ2

, ‖xk − x∗‖ ≤ R, then for each g ∈ I 6=0(x∗),

[xk]>g [x∗]g ≥ ε ‖[xk]g‖2 (40)

Consequently, it implies x∗ ∈ Sk by the definition as (3).

Proof. It follows the assumption of this lemma and the definition of R in (20), δ1 and δ2 in (20), (17)
and (18) that for any g ∈ I 6=0(x∗),

‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R, (41)

and the
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ2

1

]
/ε in (20) is actually the solution of εz2 +

(4εδ2 + 2δ1)z + 4εδ2
2 − 4δ2

1 = 0 regarding z ∈ R+. Then we have that

[xk]>g [x∗]g =[xk − x∗ + x∗]>g [x∗]g

=[xk − x∗]>g [x∗]g + ‖[x∗]g‖2

≥‖[x∗]g‖2 − ‖[xk − x∗]g‖ ‖[x∗]g‖
= ‖[x∗]g‖ (‖[x∗]g‖ − ‖[xk − x∗]g‖)
≥2δ1(2δ1 −R) ≥ ε(2δ2 +R)2

≥ε ‖[xk]g‖2

(42)

holds for any g ∈ I 6=0(x∗), where the second last inequality holds because that 2δ1(2δ1 − R) =

ε(2δ2 +R)2 as R =
[
−(δ1 + 2εδ2) +

√
(δ1 + 2εδ2)2 − 4ε2δ2 + 4εδ2

1

]
/ε. Now combing with the

definition of Sk as (3), we have x∗ inhabits Sk, which completes the proof.

Furthermore, if ‖xk − x∗‖ is small enough and the step size is selected properly, every recovery of
group sparsity by Half-Space Step can be guaranteed as successful as stated in the following lemma.

Lemma 5. Suppose k ≥ NP , ‖xk − x∗‖ ≤ R, 0 ≤ ε < 2δ1−R
2δ2+R and 0 < αk ≤ 2δ1−R−ε(2δ2+R)

M ,
then for any g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1), g must be in I0(x∗), i.e., g ∈ I0(x∗).

Proof. To prove it by contradiction, suppose there exists some g ∈ Ĝk such that g ∈ I 6=0(x∗). Since
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1), then the group projection (5) is trigerred at g such that

[x̃k+1]>g [xk]g = [xk − α∇ΨBk
(xk)]>g [xk]g

= ‖[xk]g‖2 − αk[∇ΨBk
(xk)]>g [xk]g < ε ‖[xk]g‖2 .

(43)

8
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On the other hand, it follows the assumption of this lemma and g ∈ I 6=0(x∗) that

‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R (44)

Combining the definition of δ1 as (17) and δ2 as (18), we have that

‖[xk]g‖ ≥ ‖[x∗]g‖ −R ≥ 2δ1 −R
‖[xk]g‖ ≤ ‖[x∗]g‖+R ≤ 2δ2 +R

(45)

It then follows 0 < αk ≤ 2δ1−R−ε(2δ2+R)
M , where note 2δ1 − R − ε(2δ2 + R) > 0 as R ≤ δ1 and

ε < 2δ1−R
2δ2+R , that

[x̃k+1]>g [xk]g = ‖[xk]g‖2 − αk[∇ΨBk
(xk)]>g [xk]g

≥ ‖[xk]g‖2 − αk ‖[∇ΨBk
(xk)]g‖ ‖[xk]g‖

= ‖[xk]g‖ (‖[xk]g‖ − αk ‖[∇ΨBk
(xk)]g‖)

≥ ‖[xk]g‖ (‖[xk]g‖ − αkM)

≥ ‖[xk]g‖ [(2δ1 −R)− αkM ]

≥ ‖[xk]g‖
[
(2δ1 −R)− 2δ1 −R− ε(2δ2 +R)

M
M

]
≥ ‖[xk]g‖ [(2δ1 −R)− 2δ1 +R+ ε(2δ2 +R)]

≥ ε ‖[xk]g‖ (2δ2 +R)

≥ ε ‖[xk]g‖2

(46)

which contradicts with (43). Hence, we conclude that any g of variables projected to zero, i.e.,
g ∈ Ĝk = I 6=0(xk)

⋂
I0(xk+1) are exactly also the zeros on the optimal solution x∗, i.e., g ∈

I0(x∗).

We next present that if the iterate of Half-Space Step is close enough to the optimal solution x∗,
then x∗ inhabits all reduced spaces constructed by the subsequent iterates of Half-Space Step with
high probability. To establish this results, we require the below two lemmas. The first bounds the
accumulated error because of random sampling.
Lemma 6. Given any θ > 1, K ≥ NP , let k := K+ t, t ∈ Z+

⋃
{0}, then there exists αk = O(1/t)

and |Bk| = O(t), such that for any yt ∈ Rn,

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

Proof. Define random variable Yt := αK+t‖eBK+t
(yt)‖2 for all t ≥ 0. Since {yt}∞t=0 are arbitrarily

chosen, then the random variables {Yt}∞t=0 are independent. Let Y :=
∑∞
t=0 Yt. Using Chebshev’s

inequality, we obtain

P
(
Y ≥ E[Y ] + θ

√
Var[Y ]

)
≤ P

(
|Y − E[Y ]| ≥ θ

√
Var[Y ]

)
≤ 1

θ2
. (47)

And based on the Assumption 1, there exists an upper bound σ2 > 0 for the variance of random noise
e(x) generated from the one-point mini-batch, i.e., B = {i}, i = 1, . . . , N . Consequently, for each

t ≥ 0, we have E[Yt] ≤ αK+tσ√
|BK+t|

and Var[Yt] ≤
α2

K+tσ
2

|BK+t| , then combining with (47), we have

Y ≤ E[Y ] + θ
√

Var[Y ] (48)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

α2
K+tσ

2

|BK+t|
(49)

≤
∞∑
t=0

αK+tσ√
|Bk+t|

+ θ ·
∞∑
t=0

αK+tσ√
|BK+t|

= (1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

(50)
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holds with probability at least 1− 1
θ2 . Here, for the second inequality, we use the property that the

equality E[
∑∞
t=0 Yi] =

∑∞
t=0 E[Yi] holds whenever

∑∞
t=0 E[|Yi|] convergences, see Section 2.1 in

Mitzenmacher (2005); and for the third inequality, we use αK+tσ√
|BK+t|

≤ 1 without loss of generality as

the common setting of large mini-batch size and small step size.

Given any θ > 1, there exists some αk = O(1/t) and |Bk| = O(t), the above series converges and
satisfies that

(1 + θ)

∞∑
t=0

αK+tσ√
|BK+t|

≤ 3R2

8(4R+ 1)

holds. Notice that the above proof holds for any given sequence {yt}∞t=0 ∈ X∞, thus

max
{yt}∞t=0∈X∞

∞∑
t=0

αk‖eBk
(yt)‖2 ≤

3R2

8(4R+ 1)

holds with probability at least 1− 1
θ2 .

The second lemma draws if previous iterate of Half-Space Step falls into the neighbor of x∗, then
under appropriate step size and mini-batch setting, the current iterate also inhabits the neighbor with
high probability.

Lemma 7. Under the assumptions of Lemma 6, suppose ‖xK − x∗‖ ≤ R/2; for any ` satisfying
K ≤ ` < K + t, 0 < α` ≤ min{ 1

L ,
2δ1−R−ε(2δ2+R)

M }, |B`| ≥ N − N
2M and ‖x` − x∗‖ ≤ R holds,

then
‖xK+t − x∗‖ ≤ R. (51)

holds with probability at least 1− 1
θ2 .

Proof. It follows the assumptions of this lemma, Lemma 5, (15) and (16) that for any ` satisfying
K ≤ ` < K + t

‖[x∗]g‖ = 0, for any g ∈ Ĝ`. (52)

Hence we have that for K ≤ ` < K + t,

‖x`+1 − x∗‖2

=
∑
g∈G̃`

‖[x` − x∗ − α`∇Ψ(x`)− α`eB`
(x`)]g‖2 +

∑
g∈Ĝk

‖[x` − x∗ − x`]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`) + eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

+
∑
g∈Ĝ`

‖[x∗]g‖2

=
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − 2α`[x` − x∗]>g [∇Ψ(x`)]g − 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[∇Ψ(x`) + eB`

(x`)]g‖2
}

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
− 2α`[x` − x∗]>g [eB`

(x`)]g + α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` [∇Ψ(x`)]

>
g [eB`

(x`)]g

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ 2α` ‖[x` − x∗]g‖ ‖[eB`

(x`)]g‖+ α2
` ‖[eB`

(x`)]g‖2

+ 2α2
` ‖[∇Ψ(x`)]g‖ ‖[eB`

(x`)]g‖

≤
∑
g∈G̃`

‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2
(

2
α`
L
− α2

`

)
+ (2α` + 2α2

`L) ‖[xk − x∗]g‖ ‖[eB`
(x`)]g‖+ α2

` ‖[eB`
(x`)]g‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

(53)
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On the other hand, by the definition of eB(x), we have that

eB(x) =[∇ΨB(x)−∇Ψ(x)]I 6=0(x) = [∇fB(x)−∇f(x)]I 6=0(x)

=
1

|B|
∑
j∈B

[∇fj(x)]I 6=0(x) −
1

N

N∑
i=1

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N

|B|
[∇fj(x)]I 6=0(x) − [∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

=
1

N

∑
j∈B

[
N − |B|
|B|

[∇fj(x)]I 6=0(x)

]
− 1

N

N∑
i=1
i/∈B

[∇fi(x)]I 6=0(x)

(54)

Thus taking the norm on both side of (54) and using triangle inequality results in the following:

‖eB(x)‖ ≤ 1

N

∑
j∈B

[
N − |B|
|B|

∥∥[∇fj(x)]I 6=0(x)

∥∥]+
1

N

N∑
i=1
i/∈B

∥∥[∇fi(x)]I 6=0(x)

∥∥
≤ 1

N

N − |B|
|B|

|Bk|M +
1

N
(N − |B|)M ≤ 2(N − |B|)M

N
.

(55)

Since α` ≤ 1, and |B`| ≥ N − N
2M hence α` ‖eB`

(x`)‖ ≤ 1. Then combining with α` ≤ 1/L, (53)
can be further simplified as

‖x`+1 − x∗‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 − ‖[∇Ψ(x`)]g‖2

(
2
α`
L
− α2

`

)}
+ (2α` + 2α2

`L) ‖x` − x∗‖ ‖eB`
(x`)‖+ α2

` ‖eB`
(x`)‖2

≤
∑
g∈G̃`

{
‖[x` − x∗]g‖2 −

1

L2
‖[∇Ψ(x`)]g‖2

}
+ 4α` ‖x` − x∗‖ ‖eB`

(x`)‖+ α2
` ‖eB`

(x`)‖2

≤‖x` − x∗‖2 + 4α` ‖x` − x∗‖ ‖eB`
(x`)‖+ α` ‖eB`

(x`)‖
(56)

Following from the assumption that ‖x` − x∗‖ ≤ R, then (56) can be further simplified as

‖x`+1 − x∗‖2 ≤‖x` − x∗‖2 + 4α`R ‖eB`
(x`)‖+ αk ‖eB`

(x`)‖
≤‖x` − x∗‖2 + (4R+ 1)α` ‖eB`

(x`)‖
(57)

Summing the the both side of (57) from ` = K to ` = K + t− 1 results in

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖ (58)

It follows Lemma 6 that the followng holds with probability at least 1− 1
θ2 ,

∞∑
`=K

α`‖eB`
(x`)‖ ≤

3R2

4(4R+ 1)
. (59)

Thus we have that

‖xK+t − x∗‖2 ≤ ‖xK − x∗‖2 + (4R+ 1)

K+t−1∑
`=K

α` ‖eB`
(x`)‖

≤ ‖xK − x∗‖2 + (4R+ 1)

∞∑
`=K

α`‖eB`
(x`)‖

≤ R2

4
+ (4R+ 1)

3R2

4(4R+ 1)
≤ R2

4
+

3R2

4
≤ R2,

(60)

11



Under review as a conference paper at ICLR 2021

holds with probability at least 1− 1
θ2 , which completes the proof.

Based on the above lemmas, the Lemma 8 below shows if initial iterate of Half-Space Step locates
closely enough to x∗, step size αk polynomially decreases, and mini-batch size Bk polynomially
increases, then x∗ inhabits all subsequent reduced space {Sk}∞k=K constructed in Half-Space Step
with high probability.

Lemma 8. Suppose ‖xK − x∗‖ ≤ R
2 , K ≥ NP , k = K + t, t ∈ Z+, 0 < αk = O(1/(

√
Nt)) ≤

min{ 2(1−ε)
L , 1

L ,
2δ1−R−ε(2δ2+R)

M } and |Bk| = O(t) ≥ N − N
2M . Then for any constant τ ∈ (0, 1),

‖xk − x∗‖ ≤ R with probability at least 1− τ for any k ≥ K.

Proof. It follows Lemma 4 and the assumption of this lemma that x∗ ∈ SK . Moreover, it follows the
assumptions of this lemma, Lemma 6 and 7, the definition of finite-sum f(x) in (1), and the bound of
error as (55) that

P({xk}∞k=K ∈ {x : ‖x− x∗‖ ≤ R}∞) ≥
(

1− 1

θ2

)O(N−K)

≥ 1− τ, (61)

where the last two inequalities comes from that the error vanishing to zero as |Bk| reaches the upper
bound N , and θ is sufficiently large depending on τ and O(N −K).

Corollary 2. Lemma 8 further implies x∗ inhabits all subsequent Sk, i.e., x∗ ∈ Sk for any k ≥ K.

Next, we establish that after finitely number of iterations, HSPG generates sequences that inhabits in
the feasible domain X where Lipschitz continuity of Ψ holds.
Lemma 9. Suppose the assumptions of Lemma 8 hold, then after finite number of iterations, all
subsequent iterates xk ∈ X with high probability.

Proof. It follows Lemma 8 that all subsequent xk satisfying ‖xk − x∗‖ ≤ R with high probability.
Combining with Lemma 3, we have that I 6=0(x∗) ⊆ I 6=0(xk) for all k ≥ K with high probability.
Then for any g ∈ I 6=0(xk), there are two possbilities, either g ∈ I 6=0(x∗) or g ∈ I0(x∗). For the
first case g ∈ I 6=0(x∗)

⋂
I 6=0(xk), it follows the definitions of R as (20) and δ1 as (17) that

‖[xk − x∗]g‖ ≤ ‖xk − x∗‖ ≤ R ≤ δ1
‖[x∗]g‖ − ‖[xk]g‖ ≤ δ1

‖[xk]g‖ ≥ ‖[x∗]g‖ − δ1 ≥ 2δ1 − δ1 = δ1

(62)

For any g ∈ I0(x∗)
⋂
I 6=0(xk), by Algorithm 3, its norm is bounded below by

δ1 ≥ ‖[xk − x∗]g‖ = ‖[xk]g‖ ≥ εt ‖[xK ]g‖ , (63)

where by the Theorem 2 will shown in Appendix C.3, if ‖[xk]g‖ ≤ 2αkδ3
1−ε+αkL

, then [xk+1]g equals to
zero and will be fixed as zero since Algorithm 3 operates on Sk as (3). Note αk = O(1/t), follow-
ing (Karimi et al., 2016, Theorem 4) and (Drusvyatskiy & Lewis, 2018, Theorem 3.2), E[‖[xk]g‖2] =
O(1/t). If ε > 0, then after finite number of iterations O(1/ε2), g ∈ I0(x∗)

⋂
I 6=0(xk) becomes

zero. If ε = 0, note Bk = O(t) and f is finite-sum, then similar result holds by (Gower, 2018,
Theorem 2.3, Theorem 3.2) (f needs further strongly convexity on X̃ ). Hence with high proba-
bility, after finite number of iterations, denoted by T , all subsequent xk, k ≥ K + T inhabits X .
Regarding [xk]g∈I0(x∗)

⋂
I 6=0(xk) for K ≤ k ≤ K + T , note εt ‖[xK ]g‖ is also bounded below by

constant εT ‖[xK ]g‖ > 0 given xK , for similicity, denote the Lipschitz constant of [∇Ψ(xk)]g as L
as well.

12
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We now prove the first main theorem of HSPG, i.e., Theorem 1.

Theorem 1. Suppose f is convex on X̃ , ε ∈
[
0,min{ δ

2
1

δ2
, 2δ1−R

2δ2+R}
)

, ‖xK − x∗‖ < R
2 for some K ≥

NP . Set k := K + t, (t ∈ Z+), step size αk = O( 1√
Nt

) ∈ (0,min{ 2(1−ε)
L , 1

L ,
2δ1−R−ε(2δ2+R)

M }),

and mini-batch size |Bk| = O(t) ≤ N − N
2M . Then for any τ ∈ (0, 1), we have

{xk} converges to some stationary point in expectation with probability at least 1 − τ , i.e.,
P(limk→∞ E [‖ξαk,Bk

(xk)‖] = 0) ≥ 1− τ .

Proof. We know that Algorithm 1 performs an infinite sequence of iterations. It follows Corollary 1
that for any ` ∈ Z+,

E[Ψ(xK)]− E[Ψ(x`+1)] =
∑̀
k=K

{E[Ψ(xk)]− E[Ψ(xk+1)]}

≥
∑

K≤k≤`

(
αk −

α2
kL

2

) ∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
+

∑
K≤k≤`

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 .
(64)

Combining the assumption that Ψ is bounded below and letting `→∞, we obtain∑
k≥K

(
αk −

α2
kL

2

) ∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
+
∑
k≥K

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 <∞ (65)

By Algorithm 3, variables on I0(xk) are fixed during kth Half-Space Step and n is finite, then the
group projection appears finitely many times, consequently,∑

k≥K

(
1− ε
αk
− L

2

) ∑
g∈Ĝk

‖[xk]g‖2 <∞. (66)

Thus (65) implies that∑
k≥K

(
αk −

α2
kL

2

) ∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
(67)

=
∑
k≥K

αk
∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
−
∑
k≥K

α2
k

L

∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
<∞ (68)

Since αk = O(1/(
√
Nt)), then

∑
k≥K αk =∞ and

∑
k≥K α

2
k ≤ ∞. Combining with (67) and the

boundness of ∂Ψ, it implies ∑
k≥K

αk
∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
<∞. (69)

By
∑
k≥K αk =∞ and (69), we have that

lim inf
k≥K

∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
= 0 (70)

then there exists a subsequence K such that

lim
k∈K

∑
g∈G̃k

E
[
‖[∇Ψ(xk)]g‖2

]
= 0 (71)

It follows from the assumptions of this theorem and Lemma 3 to 8 and Corollay 2 that with high
probability at least 1− τ , for each k ≥ K, x∗ inhabits Sk. Note as |Bk| = O(t) linearly increases,
the error of gradient estimate vanishes. Hence, (71) naturally implies that the sequence {xk}k∈K
converges to some stationary point with high probability. And we can extend K to {k : k ≥ K}
due to the non-decreasing distance to optimal solution as shown in the Lemma 8. By the above, we
conclude that

P( lim
k→∞

E [‖ξαk,Bk
(xk)‖] = 0) ≥ 1− τ. (72)
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C.3 PROOF OF THEOREM 2

In this Appendix, we compare the group sparsity identification property of HSPG and Prox-SG. We
first show the generic sparsity identification property of Prox-SG for any mixed `1/`p regularization
for p ≥ 1.

Lemma 10. If ‖xk − x∗‖p′ ≤ min{δ3/L, αkδ3}, where 1/p + 1/p′ = 1 (p′ = ∞ if p = 1), then
the Prox-SG yields that for each g ∈ I0(x∗), [xk+1]g = 0 holds, i.e., I0(x∗) ⊆ I0(xk+1).

Proof. It follows from the reverse triangle inequality, basic norm inequalities, Lipschitz continuity of
∇f(x) and the assumption of this lemma that for any g ∈ G,

‖[∇fBk
(xk)]g‖p′ − ‖[∇fBk

(x∗)]g‖p′ ≤ ‖[∇fBk
(xk)−∇fBk

(x∗)]g‖p′
≤ ‖∇fBk

(xk)−∇fBk
(x∗)‖p′

≤ L ‖xk − x∗‖p′ ≤ L ·
δ3
L

= δ3.

(73)

By (73), we have that for any g ∈ I0(x∗),

‖[∇fBk
(xk)]g‖p′ ≤ ‖[∇fBk

(x∗)]g‖p′ + δ3

≤ λ− 2δ3 + δ3 = λ− δ3
(74)

Combining (74) and the assumption of this lemma, the following holds for any αk > 0 that

‖[xk − αk∇fBk
(xk)]g‖p′ ≤ ‖[xk]g‖p′ + ‖[αk∇fBk

(xk)]g‖p′
≤ αkδ3 + αk(λ− δ3) = αkλ

(75)

which further implies that the Ecludiean projection yields that

ProjEB(‖·‖p′ ,αkλ)([xk − αk∇fBk
(xk)]g) = [xk − αk∇fBk

(xk)]g. (76)

Combining with (76), the fact that proximal operator is the residual of identity operator subtracted by
Euclidean project operator onto the dual norm ball and [xk]g = 0 for any g ∈ I0(x∗) (Chen, 2018),
we have that

[xk+1]g = Proxαkλ‖·‖p([xk − αk∇fBk
(xk)]g)

=
[
I − ProjEB(‖·‖p′ ,αkλ)

]
[xk − αk∇fBk

(xk)]g

= [xk − αk∇fBk
(xk)]g − [xk − αk∇fBk

(xk)]g = 0,

(77)

consequently I0(x∗) ⊆ I0(xk+1), which completes the proof.

Now we establish the group-sparsity identification of HSPG as the restated Theorem 2.

Theorem 2. If k ≥ NP and ‖xk − x∗‖ ≤ 2αkδ3
1−ε+αkL

, then HSPG yields next iterate xk+1 such that
I0(x∗) ⊆ I0(xk+1).

Proof. Suppose ‖xk − x∗‖ ≤ 2αkδ3
1−ε+αkL

. There is nothing to prove if g ∈ I0(x∗)
⋂
I0(xk). For

g ∈ I0(x∗)
⋂
I 6=0(xk), we compute that

[xk − αk∇ΨBk
(xk)]>g [xk]g − ε ‖[xk]g‖2

= ‖[xk]g‖2 − αk[∇ΨBk
(xk)]>g [xk]g − ε ‖[xk]g‖2

=(1− ε) ‖[xk]g‖2 − αk
(

[∇fBk
(xk)]g + λ

[xk]g
‖[xk]g‖

)>
[xk]g

=(1− ε) ‖[xk]g‖2 − αk[∇fBk
(xk)]>g [xk]g − αkλ ‖[xk]g‖

≤(1− ε) ‖[xk]g‖2 + αk ‖[∇fBk
(xk)]g‖ ‖[xk]g‖ − αkλ ‖[xk]g‖

= ‖[xk]g‖ {(1− ε) ‖[xk]g‖+ αk ‖[∇fBk
(xk)]g‖ − αkλ}

(78)
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By the Lipschitz continuity of∇f , we have that for each g ∈ I0(x∗)
⋂
I 6=0(xk),

‖[∇fBk
(xk)−∇fBk

(x∗)]g‖ ≤ L ‖[xk − x∗]g‖ = L ‖[xk]g‖
‖[∇fBk

(xk)]g‖ ≤ L ‖[xk]g‖+ ‖[∇fBk
(x∗)]g‖

(79)

Combining with the definition of δ3, which implies that ‖[∇fBk
(x∗)]g‖ ≤ λ− 2δ3 that

‖[∇fBk
(xk)]g‖ ≤ L ‖[xk]g‖+ λ− 2δ3 (80)

Hence combining with ‖[xk]g‖ ≤ 2αkδ3+ε
1+αkL

, (78) can be further written as

[xk − αk∇ΨBk
(xk)]>g [xk]g − ε ‖[xk]g‖2

≤‖[xk]g‖ {(1− ε) ‖[xk]g‖+ αk ‖[∇fBk
(xk)]g‖ − αkλ}

≤‖[xk]g‖ {(1− ε) ‖[xk]g‖+ αkL ‖[xk]g‖+ αkλ− 2αkδ3 − αkλ}
= ‖[xk]g‖ {(1− ε+ αkL) ‖[xk]g‖ − 2αkδ3}

≤‖[xk]g‖
{

(1− ε+ αkL)
2αkδ3

1− ε+ αkL
− 2αkδ3

}
= ‖[xk]g‖ (2αkδ3 − 2αkδ3) = 0.

(81)

which shows that [xk − αk∇ΨBk
(xk)]>g [xk]g ≤ ε ‖[xk]g‖2. Hence the group projection operator is

trigerred on g to map the variables to zero, then g ∈ I0(xk+1), i.e., [xk+1]g = 0. Therefore, the
group sparsity of x∗ can be successfully identified by Half-Space Step, i.e., I0(x∗) ⊆ I0(xk+1).

In the end, if further assumptions hold, we can further show its group-support recovery.
Corollary 3. Under the assumption of Theorem 2, moreover, if ‖xk − x∗‖ ≤ R, x∗ ∈ Sk, 0 ≤
ε < min

{
δ21
δ2
, 2δ1−R

2δ2+R

}
and αk ≤ 2δ1−R−ε(2δ2+R)

M , then I0(x∗) = I0(xk+1) and I 6=0(xk+1) =

I 6=0(x∗).

Proof. Moreover, besides ‖xk − x∗‖ ≤ 2αkδ3
1−ε+αkL

, suppose ‖xk − x∗‖ ≤ R, x∗ ∈ Sk, 0 ≤ ε <

min
{
δ21
δ2
, 2δ1−R

2δ2+R

}
and αk ≤ 2δ1−R−ε(2δ2+R)

M . Then x∗ ∈ Sk indicates that I 6=0(x∗) ⊆ I 6=0(xk) by

the definition of Sk. It still holds for xk+1 by Lemma 5, i.e., I 6=0(x∗) ⊆ I 6=0(xk+1). Combining
with I0(x∗) ⊆ I0(xk), we have that both group-supports and group sparsity of x∗ are identified
by HSPG, i.e., I 6=0(x∗) = I 6=0(xk+1) and I0(x∗) = I0(xk+1).

C.4 PROOF OF PROPOSITION 2

This result is established under a popular Polyak-Lojasiewicz (PL) condition for non-smooth prob-
lem Li & Li (2018), i.e., there exists a µ > 0 such that for any x ∈ Rn and η > 0,

‖ξη(x)‖2 ≥ 2µ(Ψ(x)−Ψ∗). (82)

We first show that the general PL condition (82) implies a different Proximal PL condition in Karimi
et al. (2016), i.e., there exists a µ > 0 such that

DλΩ(·)(x, η) ≥ 2µ(Ψ(x)−Ψ∗) (83)

where

DλΩ(·)(x, η) = −2η min
y∈Rn

{
∇f(x)>(y − x) +

η

2
‖y − x‖2 + λΩ(y)− λΩ(x)

}
. (84)

Lemma 11. If there exists a µ > 0 such that for all x ∈ Rn

‖ξα(x)‖2 ≥ 2µ(Ψ(x)−Ψ∗), (85)

then for all x ∈ Rn, the DλΩ(·)(x, 1/α) satisfies

DλΩ(·)(x, 1/α) ≥ 2µ(Ψ(x)−Ψ∗). (86)
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Proof. Let ŷ = arg miny

{
∇f(x)>(y − x) + 1

2α ‖y − x‖
2

+ λΩ(y)− λΩ(x)
}

, then

0 ∈ ∇f(x) +
1

α
(ŷ − x) + λ∂Ω(ŷ),

ŷ − x ∈ −α(∇f(x) + λ∂Ω(ŷ)).
(87)

It follows the definition of DλΩ(·)(x, 1/α) that
DλΩ(·)(x, 1/α)

=
−2

α

{
∇f(x)>(ŷ − x) +

1

2α
‖ŷ − x‖2 + λΩ(ŷ)− λΩ(x)

}
∈−2

α

{
−α∇f(x)>(∇f(x) + λ∂Ω(ŷ)) +

1

2α
α2 ‖∇f(x) + λ∂Ω(ŷ)‖2 + λΩ(ŷ)− λΩ(x)

}
=2∇f(x)>(∇f(x) + λ∂Ω(ŷ)) + 2/α(λΩ(x̂)− λΩ(y))− ‖∇f(x) + λ∂Ω(ŷ)‖2

≥2∇f(x)>(∇f(x) + λ∂Ω(ŷ)) + 2/αλ∂Ω(ŷ)>(x− ŷ)− ‖∇f(x) + λ∂Ω(ŷ)‖2

=2∇f(x)>(∇f(x) + λ∂Ω(ŷ)) + λ∂Ω(ŷ)>(∇f(x) + λ∂Ω(ŷ))− ‖∇f(x) + λ∂Ω(ŷ)‖2

=2 ‖∇f(x) + λ∂Ω(ŷ)‖2 − ‖∇f(x) + λ∂Ω(ŷ)‖2

= ‖∇f(x) + λ∂Ω(ŷ)‖2

(88)

On the other hand, the gradient mapping ξα(x) exactly belongs to ∇f(x) + λ∂Ω(ŷ). Consequently,
the following inequality holds

DλΩ(·)(x, 1/α) ≥ ‖ξα(x)‖2 ≥ 2µ(Ψ(x)−Ψ∗) (89)
for any x ∈ Rn by the assumption of this lemma, which completes the proof.

To distinguish these two different PL conditions, we refer the PL condition in (82) as G-PL condition
and the one in (83) as D-PL condition.

We now establish the linear convergence rate of Prox-SG Step under G-PL condition by extend-
ing (Karimi et al., 2016, Theorem 4) from SGD to Prox-SG.
Lemma 12. Suppose Ψ satisfies the G-PL condition (82), we use a constant αk ≡ α < 1

2µ , then we
obtain a linear convergence rate up to a solution level that is proportional to α,

E[Ψ(xk)−Ψ∗] ≤ (1− 2µα)k[Ψ(x0)−Ψ∗] +
LD2α

4µ
(90)

where D is the bound of norm of gradient mapping estimation.

Proof. By using the update rule of Prox-SG shown in the proof of Lemma 2, we have
Ψ(xk+1) = f(xk+1) + λΩ(xk+1)

≤f(xk)− αk∇f(xk)>ξαk,Bk
(xk) +

α2
kL

2
‖ξαk,Bk

(xk)‖2 + λΩ(xk)− αkλv>ξαk,Bk
(xk)

=Ψ(xk)− αk(∇f(xk) + λv)>ξαk,Bk
(xk) +

α2
kL

2
‖ξαk,Bk

(xk)‖2
(91)

holds for any v ∈ ∂Ω(xk+1). Select the v to make ∇f(xk) + λv as ξαk
(xk). (91) can be simplified

as

Ψ(xk+1) ≤ Ψ(xk)− αkξαk
(xk)>ξαk,Bk

(xk) +
α2
kL

2
‖ξαk,Bk

(xk)‖2 (92)

Taking the expectation of both sides with respect to Bk and combining the assumption of this lemma,
we have

E[Ψ(xk+1)] ≤ Ψ(xk)− αkξαk
(xk)>E[ξαk,Bk

(xk)] +
α2
kL

2
E[‖ξαk,Bk

(xk)‖2]

≤ Ψ(xk)− αk ‖ξαk
(xk)‖2 +

α2
kL

2
E[‖ξαk,Bk

(xk)‖2]

≤ Ψ(xk)− 2αkµ(Ψ(xk)−Ψ∗) +
α2
kLM

2

2

(93)
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where M is the bound of norm of gradient mapping estimation which is well defined by Assumption.
Subtracting Ψ∗ from both sides yields:

E[Ψ(xk+1)−Ψ∗] ≤ (1− 2µαk)(Ψ(xk)−Ψ∗) +
α2
kLD

2

2
(94)

Choosing αk ≡ α for any α < 1
2µ and applying (94) recursively yields

E[Ψ(xk+1)−Ψ∗] ≤ (1− 2µα)k(Ψ(x0)−Ψ∗) +
LD2α2

2

k∑
i=0

(1− 2µα)i

≤ (1− 2µα)k(Ψ(x0)−Ψ∗) +
LD2α2

2

∞∑
i=0

(1− 2µα)i

= (1− 2µα)k(Ψ(x0)−Ψ∗) +
LD2α

4µ

(95)

where the last line uses that α < 1
2µ and the limit of the geometric series which completes the

proof.

The highlight idea of Theorem 2 is now presented as follows: if f(x) is convex and satisfies PL
condition like (82), when the step size α is sufficiently small, and the size of mini-batch is sufficiently
large, there exists an upper bound NP such that ‖x− x∗‖ ≤ R/2 can be achieved by employing NP
Prox-SG Steps with high probability.

Proposition 2. Suppose f is convex and Ψ satisfies the PL condition (82). There exist some constants
C > 0, γ ∈ (0, 1/2L), for any fixed τ ∈ (0, 1), if αk ≡ α < min

{
2γµτR2

(2Lγ−1)C ,
1

2µ ,
1
L

}
, and mini-

batch size |Bk| ≡ |B| > 32γµM2

2γµτR2−(2Lγ−1)Cα for any k < NP , then ‖xNP − x∗‖ ≤ R/2 holds
with probability at least 1 − τ , i.e., P(‖xNP − x∗‖ ≤ R/2) ≥ 1 − τ for any NP ≥ K with

K :=
⌈

log (poly(τR2,1/|B|,α)/(Ψ(x0)−Ψ∗))
log (1−2µα)

⌉
, where poly(·) is some polynomial of assembled variables.

Proof of Proposition 2: At first, since Ψ(x) satisfies the G-PL condition (82), it also satisfies D-PL
condition due to Lemma 11. It then follows (Karimi et al., 2016, Appendix G), specifically D-PL
condition implies the Proximal Error Bound that there exists some 1

2L > γ > 0 such that

‖x− x∗‖ ≤ γ ‖ξη(x)‖ (96)

holds for any x ∈ Rn and any η > 0.

For any k ≤ NP , based on Lemma 2, given xk and a random sampled mini-batch Bk, the expected
Euclidean distance square between next iterate xk+1 and the solution x∗ given xk can be computed
as follows

EBk
[‖xk+1 − x∗‖2 |xk]

=EBk
[‖xk − αkξαk,Bk

(xk)− x∗‖2 |xk]

=EBk
[‖xk − x∗‖2 |xk]− 2αk(xk − x∗)>EBk

[ξαk,Bk
(xk)|xk] + α2

kEBk
[‖ξαk,Bk

(xk)‖2 |xk]

= ‖xk − x∗‖2 − 2αk(xk − x∗)>ξαk
(xk) + α2

k{‖EBk
[ξαk,Bk

(xk)|xk]‖2 + EBk
[‖e(xk)‖2 |xk]}

= ‖xk − x∗‖2 − 2αk(xk − x∗)>ξαk
(xk) + α2

k{‖ξαk
(xk)‖2 + EBk

[‖e(xk)‖2 |xk]}
= ‖xk − αkξαk

(xk)− x∗‖2 + α2
kEBk

[‖e(xk)‖2 |xk]
(97)

where the first term ‖xk − αkξαk
(xk)− x∗‖2 is the distance square obtained via starting at xk

followed by doing a proximal full gradient descent step, and the second term α2
kEBk

[‖ek(xk)‖2 |xk]
is the random noise generated from the kth mini-batch stochastic gradient descent step combining
with step size αk.
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To upper bound the first term, notice that for a proximal full gradient descent, it follows Proximal
Error Bound (96), αk ∈ (0, 1/L] and (Drusvyatskiy & Lewis, 2018, Theorem 3.2) that

‖xk − αkξαk
(xk)− x∗‖2 ≤

(
1− 1

2Lγ

)
Ĉ(Ψ(xk)−Ψ∗) (98)

where Ĉ is a constant as 2

L(1−
√

1−(2Lγ)−1)2
. It follows Lemma 12 that if we use a constant step size

αk ≡ α < 1
2µ , we obtain a linear convergence rate up to a solution level that is proportional to α,

E [Ψ(xk)−Ψ∗] ≤ (1− 2µα)k (Ψ(x0)−Ψ∗) +
LM2α

4µ
, (99)

where M is the bound of norm of gradient mapping estimation.

To upper bound the second term, since the norm of gradient mapping is bounded, let Bi be a one-point
mini-batch, by the definition M , then for any x

4M2 ≥ EBi∼Unif[n]

[
‖ξαk,Bk

(x)− ξαk
(x)‖2

]
(100)

By computation, we have

EBk

[
‖e(xk)‖2

∣∣∣∣ xk] ≤ 4M2

|Bk|
, (101)

which gives an upper bound propotion to 1
|Bk| .

Therefore, combining (97), (99), (101) and αk ∈ (0, 1],

E[‖xk+1 − x∗‖2]

=E[‖xk − αkξαk
(xk)− x∗‖2] + α2

kEBk
[‖e(xk)‖2 |xk]

≤
(

1− 1

2Lγ

)
Ĉ

[
(1− 2µα)k (Ψ(x0)−Ψ∗) +

LD2α

4µ

]
+

4M2

|Bk|
.

(102)

Now for any 1 > τ > 0, if the step size α is sufficient small and satisfies

α <
2γµτR2

(2Lγ − 1)ĈD2
, (103)

then
2γµτR2 − (2Lγ − 1)ĈD2α > 0 (104)

Moreover, if mini-batch size is sufficiently large and satisfies

|Bk| >
32γµM2

2γµτR2 − (2Lγ − 1)ĈD2α
(105)

then
τR2

4
− 4M2

|Bk|
−
(

1− 1

2Lγ

)
Ĉ
LD2α

4µ
> 0. (106)

Thus, there exist some well-defined k ≥ 0 such that(
1− 1

2Lγ

)
Ĉ(1− 2µα)k (Ψ(x0)−Ψ∗) ≤ τR2

4
− 4M2

|Bk|
−
(

1− 1

2Lγ

)
Ĉ
LD2α

4µ
(107)

Notice that the right hand side of (107) is a polynomial of τR2, 1/|Bk| and α, and
(

1− 1
2Lγ

)
Ĉ on

the left hand side of (107) is a constant given Ψ. Thus to let (107) hold, k should satisfy

k ≥ K :=

⌈
log (poly(τR2, 1/|Bk|, α)/(Ψ(x0)−Ψ∗))

log (1− 2µα)

⌉
(108)
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where poly(τR2, 1/|Bk|, α) represents a polynomial of τR2, 1/|Bk| and α.

Now, it follows (102) that if (103), (105) and (108) hold, then

E[‖xk+1 − x∗‖2] ≤ τR2

4
, (109)

now combine with Markov inequality that

P
(
‖xk+1 − x∗‖2 ≥

R2

4

)
≤ E[‖xk+1 − x∗‖2]

R2/4
≤ τ. (110)

which indicates the event ‖xk+1 − x∗‖ ≤ R
2 holds with probability at least 1− τ for any k ≥ K.
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D ADDITIONAL NUMERICAL EXPERIMENTS

In this section, we provide additional numerical experiments to (i) demonstrate the validness of
group sparsity identification of HSPG; (ii) provide comprehensive comparison to Prox-SG, RDA and
Prox-SVRG on benchmark convex problems; and (iii) describe more details regarding our non-convex
deep learning experiments shown in the main body.

D.1 LINEAR REGRESSION ON SYNTHETIC DATA

We first numerically validate the proposed HSPG on group sparsity identification by linear regression
problems with `1/`2 regularizations using synthetic data. Consider a data matrix A ∈ RN×n
consisting of N instances and the target variable y ∈ RN , we are interested in the following problem:

minimize
x∈Rn

1

2N
‖Ax− y‖2 + λ

∑
g∈G
‖[x]g‖ . (111)

Our goal is to empirically show that HSPG is able to identify the ground truth zero groups with
synthetic data. We conduct the experiments as follows: (i) generate the data matrix A whose elements
are uniformly distributed among [−1, 1]; (ii) generate a vector x∗ working as the ground truth solution,
where the elements are uniformly distributed among [−1, 1] and the coordinates are equally divided
into 10 groups (|G| = 10); (iii) randomly set a number of groups of x∗ to be 0 according to a
pre-specified group sparsity ratio; (iv) compute the target variable y = Ax∗; (v) solve the above
problem (111) for x with A and y only, and then evaluate the Intersection over Union (IoU) with
respect to the identities of the zero groups between the computed solution estimate x̂ by HSPG and
the ground truth x∗.

We test HSPG on (111) under different problem settings. For a slim matrix A where N ≥ n, we
test with various group sparsity ratios among {0.1, 0.3, 0.5, 0.7, 0.9}, and for a fat matrix A where
N < n, we only test with a certain group sparsity value since a recovery of x∗ requires that the
number of non-zero elements in x∗ is bounded by N . Throughout the experiments, we set λ to be
100/N , the mini-batch size |B| to be 64, step size αk to be 0.1 (constant), and fine-tune ε per problem.
Based on a similar statistical test on objective function stationarity (Zhang et al., 2020), we switch
to Half-Space Step roughly after 30 epoches. Table 1 shows that under each setting, the proposed
HSPG correctly identifies the groups of zeros as indicated by IoU(x̂, x∗) = 1.0, which is a strong
evidence to show the correctness of group sparsity idenfitication of HSPG.

Table 1: Linear regression problem settings and IoU of the recovered solutions by HSPG.

N n Group sparsity ratio of x∗ IoU(x̂, x∗)

Slim A

10000 1000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 2000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 3000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0
10000 4000 {0.1, 0.3, 0.5, 0.7, 0.9} 1.0

Fat A

200 1000 0.9 1.0
300 1000 0.8 1.0
400 1000 0.7 1.0
500 1000 0.6 1.0

D.2 LOGISTIC REGRESSION

We then focus on the benchmark convex logistic regression problem with the mixed `1/`2-
regularization given N examples (d1, l1), · · · , (dN , lN ) where di ∈ Rn and li ∈ {−1, 1} with
the form

minimize
(x;b)∈Rn+1

1

N

N∑
i=1

log(1 + e−li(x
T di+b)) + λ

∑
g∈G

‖[x]g‖ , (112)

for binary classification with a bias b ∈ R. We set the regularization parameter λ as 100/N throughout
the experiments since it yields high sparse solutions and low object value f ’s, equally decompose
the variables into 10 groups to form G, and test problem (112) on 8 standard publicly available
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Figure 1: Relative runtime.

large-scale datasets from LIBSVM repository (Chang & Lin, 2011) as summarized in Table 2. All
convex experiments are conducted on a 64-bit operating system with an Intel(R) Core(TM) i7-7700K
CPU @ 4.20 GHz and 32 GB random-access memory.

We run the solvers with a maximum number of epochs as 60. The mini-batch size |B| is set to
be min{256, d0.01Ne} similarly to (Yang et al., 2019). The step size αk setting follows [Section
4](Xiao & Zhang, 2014). Particularly, we first compute a Lipschitz constant L as maxi ‖di‖2 /4, then
fine tune and select constant αk ≡ α = 1/L to Prox-SG and Prox-SVRG since it exhibits the best
results. For RDA, the step size parameter γ is fined tuned as the one with the best performance among
all powers of 10. For HSPG, we set αk as the same as Prox-SG and Prox-SVRG in practice. We
set NP as 30N/|B| such that Half-Space Step is triggered after employing Prox-SG Step 30 epochs
similarly to Appendix D.1, and the control parameter ε in (5) as 0.05. We select two ε’s as 0 and 0.05.
The final objective value Ψ and f , and group sparsity in the solutions are reported in Table 3-5, where
we mark the best values as bold to facilitate the comparison. Furthermore, Figure 1 plots the relative
runtime of these solvers for each dataset, scaled by the runtime of the most time-consuming solver.

Table 5 shows that our HSPG is definitely the best solver on exploring the group sparsity of the
solutions. In fact, HSPG under ε = 0.05 performs all the best except ijcnn1. Prox-SVRG is the
second best solver on group sparsity exploration, which demonstrates that the variance reduction
techniques works well in convex setting to promote sparsity, but not in non-convex settings. HSPG
under ε = 0 performs much better than Prox-SG which matches the better sparsity recovery property
of HSPG as stated in Theorem 2 even under ε as 0. Moreover, as shown in Table 3 and 4, we
observe that all solvers perform quite competitively in terms of final objective values (round up to 3
decimals) except RDA, which demonstrates that HSPG reaches comparable convergence as Prox-SG
and Prox-SVRG in practice. Finally, Figure 1 indicates that Prox-SG, RDA and HSPG have similar
computational cost to proceed, except Prox-SVRG due to its periodical full gradient computation.

Table 2: Summary of datasets.

Dataset N n Attribute Dataset N n Attribute
a9a 32561 123 binary {0, 1} news20 19996 1355191 unit-length

higgs 11000000 28 real [−3, 41] real-sim 72309 20958 real [0, 1]
ijcnn1 49990 22 real [-1, 1] url combined 2396130 3231961 real [−4, 9]
kdda 8407752 20216830 real [−1, 4] w8a 49749 300 binary {0, 1}

D.3 DEEP LEARNING EXPERIMENTS

We conduct all deep learning experiments on one GeForce GTX 1080 Ti GPU, and describe how
to fine-tune the control parameter ε in (5) in details. According to Theorem 2, a larger ε results in
a faster group sparsity identification, while by Lemma 1 on the other hand too large ε may cause
a significant regression on the target objective Ψ value, i.e., the Ψ value increases a lot. Hence,
in our experiments, from the point of view of optimization, we search a proper ε in the following
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Table 3: Final objective values Ψ for tested algorithms on convex problems.

Dataset Prox-SG RDA Prox-SVRG
HSPG

ε as 0 ε as 0.05

a9a 0.355 0.359 0.355 0.355 0.355
higgs 0.357 0.360 0.365 0.358 0.358
ijcnn1 0.248 0.278 0.248 0.248 0.248
kdda 0.103 0.124 0.103 0.103 0.103

news20 0.538 0.693 0.538 0.538 0.538
real-sim 0.242 0.666 0.244 0.242 0.242

url combined 0.397 0.579 0.391 0.405 0.405
w8a 0.110 0.111 0.112 0.110 0.110

Table 4: Final objective values f for tested algorithms on convex problems.

Dataset Prox-SG RDA Prox-SVRG
HSPG

ε as 0 ε as 0.05

a9a 0.329 0.338 0.329 0.329 0.329
higgs 0.357 0.360 0.365 0.358 0.358
ijcnn1 0.213 0.270 0.213 0.213 0.214
kdda 0.103 0.124 0.103 0.103 0.103

news20 0.373 0.693 0.381 0.372 0.372
real-sim 0.148 0.665 0.159 0.148 0.148

url combined 0.397 0.579 0.391 0.405 0.405
w8a 0.089 0.098 0.091 0.089 0.089

Table 5: Group sparsity for tested algorithms on convex problems.

Dataset Prox-SG RDA Prox-SVRG
HSPG

ε as 0 ε as 0.05

a9a 20% 30% 30% 30% 30%
higgs 0% 10% 0% 0% 30%
ijcnn1 50% 70% 60% 60% 60%
kdda 0% 0% 0% 0% 80%

news20 20% 80% 90% 80% 90%
real-sim 0% 0% 80% 0% 80%

url combined 0% 0% 0% 0% 90%
w8a 0% 0% 0% 0% 0%

ways: start from ε = 0.0 and the models trained by employing NP Prox-SG Steps, incrementally
increase ε by 0.01 and check if the Ψ on the first Half-Space Step has an obvious increase, then
accept the largest ε without regression on Ψ as our fine tuned ε shown in the main body of the paper.
Particularly, the fine tuned ε’s equal to 0.03, 0.05, 0.02 and 0.02 for VGG16 with CIFAR10, VGG16
with Fashion-MNIST, ResNet18 with CIFAR10 and ResNet18 with Fashion-MNIST respectively.
Note from the perspective of different applications, there are different criterions to fine tune ε, i.e.,
for model compression, we may accept ε based on the validation accuracy regression to reach higher
group sparsity.

Additionally, we also report the final f comparison in Table 6 and its evolution on ResNet18
with CIFAR10 in Figure 2, where we can see that all tested algorithms can achieve competitive f
values as they do in convex settings. And the evolution of f is similar to that of Ψ, i.e., the raw
objective f generally monotonically decreases for small ε = 0 to 0.02, and experiences a mild pulse
after switch to Half-Space Step for larger ε, e.g., 0.05, which matches Lemma 1.

Table 6: Final objective values f for tested algorithms on non-convex problems.

Backbone Dataset Prox-SG Prox-SVRG
HSPG

ε as 0 fine tuned ε

VGG16
CIFAR10 0.010 0.036 0.010 0.009

Fashion-MNIST 0.181 0.165 0.181 0.182

ResNet18
CIFAR10 0.001 0.002 0.001 0.004

Fashion-MNIST 0.006 0.008 0.005 0.010

MobileNetV1
CIFAR10 0.021 0.031 0.021 0.031

Fashion-MNIST 0.074 0.057 0.074 0.088
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Figure 2: Evolution of f value on ResNet18 with CIFAR10.
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