
Under review as a conference paper at ICLR 2024

A OVERVIEW

In this supplementary material, we present additional qualitative results for various domains in
Section B. Next, we describe the model architecture for our approach in Section D. Finally, we
include experiment details on training datasets, baselines, training, and inference in Section E.

B ADDITIONAL RESULTS

We first provide additional results on global factor decomposition and recombination in Section B.1.
We then give additional results on object-level decomposition and recombination in Section B.2.
Finally, we provide more results that demonstrate cross-dataset generalization in Section B.3.

B.1 GLOBAL FACTORS

Decomposition and Reconstruction. In Figure XI, we present supplemental image generations that
demonstrate our approach’s ability to capture global factors across different domains, such as human
faces and scene environments. The left side of the figure displays how our method can decompose
images into global factors like facial features, hair color, skin tone, and hair shape, which can be
further composed to reconstruct the input images. On the right, we show additional decomposition
and composition results using Virtual KITTI 2 images. Our method can effectively generate clear,
meaningful global components from input images. In Figure XII, we show decomposition and
composition results on Falcor3D data. Through unsupervised learning, our approach can accurately
discover a set of global factors that include foreground, background, objects, and lighting.

Recombination. Figure XIII showcases our approach’s ability to generate novel image variations
through recombination of inferred concepts. The left-hand side displays results of the recombination
process on Falcor3D data, with variations on lighting intensity, camera position, and lighting position.
On the right-hand side, we demonstrate how facial features and skin tone from one image can be
combined with hair color and hair shape from another image to generate novel human face image
combinations. Our method demonstrates great potential for generating diverse and meaningful image
variations through concept recombination.

B.2 LOCAL FACTORS

Decomposition and Reconstruction. We present additional results for local scene decomposition in
Figure XIV. Our proposed method successfully factorizes images into individual object components,
as demonstrated in both CLEVR (Left) and Tetris (Right) object images. Our approach also enables
the composition of all discovered object components for image reconstruction.

Recombination. We demonstrate the effectiveness of our approach for recombination of local scene
descriptors extracted from multi-object images such as CLEVR and Tetris. As shown in Figure
XV, our method is capable of generating novel combinations of object components by recombining
the extracted components (shown within bounding boxes for easy visualization). Our approach can
effectively generalize across images to produce unseen combinations.

B.3 CROSS DATASET GENERALIZATION

We investigate the recombination of factors inferred from multi-modal datasets, and the combination
of separate factors extracted from distinct models trained on different datasets.

Multi-modal Decomposition and Reconstruction. We further demonstrate our method’s capability
to infer a set of factors from multi-modal datasets, i.e., a dataset that consists of different types of
images. On the left side of Figure XIX, we provide additional results on a multi-modal dataset that
consists of KITTI and Virtual KITTI 2. On the right side, we show more results on a multi-modal
dataset that combines both CelebA-HQ and Anime datasets.

Multi-modal Recombination. In Figure XX, we provide additional recombination results on the
two multi-modal datasets of KITTI and Virtual KITTI 2 on the left hand side of the Figure, and
CelebA-HQ and Anime datasets on the right hand side of the Figure.

14

Under review as a conference paper at ICLR 2024

Facial
features

Input Composition ObjectsInput CompositionHair
color

Color
Temp.

Hair
shape

Shadow Back-
ground

Fore-
ground

Figure XI: Global Factor Decomposition. Global factor decomposition and composition results on CelebA-HQ
and Virtual KITTI 2. Note that we name inferred concepts for easier understanding.

Fore-
ground

Input ResultBack-
ground

Objects Brightness Fore-
ground

Input ResultBack-
ground

Objects Brightness

Figure XII: Global Factor Decomposition. Global factor decomposition and composition results on Falcor3D.
Note that we name inferred concepts for easier understanding.

Recombined Images

Lighting
Intensity

Facial features, Color temp. (Image 1) + Hair color, Hair shape (Image 2)

Image 1 Image 2

Inputs Composition

Camera
Position

Lighting
Position

Inputs Composition

Image 1 Image 2

Figure XIII: Global Factor Recombination. Recombination of inferred factors on Falcor3D and CelebA-HQ
datasets. In Falcor3D (Left), we show image variations by varying inferred factors such as lighting intensity. In
CelebA-HQ (Right), we recombine factors from two different inputs to generate novel face combinations.

Cross Dataset Recombination. We also show more results for factor recombination across two
different models trained on different datasets. In Figure XXI, we combine inferred object components
from a model trained CLEVR images and components from a model trained on CLEVR Toy images.
Our method enables novel recombinations of inferred components from two different models.

C ADDITIONAL EXPERIMENTS

Impact of the Number of Components K. We provide qualitative comparisons on the number of
components K used to train our models in Figure XVI and Figure XVII.

Decomposition Comparisons. We provide qualitative comparisons of decomposed concepts in
Figure XVIII.

15

Under review as a conference paper at ICLR 2024

Object ComponentsInput Composition Object ComponentsInput Composition
Figure XIV: Local Factor Decomposition. Object-level decompositions results on CLEVR (left) and Tetris
(right).

Object Components Composition Object Components Composition Object Components Composition
Figure XV: Local Factor Recombination. Recombination results using object-level factors from different
images.

Input Composition
Figure XVI: Decomp Diffusion trained on Falcor3D dataset with varying number of components K = 3, 4, and
5

16

Under review as a conference paper at ICLR 2024

Input Composition

K
=3

K
=4

K
=5

K
=6

Figure XVII: Decomp Diffusion trained on CelebA-HQ with varying number of components K = 3, 4, 5, and 6

Input Composition

CO
M
ET

Sl
ot
A
ttn

O
ur
s

G
EN
-V
2

Input Composition

Figure XVIII: Qualitative comparisons on CelebA-HQ and VKITTI datasets. Decomposition results on
CelebA-HQ (Left) and Virtual KITTI 2 (Right) on benchmark object representation methods. Compared to our
method, COMET generates noisy components and less accurate reconstructions. SlotAttention may produce
identical components, and it and GENESIS-V2 cannot disentangle global-level concepts.

D MODEL DETAILS

We used the standard U-Net architecture from Ho et al. (2020) as our diffusion model. To condition
on each inferred latent zk, we concatenate the time embedding with encoded latent zk, and use
that as our input conditioning. In our implementation, we use the same embedding dimension
for both time embedding and latent representations. Specifically, we use 256, 256, and 16 as the
embedding dimension for both timesteps and latent representations for CelebA-HQ, Virtual KITTI
2, and Falcor3D, respectively. For datasets CLEVR, CLEVR Toy, and Tetris, we use an embedding
dimension of 64.

To infer latents, we use a ResNet encoder with hidden dimension of 64 for Falcor3D, CelebA-HQ,
Virtual KITTI 2, and Tetris, and hidden dimension of 128 for CLEVR and CLEVR Toy. In the
encoder, we first process images using 3 ResNet Blocks with kernel size 3 ⇥ 3. We downsample
images between each ResBlock and double the channel dimension. Finally, we flatten the processed
residual features and map them to latent vectors of a desired embedding dimension through a linear
layer.

E EXPERIMENT DETAILS

In this section, we first provide dataset details in Section E.1. We then describe training details for
our baseline methods in Section E.2. Finally, we present training and inference details of our method
in Section E.3 and Section E.4.

17

Under review as a conference paper at ICLR 2024

CLEVR CLEVR Toy CelebA-HQ Anime Tetris Falcor3D KITTI Virtual KITTI 2

10K 10K 30K 30K 10K 233K 8K 21K

Table IV: Training dataset sizes.

Input Face
shape

Head
shape

Color
temp.

Facial
details

ResultInput Back-
ground

Bkg.
texture

Objects Fore-
ground

Result

D
at

as
et

 1
D

at
as

et
 2

Figure XIX: Multi-modal Dataset Decomposition. Multi-model decomposition and composition results on
hybrid datasets such as KITTI and Virtual KITTI 2 scenes (Left), and CelebA-HQ and Anime faces (Right).
The top 2 images are of the first dataset, and the bottom 2 images are of the second dataset. Inferred concepts are
named for better understanding.

Head shape, Color temperature (Image 1)
+ Face shape, Facial details (Image 2)

Background, Background texture (Image 1)
+ Foreground, Objects (Image 2)

In
pu

t 1
In

pu
t 2

Re
su

lt

Figure XX: Multi-modal Dataset Recombination. Recombinations of inferred factors from hybrid datasets.
We recombine different extracted factors to generate unique compositions of KITTI and Virtual KITTI 2 scenes
(Left), and compositions of CelebA-HQ and Anime faces (Right).

Object 1
(Dataset 1)
+ Object 2
(Dataset 2)
+ Object 3
(Dataset 1)
+ Object 4
(Dataset 2)

Dataset 1 Dataset 2

Inputs Composition Inputs Composition

Dataset 1 Dataset 2

Inputs Composition

Dataset 1 Dataset 2

Figure XXI: Cross Dataset Recombination. We further showcase our method’s ability to recombine across
datasets using 2 different models that train on CLEVR and CLEVR Toy, respectively. We compose inferred
factors as shown in the bounding box from two different modalites to generate unseen compositions.

E.1 DATASET DETAILS

Our training approach varies depending on the dataset used. Specifically, we utilize a resolution of
32⇥ 32 for Tetris images, while for other datasets, we use 64⇥ 64 images. The size of our training
dataset is presented in Table IV and typically includes all available images unless specified otherwise.

Anime. (Branwen et al., 2019) When creating the multi-modal faces dataset, we combined a 30, 000
cropped Anime face images with 30, 000 CelebA-HQ images.

18

Under review as a conference paper at ICLR 2024

Tetris. (Greff et al., 2019) We used a smaller subset of 10K images in training, due to the simplicity
of the dataset.

KITTI. (Geiger et al., 2012) We used 8, 008 images from a scenario in the the Stereo Evaluation
2012 benchmark in our training.

Virtual KITTI 2. (Cabon et al., 2020) We used 21, 260 images from a setting in different camera
positions and weather conditions.

E.2 BASELINES

Info-GAN (Chen et al., 2016). We train Info-GAN using the default training settings from the
official codebase at https://github.com/openai/InfoGAN.

�-VAE (Higgins et al., 2017). We utilize an unofficial codebase to train �-VAE on all datasets til
the model converges. We use � = 4 and 64 for the dimension of latent z. We use the codebase in
https://github.com/1Konny/Beta-VAE.

MONet (Burgess et al., 2019). We use an existing codebase to train MONet models on all datasets
until models converge, where we specifically use 4 slots, and 64 for the dimension of latent z. We
use the codebase in https://github.com/baudm/MONet-pytorch.

COMET (Du et al., 2021a). We use the official codebase to train COMET models on various
datasets, with a default setting that utilizes 64 as the dimension for the latent variable z. Each
model is trained until convergence over a period of 100, 000 iterations. We use the codebase in
https://github.com/yilundu/comet.

SlotAttention (Locatello et al., 2020b). We use an existing PyTorch implementation to train
SlotAttention from https://github.com/evelinehong/slot-attention-pytorch .

GENESIS-V2 (Engelcke et al., 2021b). We train GENESIS-V2 using the default training settings
from the official codebase at https://github.com/applied-ai-lab/genesis .

E.3 TRAINING DETAILS

We used standard denoising training to train our denoising networks, with 1000 diffusion steps and
squared cosine beta schedule. In our implementation, the denoising network ✏✓ is trained to directly
predict the original image x0, since we show this leads to better performance due to the similarity
between our training objective and autoencoder training.

To train our diffusion model that conditions on inferred latents zk, we first utilize the latent encoder to
encode input images into features that are further split into a set of latent representations {z1, . . . , zK}.
For each input image, we then train our model conditioned on each decomposed latent factor zk
using standard denoising loss.

Each model is trained for 24 hours on an NVIDIA V100 32GB machine or an NVIDIA GeForce
RTX 2080 24GB machine. We use a batch size of 32 when training.

E.4 INFERENCE DETAILS

When generating images, we use DDIM with 50 steps for faster image generation.

Decomposition. To decompose an image x, we first pass it into the latent encoder Enc✓ to extract out
latents {z1, · · · , zK}. For each latent zk, we generate an image corresponding to that component by
running the image generation algorithm on zk.

Reconstruction. To reconstruct an image x given latents {z1, · · · , zK}, in the denoising process,
we predict ✏ by averaging the model outputs conditioned on each individual zk. The final result is a
denoised image which incorporates all inferred components, i.e., reconstructs the image.

Recombination. To recombine images x and x0, we recombine their latents {z1, · · · , zK} and
{z0

1, · · · , z0
K}. We select the desired latents from each image and condition on them in the image

generation process, i.e., predict ✏ in the denoising process by averaging the model outputs conditioned
on each individual latent.

19

https://github.com/openai/InfoGAN
https://github.com/1Konny/Beta-VAE
https://github.com/baudm/MONet-pytorch
https://github.com/yilundu/comet
https://github.com/evelinehong/slot-attention-pytorch
https://github.com/applied-ai-lab/genesis

Under review as a conference paper at ICLR 2024

To additively combine images x and x0 so that the result has all components from both images, e.g.,
combining two images with 4 objects to generate an image with 8 objects, we modify the generation
procedure. In the denoising process, we assign the predicted ✏ to be the average over all 2 ⇥ K
model outputs conditioned on individual latents in {z1, · · · , zK} and {z0

1, · · · , z0
K}. This results in

an image with all components from both input images.

20

