
Anomaly Detection in Continuous-Time Temporal
Provenance Graphs

Jakub Reha∗
University of Amsterdam

j.reha@uva.nl

Giulio Lovisotto
Huawei Munich Research Center
giulio.lovisotto@huawei.com

Michele Russo
Huawei Munich Research Center
michele.russo@huawei.com

Alessio Gravina*

University of Pisa
alessio.gravina@phd.unipi.it

Claas Grohnfeldt
Huawei Munich Research Center
claas.grohnfeldt@huawei.com

Abstract

Recent advances in Graph Neural Networks (GNNs) have matured the field of
learning on graphs, making GNNs essential for prediction tasks in complex, in-
terconnected, and evolving systems. In this paper, we focus on self-supervised,
inductive learning for continuous-time dynamic graphs. Without compromising
generality, we propose an approach to learn representations and mine anomalies in
provenance graphs, which are a form of large-scale, heterogeneous, attributed, and
continuous-time dynamic graphs used in the cybersecurity domain, syntactically
resembling complex temporal knowledge graphs. We modify the Temporal Graph
Network (TGN) framework to heterogeneous input data and directed edges, refining
it specifically for inductive learning on provenance graphs. We present and release
two pioneering large-scale, continuous-time temporal, heterogeneous, attributed
benchmark graph datasets. The datasets incorporate expert-labeled anomalies, pro-
moting subsequent research on representation learning and anomaly detection on
intricate real-world networks. Comprehensive experimental analyses of modules,
datasets, and baselines underscore the effectiveness of TGN-based inductive learn-
ing, affirming its practical utility in identifying semantically significant anomalies
in real-world systems.

1 Introduction

Recent advancements in research on Graph Neural Networks (GNNs) and increasing efforts by
practitioners to solve real-world problems using GNNs across domains have furthered the applicability
of GNN-based approaches to solving prediction tasks on interconnected data [1]. Most research
on graph learning has been devoted to static graphs to date. Conversely, exploring dynamic graphs
is less prevalent, arguably attributable to the scarcity of public datasets supportive of this line of
research [2, 3]. However, most real-world networks are inherently dynamic, continuously evolving
over time, necessitating a shift of focus toward dynamic graphs. Early approaches to learning on
dynamic graphs used discrete-time temporal graph representations, where the underlying system
is modeled as a sequence of regularly timestamped graphs (snapshots). Such representation is

∗Work done while at Huawei Technologies.

Temporal Graph Learning Workshop @ NeurIPS 2023, New Orleans.

sub-optimal, as it incurs in the loss of edge-level granularity of temporal information, naturally
present in real-world systems [4]. A more general approach to modeling dynamic networks is to use
continuous-time temporal graph representations, commonly derived from sequences or streams of
irregularly timestamped events which correspond to operations on the graph [5].

Despite the natural heterogeneity often encountered in real-world dynamic systems, a large corpus of
recent literature on temporal graph learning is still limited to homogeneous graph representations
not explicitly accounting for types of nodes or edges [6]. However, due to the growing interest and
recent advances in the area of knowledge graphs, which are generally heterogeneous, progress has
been made also in the domain of representation learning for temporal knowledge graphs [7, 8]. Yet,
to the best of our knowledge, there exists no public representative dataset of a real-world continuous-
time temporal and heterogeneous network to date, which contains edge-level temporal information
rather than regular timestamps on snapshots of graphs [9], and which would support explorative and
comparative research in this area.

In real-world systems represented as heterogeneous, continuous-time dynamic graphs, data is often
collected as a stream of events with previously unseen entities and relationships occurring frequently.
In this case, the learning approach must be inductive rather than transductive [4, 10]. In this realm, the
Temporal Graph Network (TGN) has been one of the foundational frameworks allowing for inductive
self-supervised learning on continuous-time dynamic graphs [11]. Nevertheless, despite the generality
of its formulation, TGN has not yet been tailored to accommodate the inherent heterogeneity of
real-world graphs to the best of our knowledge.

Anomaly detection, particularly in dynamic graphs, is a critical component of network analysis, with
applications in fault detection, abuse detection, fraud detection, and intrusion detection [12, 13].
However, leveraging inductive graph learning-based approaches for graph anomaly detection remains
unexplored, arguably due to the lack of representative datasets with labeled anomalies.

In this paper, we address the research gaps above by presenting an approach to self-supervised, induc-
tive learning for heterogeneous, continuous-time dynamic graphs and its application to graph anomaly
detection. We introduce and showcase the effectiveness of our method by learning representations
and mining anomalies in provenance graphs, which are a form of large-scale, heterogeneous, at-
tributed, and continuous-time dynamic graphs capturing various types of causal relationships between
typed entities [14]. Provenance graphs have become particularly prevalent for anomaly-based threat
detection and root cause analysis in the domain of cybersecurity recently [13].

In this paper, we make the following contributions:

• We pioneer inductive graph representation learning for provenance graphs, modeled as continuous-
time temporal, directed, attributed, and heterogeneous graphs. Here, we leverage the self-
supervised learning task of link prediction to learn node representations and detect cyber threats
as edge-level graph anomalies.

• We introduce two heterogeneous, attributed, continuous-time temporal graph benchmark datasets
with expert-labeled anomalies corresponding to cyber threats. We make these available online.

• We adapt the TGN architecture to the heterogeneous setting and explicitly extend it to capture
edge directionality information. We conduct extensive experimental analyses of the method’s
components and our extensions, including memory usage, edge directionality, and heterogeneity.

We release datasets and source code implementing the considered methods online2.

2 Preliminaries

2.1 Static Heterogeneous Graphs

Static heterogeneous graphs, also known as Heterogeneous Information Networks (HINs) [16], can
be described as a set of vertices and edges, G = (V, E) with E ⊆ V × V , which are associated with a
vertex type mapping function ϕ : V → T and an edge type mapping function ψ : E → R, where
V is the set of n nodes, T is the set of node types and R the set of relationship types. Nodes and
edges are also equipped with features, which are denoted xi ∈ Rdv and eij ∈ Rde respectively,
where i, j ∈ V . For undirected graphs, where an edge can be represented as a set {j, i} we define the

2https://github.com/JakubReha/ProvCTDG/

2

17.146.0.252 : 80

146.153.68.151 : 80

/dev/urandom

162.66.239.75 : 80

128.55.12.73 : X

128.55.12.73 : X

128.55.12.73 : X

firefox/usr/lib/x86_64-linux-gnu/libc.so

/usr/lib/x86_64-linux-gnu/libc.so.6

/usr/lib/x86_64-linux-gnu/libpthread.so.0

/proc/43/stat

/proc/44/stat

/proc/2423/stat

/etc/passwd

/etc/firefox/native-messaging-hosts/gtcache

/etc/firefox/native-messaging-hosts/passwordfile.dat

gtcache

sh

sh

61.130.69.232 : 80

/tmp/ztmp

...

162.66.239.75 : 80

162.66.239.75 : 80...

Process

Socket

File

...

Connect, Send, ReceiveRead

Create, Write

Read

Read

Read

C
on

ne
ct

, S
en

d,
 R

ec
ei

ve

Create, Delete

Execve

Clone

Clone

Execve

Clone

Execve

Execve

Execve

Execve

Execve

Load

Load

Clone

C
lo

ne

C
lo

ne

Clone

Clone

Read

Read

C
on

ne
ct

,

S
en

d,
 R

ec
ei

ve

Figure 1: A snapshot view of a provenance (sub)graph, created from a stream of timestamped edges
derived from endpoint logs collected on a single computer over 10 minutes. Malicious (anomalous)
edges associated with a Browser Extension attack [15] are colored red, while benign (normal) edges
are shown as dashed green lines. Node attributes and edge timestamps are omitted, and parallel edges
are summarized for clarity.

neighborhood of i as Ni = {j : {i, j} ∈ E} [17]. In the case of a directed graph, the neighborhood
of i is Ni = {j : (j, i) ∈ E}. Unless stated otherwise, we consider the undirected neighborhood. In
this paper, the word vertex and node are used interchangeably, as well as the words edge and link.

2.2 Continuous-Time Dynamic Heterogeneous Graphs

We refer to our settings and data types as Continuous-Time Dynamic Graphs (CTDGs) [2]. Instead of
operating with periodic graph snapshots (i.e., Discrete-TDGs), we work with a stream of timestamped
events. Given such conditions, we extend the definition of CTDGs to heterogeneous graphs. We
define a Continuous-Time Dynamic Heterogeneous Graph (CTDHG) G as a sequence of events

G = {(i, r, j, t, e) : i, j ∈ V(t), r ∈ R}, (1)

where each event (i, r, j, t, e) identifies the addition of an edge of type r between nodes i and j at time
t. Each event also comprises a feature vector, e, which defines the state associated with the current
event. Notably, the set of nodes is a function of time, thus, V(t) retrieves the set of nodes observed
up to and including time t. Despite the dynamic setting, R remains the set of relationship types,
and nodes remain assigned features, xi, and types, τi ∈ T . Note that in our setting the mappings
between nodes and their types (i −→ τi) as well as nodes and their features (i −→ xi) are unique, i.e.,
nodes always appear with the same type and features. Also note that the graph defined in Eq. 1 is
directed, and that since edges between pairs of nodes can re-occur this describes a multi-graph. We
define the (undirected) temporal neighborhoods of node i at time T analogously to the static case
Ni(T) = {j : {j, r, i, t} ∈ G, t < T}. Note that CTDHG can be converted into a HIN by discarding
temporal information and subsequently removing duplicate edges with the same type and direction.

2.3 Temporal Link Prediction for Anomaly Detection

In graph learning, temporal link prediction is a common downstream task, with the goal to predict
existence of edges at specific timestamps. Formally, the temporal link prediction task can be
seen as learning a function that maps node pairs and time (i.e., an edge, ϵ) into a probability of
existence: f(ϵ) : V × V × R+ → [0, 1]. Note that in CTDHG, edge types R are also part of the
input domain. In practice, given that datasets only contain the so called positive edges (i.e. edges
that have actually occurred), link prediction is formulated as a self-supervised task with the use of
negative sampling [18]. Negative sampling samples one negative edge ϵ̄ = (i, k, t) per positive edge
ϵ = (i, j, t), where the link between i and k was not observed at time t. In reference to Eq. 1, where
the positive edges constitute the temporal graph G, the negatively sampled edges constitute a negative
(unobserved) temporal graph:

Ḡ = {(i, k, t) : (i, k, t) /∈ G}. (2)
G and Ḡ are used to optimize parametric models fθ by minimizing a binary classification loss L:

argminθ L (fθ(G), 1) + L
(
fθ(Ḡ), 0

)
. (3)

Models trained with such self-supervised loss should associate lower probability of occurrence to
edges based on their abnormality; hence one application of such models is the detection of anomalous

3

0 40 80 120 160 200 240
Hours

50k

100k

150k

200k

Nu
m

be
r o

f e
dg

es Repeated New

(a) TRACE, TEA plot.

0 40 80 120 160 200 240
Hours

50k

100k

150k

200k

Nu
m

be
r o

f e
dg

es

(b) THEIA, TEA plot.

0 40 80 120 160 200 240
Hours

50k

100k

150k

200k

Nu
m

be
r o

f e
dg

es Repeated Seen-Unseen Unseen-Unseen

(c) TRACE, TEAn plot.

0 40 80 120 160 200 240
Hours

50k

100k

150k

200k

Nu
m

be
r o

f e
dg

es

(d) THEIA, TEAn plot.

(new)

(new, larger)

(e) Temporal datasets comparison.

Figure 2: THEIA and TRACE TEA plots (Fig. 2b and 2a), TEAn plot (Fig. 2d and 2c) and comparison
with other temporal datasets across size, reoccurrence and surprise [19] (Fig. 2e). THEIA and TRACE
present challenging properties of high novelty and low reoccurrence. For histograms, we discretize
the continuous time in 2-hours bins and show the train/test split with a vertical line.

edges. The assumption behind this use-case is that the loss of Eq. 3 is a good proxy for the objective
of finding anomalous edges. Nevertheless, analyzing the correspondence between raw performance
and actual detection rate of anomalies is often impossible due to the lack of labeled anomalous edges.
To enable such investigation, we introduce two new datasets with expert-labeled anomalies (see
Sec. 3) and we evaluate using two separate tasks and metrics (see Sec. 5.2).

3 Provenance Graphs

Given the scarcity of available public temporal graphs [19], we identify a new suitable dynamic data
source: system-level data provenance graphs. Provenance graphs describe the history of an operating
system’s execution [20]: these can be collected by software (i.e., audit loggers) which attaches to the
OS’s kernel to record low-level system calls. In provenance graphs, processes are the main actors as
they interact with other entities. For example, when a process /usr/bin/vim opens a file /etc/hosts,
this results in a directed, labeled (read), attributed and timestamped edge /etc/hosts −→ /usr/bin/vim.
Here, read identifies the edge type, and both nodes are also associated with types (most commonly
File, Process and Socket) - matching the description of CTDHG (Eq. 1). The edge direction indicates
the direction of the information flow. See an example provenance graph in Fig. 1.

3.1 Anomaly Detection in Provenance Graphs

Provenance graphs are being widely used in threat detection research [21, 22, 23, 24, 25, 26, 27, 28]
with the goal of identifying malicious activities on hosts which may originate from malware. The
rationale is that a model can learn the benign behavior of such graphs as they evolve over time,
with malicious behavior being associated with anomalies in this evolution. Streamspot [24], one of
the earliest works in this direction, monitors edges in a streaming fashion, constructs (sub-)graph
sketches periodically and detects anomalous graphs by comparing new graphs to old known clusters.

Several works followed, but many present limitations. Some methods discard temporal informa-
tion [22, 28, 29, 21], which leads to sub-optimal modelling. Many methods cannot operate in the
inductive setting, only in the transductive one [27, 28, 29, 21]: this leads to delays in the early
detection of anomalies which may be crucial in order to stop a system from being compromised.
Lastly, considering the large amounts of provenance data, most methods trade off computational
efficiency the capability of pinpointing indicators of attacks at the entity- or edge-level. To do so,
many approaches choose to detect anomalies at coarse granularity levels such as graph snapshots
constructed over predefined time periods or from a fixed number of logs [24, 26, 30, 23]. Such
methods have limited usefulness for security analysts due to the necessity of identifying event-level
threat indicators manually. We explain how our method addresses these challenges in Sec. 4.

4

3.2 DARPA Datasets

We introduce two datasets constructed from the audit logs collection made by DARPA Engagement
3 [15], namely THEIA and TRACE. Each dataset contains audit data from a host for a period of two
weeks, and contains both benign and malicious activities; the latter carried out by a red team. We
detail the dataset pre-processing, feature extraction, data splits, and ground truth labeling in App. A.
Here, we analyze the datasets temporally evolving patterns, using the insights provided in [19].

Table 1: Statistics of the DARPA E3 datasets. Cybersecurity experts
labelled individual edges as malicious or benign using information on the
execution of the malicious activities. |T | is the number of node types, |R|
the number of relationship types. We extract 18 node features for Sockets,
23 for Files and 21 for Processes. THEIA and TRACE, respectively, are
collected over a timespan of 247h and 264h, leading to 1.8M and 2.8M
unique timestamps. See Appendix A for complete details.

Dataset Nodes Edges Unq. Edges Malic. Edges |T | |R|
THEIA 1,043k 8,416k 3,982k 211 3 8
TRACE 3,926k 10,102k 6,663k 262 3 10

TEA visualizations. We use
the Temporal Edge Appear-
ance plot, TEA [19], to illus-
trate the portion of repeated
edges versus newly observed
edges for each timestamp;
TEA plots for are shown in
Fig. 2b and 2a. The plots high-
light how the datasets have an
extremely high ratio of novel
edges in each timestamp ver-
sus the number of repeated
edges. While the TEA plots
show that there is only little

repetition of edges, it is more descriptive to consider whether the novel edge occurs between two
previously unseen nodes (Unseen-Unseen) or one seen and one unseen node (Seen-Unseen). These
two distributions are more indicative when considering whether memorizing past occurrences can
capture information useful for solving the link prediction task. In light of this, we introduce a new
plot, named TEAn , which extends the original link-centric TEA plot to include a node-centric
perspective with the Seen/Unseen differences; we report the TEAn plots for TRACE and THEIA
in Fig. 2d and 2c. As shown in the figures, while the overwhelming majority of edges are novel,
the larger part of the novel edges belong to the Seen-Unseen distribution in which one of the two
nodeshas been observed before. This indicates that historical information might still be beneficial for
learning on the link prediction task.

Comparison to existing temporal graph datasets. To highlight the value of the datasets, we compare
them with the set of temporal graph datasets presented in [19]. We use two metrics introduced in the
same paper: (i) the reoccurrence index, i.e., the ratio between the number of edges that occur both in
train- and testset versus the number of edges in the trainset, and (ii) the surprise index i.e., the ratio
between the number of edges that occur in the test- and not in trainset versus the number of edges in
the testset. Intuitively, the process of memorization, or remembering past edges, is most effective
when reoccurrence is high and surprise is low [19]. On the other hand, memorization is less helpful
and therefore the task becomes harder when reoccurrence is low and surprise is high. We plot these
two indexes together with the sizes of the datasets measured as |V|+|E| in Fig. 2e, showing how the
DARPA datasets present a more challenging real-world setting for temporal graph learning.

4 Method

The method used addresses temporal and heterogeneous data types, focusing on the inductive setting
and obtaining fine-grained predictions on single events. We adopt and evaluate the general TGN
[11] framework for CTDGs (more details are provided in App. B) and extend it to the heterogeneous
(CTDHG) setting. We train TGN for the link prediction task, producing a fixed-size representation
for every node it encounters at each time t. The output of the link prediction is then used for the
downstream task of anomaly detection.

4.1 Encoding Edge Directionality

While TGN encodes the directionality of edges when computing messages to update node memories
(see Eq. 4), the model does not account for directionality during the creation of node neighborhoods,
i.e., the neighborhood is undirected. Given repeated evidence that directionality is beneficial for
learning [31, 32], we encode the direction of edges with two encoding variations:

5

• OHD-TGN: we learn one embedding per edge direction and we sum it to edge features êij .
• DIR-TGN: in the graph convolution we encode incoming or outgoing edges with two separate

embedding layers W(in)
e and W

(out)
e rather than the single We in Eq. 8 and Eq. 9.

4.2 Encoding Heterogeneous Information

We extend TGN to model the heterogeneous cases presented by our datasets. We do so by learning
an embedding per node and edge type, and concatenating it to the existing edge and node features
(i.e., eij and xi); we refer to this model as TGN. As this is a straightforward extension which might
not be sufficient to capture complex relationships across types, we introduce two approaches to allow
TGN to better model heterogeneous data:
• Hetero-TGN: heterogeneous TGN. Inspired by [33], we use separate transformer convolutions

per type triplet (τi, rk, τj) ∈ T ×R× T , each triplet identifies the convolution used. In practice,
we learn one set of the MLPs in Eq. 8 and Eq. 9 per triplet, with the triplet uniquely identifying the
set of MLPs used for a sample. Note that, as in [33], we consider R to contain both relations in the
forward and in the backward direction (e.g. opens and is opened). Per-triplet node embeddings are
summed to produce final node embeddings.

• HGT-TGN: heterogeneous graph transformer (HGT) TGN. To enable message passing and atten-
tion across triplet types we replace the graph convolution specified in Eq. 8 with the heterogenous
convolution introduced in [34]. To account for edge features, we adapt HGT by concatenating edge
representations to the messages computed on node pairs, such edge representation is shared across
the attention heads. We describe the obtained message passing layer in more detail in App. B.2.

We evaluate TGN and its extensions in Sec. 5.2.

5 Experiments

5.1 Experimental Setting

We introduce static (i.e., non-temporal) baselines to compare to our methods, as the static setting
resembles the one in other provenance graph anomaly detection works [21, 28, 22]. To allow for the
comparison, we create a static graph from the CTDHGs by converting them into HINs i.e., dropping
temporal information and parallel edges. We choose three baselines: a multi-layer perceptron (MLP),
the attentive graph convolution proposed in [35] (i.e., GAT), and the heterogeneous graph convolution
proposed in [33] (i.e., RGCN). We note that both MLP and GAT include a latent representation of
the encoded node and edge types (learned with an embedding layer) as part of the input node/edge
features, RGCN deals with heterogeneous data by default. Moreover, for the graph convolutions, we
aggregate the information as coming from an undirected neighborhood, as for Hetero-TGN.

To train models, we add an MLP head on top of node embeddings to predict the probability of edge
existance. GRU is used as the mem function in Eq. 6. Where applicable, we conduct ablations where
we consider models that operate without node and edge features, identified by †, without memory,
identified by §, or without both (†§). We conduct the experiments on a CPU cluster equipped with
240 Intel(R) Xeon(R) CPU E5-2658A v3@2.20GHz. Results are averaged over five separate runs.

We employ a type-aware negative sampling strategy, where for each positive sample we only replace
the destination node (not the edge type) with a random sample of the same node type, with the ratio
1:1. We also do the following: (1) during training we sample negative destinations only from nodes
that appear in the trainset, (2) during validation we sample them from nodes that appear in trainset or
validation set and (3) during testing we sample them from the entire node set.

Since our goal is to evaluate methods both on on temporal link prediction task and on the detection of
anomalous edges, we introduce two metrics. For clarity, following Sec. 2.3, we identify three sets
of edges leading to three temporal graphs: the positive edges G (i.e., Eq. 1), the negative sampled
edges Ḡ (see Eq. 2), and the subset of observed anomalous edges which were labelled by experts in
the datasets gA ⊆ G. For temporal link prediction, we compute area under the ROC curve (AuCLP)
on all positive non-anomalous edges and negative edges G \ gA ∪ Ḡ. For the anomaly detection task,
we only use the events in G which contain both benign and malicious edges, and compute AuCAD. To
contextualize the detection results, we use true positive rates (TPRAD) and false positive rates (FPRAD)
obtained at a specific decision threshold τ (see Tab. 4 in App. B.3 for reference).

6

0.00 0.25 0.50 0.75 1.00
Anomaly score

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
co

un
ts

 FPRAD : 3.0%
 TPRAD : 47.6%

Malicious
Benign
Threshold

(a) TRACE, Anomaly score histogram.
Counts are normalized per label.

0.00 0.25 0.50 0.75 1.00
Anomaly score

0.0

0.2

0.4

0.6

0.8

1.0

No
rm

al
ize

d
co

un
ts

 FPRAD : 2.2%
 TPRAD : 42.4%

Malicious
Benign
Threshold

(b) THEIA, Anomaly score histogram.
Counts are normalized per label.

50 60 70 80 90 100
AuCLP

50

60

70

80

90

100

Au
C A

D

TRACE, r = 0.90 (= 6e-05)
THEIA, r = 0.94 (= 8e-06)
Static baselines
TGN-based

(c) Correlation between AuCLP and AuCAD . Here r
refers to Pearson’s r and ρ to its p-value.

Figure 3: Results analysis. The anomaly score is computed as 1-fθ(ϵ), fθ(ϵ) being the model output.

5.2 Results

Link Prediction Tab. 2 presents the results on the link prediction task (AuCLP). Temporal models
outperform the static baselines on both datasets. We notice the benefit brought by node features:
models using features (MLP and TGN) outperforms their feature-less (†) counterparts. For the
memory part of TGN, we see large improvements when memory is present in the feature-less models
(TGN†§ vs TGN†). Nevertheless, such gain is almost nullified in the models that use features
(TGN§, TGN). Note that the memory-less TGN§ is equivalent to TGAT [4]. We hypothesize that
in provenance graphs, while memory might still be important in rare causal sequences, informative
features compensate for lack of memory and enable models to learn normal behavior.

Table 2: AuCLP and AuCAD for the two datasets. Blue marks the best
performing model, Orange the second best. Models marked by † do
not use node features and models marked by § do not use memory.

Benchmark TRACE THEIA
Metric AuCLP AuCAD AuCLP AuCAD

MLP† 50.0±0.0 50.0±0.0 50.0±0.0 50.0±0.0

MLP 70.6±0.4 77.6±1.3 70.7±0.4 66.3±2.6

GAT 80.6±7.7 67.9±14.5 69.1±4.3 51.0±12.8

RGCN 88.6±0.8 69.4±6.6 71.9±1.8 51.5±16.5

TGN†§ (TGAT†) 91.1±1.1 80.8±0.7 88.2±0.6 73.6±1.2

TGN† 97.2±0.3 86.4±1.9 92.4±1.8 80.3±2.8

TGN§ (TGAT) 99.1±0.1 88.0±1.2 96.4±0.2 85.0±2.2

TGN 99.1±0.1 85.3±1.5 96.9±0.1 83.5±1.0

OHD-TGN 98.4±0.2 85.5±1.4 96.9±0.2 86.9±2.5

DIR-TGN 98.7±0.3 85.1±1.0 96.6±0.2 83.3±1.9

Hetero-TGN 98.3±0.2 86.0±0.5 96.8±0.3 85.4±2.8

HGT-TGN 97.1±0.3 87.6±0.8 91.6±0.5 77.1±4.6

In general, the results show
that providing further di-
rectionality information to
TGN does not bring any
benefit. This suggests that
encoding edge direction in
the messages (Eq. 4) is suf-
ficient for learning. Look-
ing at the static baselines re-
sults, we find that RGCN
with a single layer outper-
forms GAT with two layers,
suggesting that explicitly
modelling the heterogene-
ity in the model architecture
has a beneficial effect. How-
ever, this is not the case for
TGN, where simple learned
encoding of heterogeneity
(TGN, TGN§) brings rather

consistent performance improvements compared to the heterogeneous models Hetero-TGN and
HGT-TGN. This implies that temporal information compensates for the heterogeneous information.
Results on heterogeneous models suggest that the additional complexity and computational cost
incurred when modeling different types is not justified by performance gains, see Tab. 6 in App. B.3.

Anomaly Detection Tab. 2 also presents the anomaly detection results (AuCAD). Temporal methods
outperform static baselines, and extensions of TGN bring negligible improvements. Interestingly,
TGN without memory (TGN§) outperforms TGN. We do not find clear winners across the results in
Tab. 2, with OHD-TGN outperforming baseline TGN on THEIA, and HGT-TGN also outperforming
TGN on TRACE, but improvements being inconsistent across the two datasets.

To investigate further the connection between the link prediction and anomaly detection task (see
Sec. 2.3), we look at the correlation between the link prediction metric (AuCLP) and the anomaly
detection metric (AuCAD), see Fig. 3c. The figure shows strong correlation between the two tasks,

7

confirming the intuition that malicious edges indeed correspond to anomalies in our data and link
prediction with negative sampling is an effective optimization strategy for the detection such anoma-
lies. Although, more negative sampling strategies could be investigated to reduce the offset between
(AuCLP) and (AuCAD).

In Fig. 3a and 3b we plot the distribution of anomaly scores for TGN§. We observe that the model
generally assigns high anomaly scores to malicious edges and low score to benign ones. Setting
the decision threshold at τ = 0.5 the model can detect a large portion of malicious events (TPRAD)
while keeping the false positives relatively low (FPRAD). Note that in datasets with millions of
events, acceptable detection tradeoffs might require lower false positive rates to be used successfully.
Therefore, we further analyze false positives below.

5.3 False Positives Case Study

We study the false positives (FP) of the best performing model TGN§ on TRACE. The comparison
between FP and true negatives (TN) can reveal what the model bases its decisions on. In addition,
a comparison between FP at test time and edges occurring in the train set might reveal whether a
portion of FP are benign anomalies, rather than malicious actions.

180 190 200 210 220 230 240 250 260 270
Hours

0.00

0.25

0.50

0.75

1.00

Cu
m

ul
at

iv
e

co
un

t Firefox activity
TN

FN
TP

FP
Reboot

Figure 4: Lines represent normalized cumulative detection counts
for TGN§ on the TRACE test set.

We find that the vast majority (86.6%)
of edges detected as FP by the model
involves nodes of type “Process” with
the name firefox. This is in con-
trast to only 53.1% of edges result-
ing in TN that involve firefox, sug-
gesting that these edges are harder
to distinguish correctly, even though
they are well represented in the train
set (50.7% of the totality of train
edges). Furthermore, edges that have
a firefox process as the source are

sizeably more common among FPs (75.2% of the total FP) than they are among TN (10.2% of the
total TN) or even train set (14.3% of total train edges). We hypothesize that, due to the current
negative sampling strategy and the low number of neighbors per-node, a large number of negative
edges with firefox as source sampled during training are very similar to the positive edges - this
leads to difficulty in distinguishing anomalous edges with these properties. We hypothesize that this
issue problem can be reduced with specialized negative sampling strategies, which we leave for future
work.

Fig. 4 shows the cumulative distribution of TN, FN, TP, FP and firefox activity over time. The
figure highlights the correlation between firefox activity and FP. A large number of FP (more than
80% of the total) happens around the 255th hour. At that time, the machine logs reveal that there
was a reboot, and shortly after, the start of the malicious attack - which involved the installation of a
firefox backdoor malware. We hypothesize that the reboot and the malicious activity create noise
in node embeddings produced by TGN, leading to widespread FPs even outside of the malicious
activity.

6 Conclusion

We investigated the application of temporal graph networks to provenance graphs, focusing on
anomaly detection in the inductive setting. To do so, we introduced and released two new, continuous-
time, heterogeneous, and attributed provenance graph datasets with expert-labeled anomalies that
correspond to malicious activities. We extended the TGN framework to account for edge direction-
ality and heterogeneous data. We conducted extensive experimentation to identify the benefits and
drawbacks of TGN modules and the proposed extensions. We demonstrated and analyzed the connec-
tion between the self-supervised optimization in link prediction and the detection of semantically
meaningful anomalies. Our work paves the way for further research on representation learning and
anomaly detection in intricate real-world networks and systems.

8

References

[1] V. P. Dwivedi, C. K. Joshi, A. T. Luu, T. Laurent, Y. Bengio, and X. Bresson, “Benchmarking
graph neural networks,” Journal of Machine Learning Research, vol. 24, no. 43, pp. 1–48, 2023.

[2] S. M. Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and P. Poupart, “Representation
learning for dynamic graphs: A survey,” Journal of Machine Learning Research, vol. 21, no. 70,
pp. 1–73, 2020.

[3] C. D. T. Barros, M. R. F. Mendonça, A. B. Vieira, and A. Ziviani, “A survey on embedding
dynamic graphs,” ACM Computing Surveys, vol. 55, no. 1, 2021.

[4] D. Xu, C. Ruan, E. Körpeoglu, S. Kumar, and K. Achan, “Inductive representation learning on
temporal graphs,” in ICLR, 2020.

[5] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim, “Continuous-time
dynamic network embeddings,” in WWW, 2018.

[6] J. Zhao, X. Wang, C. Shi, B. Hu, G. Song, and Y. Ye, “Heterogeneous graph structure learning
for graph neural networks,” in AAAI, vol. 35, pp. 4697–4705, 2021.

[7] L. Zhang and D. Zhou, “Temporal knowledge graph completion with approximated Gaussian
process embedding,” in International Conference on Computational Linguistics, 2022.

[8] L. Bai, W. Yu, D. Chai, W. Zhao, and M. Chen, “Temporal knowledge graphs reasoning with
iterative guidance by temporal logical rules,” Information Sciences, vol. 621, 2023.

[9] J. Gastinger, T. Sztyler, L. Sharma, and A. Schuelke, “On the evaluation of methods for temporal
knowledge graph forecasting,” in NeurIPS Temporal Graph Learning Workshop, 2022.

[10] Y. Wang, Y. Chang, Y. Liu, J. Leskovec, and P. Li, “Inductive representation learning in temporal
networks via causal anonymous walks,” in ICLR, 2021.

[11] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and M. Bronstein, “Temporal graph
networks for deep learning on dynamic graphs,” in ICML Workshop on Graph Representation
Learning, 2020.

[12] X. Ma, J. Wu, S. Xue, J. Yang, C. Zhou, Q. Z. Sheng, H. Xiong, and L. Akoglu, “A comprehen-
sive survey on graph anomaly detection with deep learning,” IEEE Transactions on Knowledge
and Data Engineering, 2021.

[13] M. Zipperle, F. Gottwalt, E. Chang, and T. Dillon, “Provenance-based Intrusion Detection
Systems: A Survey,” ACM Computing Surveys, 2022.

[14] Z. Li, Q. A. Chen, R. Yang, Y. Chen, and W. Ruan, “Threat detection and investigation with
system-level provenance graphs: A survey,” Computers & Security, vol. 106, 2021.

[15] DARPA, “Transparent computing engagement 3 data release.” https://github.com/
darpa-i2o/Transparent-Computing/blob/master/README-E3.md, 2020.

[16] Y. Sun and J. Han, “Mining heterogeneous information networks: A structural analysis approach,”
SIGKDD Explor. Newsl., vol. 14, 2013.

[17] D. Bacciu, F. Errica, A. Micheli, and M. Podda, “A gentle introduction to deep learning for
graphs,” Neural Networks, vol. 129, 9 2020.

[18] Z. Yang, M. Ding, C. Zhou, H. Yang, J. Zhou, and J. Tang, “Understanding negative sampling
in graph representation learning,” in ACM SIGKDD, 2020.

[19] F. Poursafaei, S. Huang, K. Pelrine, and R. Rabbany, “Towards better evaluation for dynamic
link prediction,” in NeurIPS, vol. 35, 2022.

[20] A. Gehani and D. Tariq, “Spade: Support for provenance auditing in distributed environments,”
in Middleware 2012: ACM/IFIP/USENIX International Middleware Conference, Springer,
2012.

[21] J. Zengy, X. Wang, J. Liu, Y. Chen, Z. Liang, T.-S. Chua, and Z. L. Chua, “Shadewatcher:
Recommendation-guided cyber threat analysis using system audit records,” in IEEE Symposium
on Security and Privacy, 2022.

[22] S. Wang, Z. Wang, T. Zhou, H. Sun, X. Yin, D. Han, H. Zhang, X. Shi, and J. Yang, “Threatrace:
Detecting and tracing host-based threats in node level through provenance graph learning,”
IEEE Transactions on Information Forensics and Security, vol. 17, 2022.

9

https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md
https://github.com/darpa-i2o/Transparent-Computing/blob/master/README-E3.md

[23] X. Han, T. Pasquier, A. Bates, J. Mickens, and M. Seltzer, “Unicorn: Runtime provenance-
based detector for advanced persistent threats,” in Network and Distributed System Security
Symposium, 2020.

[24] E. Manzoor, S. M. Milajerdi, and L. Akoglu, “Fast memory-efficient anomaly detection in
streaming heterogeneous graphs,” in ACM SIGKDD, 2016.

[25] S. M. Milajerdi, R. Gjomemo, B. Eshete, R. Sekar, and V. Venkatakrishnan, “Holmes: real-time
apt detection through correlation of suspicious information flows,” in IEEE Symposium on
Security and Privacy, 2019.

[26] D. Eswaran, C. Faloutsos, S. Guha, and N. Mishra, “Spotlight: Detecting anomalies in streaming
graphs,” in ACM SIGKDD, 2018.

[27] Q. Wang, W. U. Hassan, D. Li, K. Jee, X. Yu, K. Zou, J. J. Rhee, Z. Chen, W. Cheng, C. A.
Gunter, and H. Chen, “You are what you do: Hunting stealthy malware via data provenance
analysis,” in Network and Distributed System Security Symposium, 2020.

[28] J. Zeng, Z. L. Chua, Y. Chen, K. Ji, Z. Liang, and J. Mao, “Watson: Abstracting behaviors
from audit logs via aggregation of contextual semantics.,” in Network and Distributed System
Security Symposium, 2021.

[29] Z. Xu, P. Fang, C. Liu, X. Xiao, Y. Wen, and D. Meng, “Depcomm: Graph summarization on
system audit logs for attack investigation,” in IEEE Symposium on Security and Privacy, 2022.

[30] F. Liu, Y. Wen, D. Zhang, X. Jiang, X. Xing, and D. Meng, “Log2vec: A heterogeneous graph
embedding based approach for detecting cyber threats within enterprise,” in ACM SIGSAC
conference on computer and communications security, 2019.

[31] A. Micheli, “Neural network for graphs: A contextual constructive approach,” IEEE Transac-
tions on Neural Networks, vol. 20, no. 3, 2009.

[32] J. Li, Z. Han, H. Cheng, J. Su, P. Wang, J. Zhang, and L. Pan, “Predicting path failure in
time-evolving graphs,” in ACM SIGKDD, 2019.

[33] M. Schlichtkrull, T. N. Kipf, P. Bloem, R. Van Den Berg, I. Titov, and M. Welling, “Modeling
relational data with graph convolutional networks,” in Extended Semantic Web Conference,
Springer, 2018.

[34] Z. Hu, Y. Dong, K. Wang, and Y. Sun, “Heterogeneous graph transformer,” in WWW, 2020.
[35] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and Y. Bengio, “Graph Attention

Networks,” in ICLR, 2018.
[36] DARPA, “Transparent computing program.” https://darpa.mil/program/

transparent-computing, 2014.
[37] J. Khoury, T. Upthegrove, A. Caro, B. Benyo, and D. Kong, “An event-based data model for

granular information flow tracking,” in International Workshop on Theory and Practice of
Provenance, USENIX Association, 2020.

[38] M. Inam, Y. Chen, A. Goyal, J. Liu, J. Mink, N. Michael, S. Gaur, A. Bates, and W. U. Hassan,
“SoK: History is a vast early warning system: Auditing the provenance of system intrusions,” in
IEEE Symposium on Security and Privacy, 2023.

[39] K. Cho, B. van Merrienboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, and
Y. Bengio, “Learning phrase representations using rnn encoder-decoder for statistical machine
translation,” arXiv preprint arXiv:1406.1078, 2014.

[40] Y. Shi, Z. Huang, S. Feng, H. Zhong, W. Wang, and Y. Sun, “Masked label prediction: Unified
message passing model for semi-supervised classification,” in IJCAI, pp. 1548–1554, 8 2021.
Main Track.

[41] M. Fey and J. E. Lenssen, “Fast graph representation learning with PyTorch Geometric,” in
ICLR, 2019.

[42] A. Longa, V. Lachi, G. Santin, M. Bianchini, B. Lepri, P. Lio, F. Scarselli, and A. Passerini,
“Graph neural networks for temporal graphs: State of the art, open challenges, and opportunities,”
TMLR 23, 2023.

[43] R. Trivedi, H. Dai, Y. Wang, and L. Song, “Know-evolve: Deep temporal reasoning for dynamic
knowledge graphs,” in ICML, PMLR, 2017.

10

https://darpa.mil/program/transparent-computing
https://darpa.mil/program/transparent-computing

[44] S. Kumar, X. Zhang, and J. Leskovec, “Predicting dynamic embedding trajectory in temporal
interaction networks,” in ACM SIGKDD, 2019.

[45] R. Trivedi, M. Farajtabar, P. Biswal, and H. Zha, “Dyrep: Learning representations over dynamic
graphs,” in ICLR, 2019.

[46] Y. Ma, Z. Guo, Z. Ren, J. Tang, and D. Yin, “Streaming graph neural networks,” in ACM SIGIR
conference on research and development in information retrieval, 2020.

[47] X. Wang, D. Lyu, M. Li, Y. Xia, Q. Yang, X. Wang, X. Wang, P. Cui, Y. Yang, B. Sun, et al.,
“APAN: Asynchronous propagation attention network for real-time temporal graph embedding,”
in International conference on management of data, 2021.

[48] S. Tian, T. Xiong, and L. Shi, “Streaming dynamic graph neural networks for continuous-time
temporal graph modeling,” in IEEE ICDM, 2021.

[49] A. H. Souza, D. Mesquita, S. Kaski, and V. Garg, “Provably expressive temporal graph networks,”
in NeurIPS, 2022.

[50] J. Gao and B. Ribeiro, “On the equivalence between temporal and static equivariant graph
representations,” in ICML, PMLR, 2022.

[51] A. Hogan, E. Blomqvist, M. Cochez, C. D’amato, G. D. Melo, C. Gutierrez, S. Kirrane,
J. E. L. Gayo, R. Navigli, S. Neumaier, A.-C. N. Ngomo, A. Polleres, S. M. Rashid, A. Rula,
L. Schmelzeisen, J. Sequeda, S. Staab, and A. Zimmermann, “Knowledge graphs,” ACM
Computing Surveys, 2022.

[52] D. Busbridge, D. Sherburn, P. Cavallo, and N. Y. Hammerla, “Relational graph attention
networks,” in ICLR, 2019.

[53] Y. Dong, Z. Hu, K. Wang, Y. Sun, and J. Tang, “Heterogeneous network representation learning,”
in IJCAI, vol. 20, 2020.

[54] C. Zhang, D. Song, C. Huang, A. Swami, and N. V. Chawla, “Heterogeneous graph neural
network,” in ACM SIGKDD, 2019.

[55] X. Wang, H. Ji, C. Shi, B. Wang, Y. Ye, P. Cui, and P. S. Yu, “Heterogeneous graph attention
network,” in WWW, 2019.

[56] A. Mitra, P. Vijayan, S. R. Singh, D. Goswami, S. Parthasarathy, and B. Ravindran, “Revisiting
link prediction on heterogeneous graphs with a multi-view perspective,” in IEEE ICDM, 2022.

[57] S. Vashishth, S. Sanyal, V. Nitin, and P. Talukdar, “Composition-based multi-relational graph
convolutional networks,” in ICLR, 2020.

[58] S. Yun, M. Jeong, R. Kim, J. Kang, and H. J. Kim, “Graph transformer networks,” in NeurIPS,
vol. 32, 2019.

[59] H. Sun, J. Zhong, Y. Ma, Z. Han, and K. He, “Timetraveler: Reinforcement learning for temporal
knowledge graph forecasting,” arXiv preprint arXiv:2109.04101, 2021.

[60] W. Yu, W. Cheng, C. C. Aggarwal, K. Zhang, H. Chen, and W. Wang, “Netwalk: A flexible
deep embedding approach for anomaly detection in dynamic networks,” in Proceedings of the
24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, KDD
’18, 2018.

[61] S. Bhatia, M. Wadhwa, K. Kawaguchi, N. Shah, P. S. Yu, and B. Hooi, “Sketch-based anomaly
detection in streaming graphs,” 2022.

[62] T. N. Kipf and M. Welling, “Variational graph auto-encoders,” arXiv preprint arXiv:1611.07308,
2016.

[63] Y. Liu, Z. Li, S. Pan, C. Gong, C. Zhou, and G. Karypis, “Anomaly detection on attributed
networks via contrastive self-supervised learning,” IEEE transactions on neural networks and
learning systems, vol. 33, no. 6, pp. 2378–2392, 2021.

[64] H. Wang, C. Zhou, J. Wu, W. Dang, X. Zhu, and J. Wang, “Deep structure learning for fraud
detection,” in 2018 IEEE International Conference on Data Mining (ICDM), pp. 567–576,
IEEE, 2018.

[65] X. Yuan, N. Zhou, S. Yu, H. Huang, Z. Chen, and F. Xia, “Higher-order structure based anomaly
detection on attributed networks,” in 2021 IEEE International Conference on Big Data (Big
Data), pp. 2691–2700, IEEE, 2021.

11

[66] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu,
L. Sun, J. Li, G. H. Chen, Z. Jia, and P. S. Yu, “Bond: Benchmarking unsupervised outlier
node detection on static attributed graphs,” Advances in Neural Information Processing Systems,
vol. 35, pp. 27021–27035, 2022.

[67] K. Liu, Y. Dou, Y. Zhao, X. Ding, X. Hu, R. Zhang, K. Ding, C. Chen, H. Peng, K. Shu, G. H.
Chen, Z. Jia, and P. S. Yu, “PyGOD: A python library for graph outlier detection,” arXiv preprint
arXiv:2204.12095, 2022.

A DARPA Dataset

We utilize the Engagement 3 (E3) [15] data collection released by the DARPA Transparent Computing
Program [36]. This engagement involved a professional red team conducting multiple cyber attacks
in a simulated enterprise environment. The collection contains audit data from multiple hosts over
a duration of up to two weeks. To mix benign and malicious audit logs, a scripted set of benign
activities, such as web browsing and emailing, was continuously running on each host in parallel
to manual attacks. We use the vast collection of system calls occurring in two Linux-based hosts,
THEIA and TRACE. These datasets come as a set of temporally ordered .json files containing audit
data in the DARPA Common Data Model format [37].

Table 3: Statistics of the DARPA E3 datasets. Cybersecurity experts labelled individual edges as
malicious or benign using information on the execution of the malicious activities. |T | is the number
of node types, |R| the number of relationship types. We extract 18 node features for Sockets, 23 for
Files and 21 for Processes.

Dataset Nodes Edges Unq. Edges Anom. Edges |T | |R| Unq. Timestamps Duration

THEIA 1,043k 8,416k 3,982k 211 3 8 1,766k 247h
TRACE 3,926k 10,102k 6,663k 262 3 10 2,838k 264h

Pre-processing. Given the volume of system audit data, we pre-process them; note that such log
reduction is active area of research [38] with no clear winner. We use the pre-processing steps of [21]
and transform the remaining audit records into a provenance graph containing three types of nodes,
i.e., {File, Process, Socket} and 32 types of edges corresponding to Linux system calls. Note that
not all of system call types occur during the data collection, see Table 3). We further reduce the graph
by aggregating the edges between a process and the connected sockets having the same IP address if
they occur within a time window of one second; this eases a problem where port-scanning activities
would generate thousands of edges in very short bursts. The pre-processing removes around 2M edges
from TRACE and 6M edges from THEIA; we report in Table 3 the statistics of the preprocessed
datasets.

Feature extraction. In addition to node and edge types, we extract node-specific categorical features
and encode them using a one-hot representation. For sockets we encode the IP address as public,
private or malformed. The encoding scheme of socket ports involves mapping them to either specific
categories designated for ports associated with services available in the DARPA-simulated network
environment (e.g., ssh on port 22, http on port 80) or to one of the port intervals defined by the
Internet Assigned Numbers Authority. Files are grouped into categories based on the semantic
meaning of their extensions (e.g., images, executables) as well as their root directories (e.g., /var,
/lib). Individual categories are also created for well known Linux system processes and other
processes that are the most common in the environment. Finally, in order to accommodate unforeseen
instances during inference and support the inductive setting, a dedicated category labeled as "other"
is reserved for each of these categorical variables. The feature extraction process extracts 18 node
features for Sockets, 23 for Files and 21 for Processes.

Ground truth. Despite the widespread utilization of the DARPA dataset, we could not obtain the
edge-level ground truth anywhere online, even after contacting several researchers involved with it.
The original ground truth for the DARPA dataset consists of a very general description of attack steps
(e.g., the executed terminal commands), provided in a PDF file. Such description does not allow to
straightforwardly label single events as benign or malicious, that is why we relied on an internal team

12

of security experts. Due to space constraints, we cannot report details of the labelling process in this
appendix but we will provide them at our code repository.

Data splits. We partitioned the data into distinct sets for training, validation, and testing. To guarantee
the absence of attacks in the training set, we make sure the test set spans from the JSON file in the
raw data that contains the earliest presence of an attack until the end of the data (see Figure 2). The
rest of the data (before the first attack) is split by time into training and validation sets, following a
split ratio of 0.85 / 0.15. The splitting leads to a train/val/test edges split of 0.366 / 0.079 / 0.555 for
THEIA and 0.670 / 0.123 / 0.207 for TRACE.

B The TGN Framework

We first describe the TGN architecture for the homogeneous graph. This architecture comprises
(i) a message module, which computes messages from events, (ii) a memory module, which stores
a memory vector si(t) for each encountered node i, and (iii) a graph progagation module, which
aggregates information from the neighborhood Ni(t) to produce the final node embedding.

B.1 Message module

Whenever a new event occurs at time t, messages are computed to update the memory of both the
source node i and the target node j:

mi(t) = si
(
t−
)
∥ sj

(
t−
)
∥ MLP(t− ti) ∥ eij(t),

mj(t) = sj
(
t−
)
∥ si

(
t−
)
∥ MLP(t− tj) ∥ eij(t).

(4)

Here ti and tj are the timestamps of the last interactions of node i and node j respectively, and
si (t

−) , sj (t
−) are the memory vectors of nodes i, j computed in the previous update. We identify

with ∥ the concatenation operator.

If there are multiple events in a batch involving the same node, the corresponding messages are
aggregated by the aggr function to form a single message:

mi(t) = agg (mi (t1) , . . . ,mi (tb)) , (5)

where agg can be implemented as mean, sum, or last.

B.1.1 Memory

The memory is responsible for storing and updating the representation of node histories. For such
a reason, the memory is updated after every event by transforming the previous memory state and
the incoming messages from the previous module. Recalling that mi(t) is the incoming message
computed by node i at time t from the message module and si(t

−) is the memory state of node i
before time t, then the new memory representation is computed as:

si(t) = mem
(
mi(t), si

(
t−
))
, (6)

where mem is an RNN-based architecture, e.g., GRU [39].

B.1.2 Graph propagation module

After the memory of a node is updated with the new events, the node representation is enriched with
the information coming from the neighborhood by the graph propagation module. The final node
embedding, zℓi , of a node i at time t and ℓ-th layer is computed by using node features and memory
states of the neighbors:

zℓi = f

(
zℓ−1
i ,

⊕
j∈Ni(t)

g
(
zℓ−1
i , zℓ−1

j , si(t), sj(t), eij(t)
))
, (7)

where g computes the message of each node that is dispatched among the neighbors, f is the function
that update the node embedding with the neighborhood representation, and

⊕
is an aggregation

13

invariant function, e.g., sum or mean. The node embeddings are initialized with node features, i.e.,
z0i = xi.

As proposed in [11], the graph propagation module can be implemented as a GNN with transformer
multihead attention [40]. Thus, node embedding zℓi are updated as:

zℓi = σ

(
Wℓ

sz
ℓ−1
i +

∑
j∈Ni(t)

αij

(
Wℓ

nz
ℓ−1
j +Wℓ

eêij
))
, (8)

where σ is an activation function, as usual; the initial node embedding is the result of the concatenation
between the memory state and the node features, i.e., z0i = si(t)∥xi; and êij = eij(t)∥MLP(t− t−j)
is the new edge representation computed as the concatenation between the original edge attributes and
a learned embedding of the elapsed time from the previous neighbor interaction. αij is the attention
coefficient computed as:

q = Wℓ
qz

ℓ−1
i ,

K = Wℓ
kz

ℓ−1
j +Wℓ

eêij ,

αij = softmax
(
q⊤K√
h

)
,

(9)

with h the hidden size of each head. By drawing a connection with Eq. 7, we can identify
⊕

to be the
sum operator, g the multihead attention operator, and f is the aggregation of linear transformations
and sum operators.

In the following, we present extensions of the TGN framework [11] that enable TGN to account for
edge directionality and to model heterogeneous data.

B.2 Details of Adapted HGT Layer

Using the notation of Eq. 8, the heterogeneous convolution layer in [34] for an edge (i, j) or type r
whose nodes are of types τi, τj is described by the following formula (superscript ℓ indicating the
layer number is omitted for parameters):

zℓi = zℓ−1
i + σ

W(τj)
A

 ⊕
j∈Ni(t)

(
Attn(i, r, j) · (Msg(i, r, j)

)
with

Msg(i, r, j) = ∥k∈[1,h]Msg-headk(i, r, j),

Msg-headk(i, r, j) = W
(τi)
M W

(r)
MSGz

ℓ−1
i ,

where superscripts (τi), (τj), (r) indicate that one linear layer is learned across each source node,
destination node or edge type. The subscripts A,M are taken from [34], A indicates the final layer
output transformation, M refers to the values path in the attention block. We replace Msg-headk with
the following in order to account for edge features:

Msg-headk(i, r, j) = W
(τi)
M W

(r)
MSGz

ℓ−1
i ∥Weeij .

Note that we do not condition We on attention heads or on edge types, so that only one transformation
is learned and its representation is shared across heads and types. We leave corresponding extensions
as future work.

B.3 Experiment details

We implement all methods in Pytorch Geometric [41] and perform model selection with the parameters
in Tab. 5. We report the runtime of the considered models in Tab. 6.

14

Table 4: Description of the confusion matrix for the anomaly detection task. ϵ = (i, j, t) are all
edges in G, fθ(ϵ) is the probability score returned by the model for edge ϵ; τ ∈ [0, 1] is the decision
threshold.

Ground Truth
Malicious (ϵ ∈ gA) Benign (ϵ ∈ G \ gA)

Pr
ed

ic
t

Anomalous (fθ(ϵ) < τ) True positive (TP) False positive (FP)

Normal (fθ(ϵ) ≥ τ) False negative (FN) True negative (TN)

Table 5: Grid of parameters for model selection, best parameters in bold. For TGN, we also search
through different aggregation functions (agg in Eq. 5) [last, mean, max].

Architecture Learning
rate

of
layers

Emb.
dim.

Neigh.
sampler size

MLP [10−2, 10−3] [1, 2, 3] 100 n.a.
GAT [10−3, 10−4] [1, 2] 100 [10, 20, 30]

RGCN [10−3, 10−4] [1, 2] 100 [10, 20, 30]
TGN [10−4, 10−5] [1, 2] 100 [10, 20]

Table 6: Runtime (TRACE dataset) and model size.
Metric # of parameters Time per epoch (s)

MLP 14 901 886
GAT 85 413 5 314

RGCN 626 313 6 656

TGN†§ (TGAT†) 114 657 2 107
TGN† 244 113 5 260

TGN§ (TGAT) 125 757 2 331
TGN 255 213 5 530

OHD-TGN 255 267 5 532
DIR-TGN 348 514 6 249

Hetero-TGN 3 141 313 28 804
HGT-TGN 1 056 148 12 065

C Related Work

Temporal graph learning. While early models for learning on dynamic graphs focused on the
discrete-time case (DTDG) [42], where the graph evolution is represented by snapshots taken at
different times, many approaches later focused on the continuous case (CTDG). A number of
approaches for CTDG use sequence-based approaches, where for an edge appearing, a sequence
model updates node representations of the source and destination node [43, 44, 45, 46]. These methods
can be limited, as information is not propagated past the neighborhood of the nodes connected by the
new edges, leading to embeddings becoming outdated. To address this problem, another category
of approaches propagates information across neighborhoods of the nodes involved. A first set of
methods in this category uses random walks on the temporal graph to propagate information [5, 10].
Other approaches explicitly use GNNs in the architecture to deal with information propagation;
notable examples in this category include TGAT [4], which uses the graph attention layer introduced
in [35], and TGN [11], which combines the TGAT graph convolution to propagate information, and
a sequential model to store node-wise memories. Recent advances in the CTDG domain focus on
improving the expressiveness, performance and evaluation of methods. APAN [47] and SDGNN [48]
suggest to trigger node memories updates to further neighborhoods of the nodes involved in the new
edge. Temporal models with better expressiveness are proposed in [49] and [50], respectively with
the addition of injective updates and by showing the advantages of encoding sequential information

15

before graph propagation. On the evaluation side, better temporal model validation guidelines have
been suggested in [19], we use these in Sec. 3 of this paper and contribute to better evaluation with
our datasets.

Heterogeneous temporal models. In heterogeneous graphs, entities belong to different types
which provide rich semantic information. Knowledge graphs [51] are the most notable example
of heterogeneous graphs. Early methods tackling the heterogeneous-case generalized known GNN
architectures to account for entity types, e.g., RGCN [33] and RGAT [52]. Motivated by the limitations
of these straightforward approaches [53], many later methods leveraged meta paths [54, 55, 56], more
expressive node/relation encodings [57] or even graph transformers [58]. Currently, few applications
of temporal learning to heterogeneous graphs exists, with one of few examples being temporal
knowledge graph learning [59]. Many open challenges remain in the heterogeneous settings [53],
including the applications of heterogeneous methods to the temporal domain. To the best of our
knowledge, ours is one of the first works in graph learning for the CTDG domain and in the
heterogeneous settings, where both nodes and edges are associated with types with the goal of
anomaly detection.

Graph Anomaly Detection. While in the past a number of graph anomaly detection approaches
were tailored for the streaming events case [24, 60, 25, 23, 61], they do not take into account
node features or make strong assumptions about the anomalies. In recent years a number of new
anomaly detection methods appeared to address detection of outliers in graphs, many leveraging
deep learning [62, 63, 21, 64]. The survey in [12] categorizes graph anomaly detection methods in a
task-oriented way, distinguishing approaches based on which anomalous graph objects they can detect
(i.e., anomalous nodes, edges, subgraphs or entire graphs) and whether they can operate on dynamic
graphs. Most deep learning methods work in an unsupervised fashion relying on AutoEncoder
backbones and optimizing a reconstruction error [62, 64], while other use negative sampling of graph
objects (nodes, edges, neighborhoods) to be trained in a self-supervised manner [63, 65]. A large
benchmark of many Graph Anomaly Detection approaches for the static or Discrete-TDG use-case
is provided in [66] with the help of the PyGOD framework [67]. We hope our paper can foster
additional anomaly detection research in the Continuous-TDG scenario.

D Notes on Threat Detection Baselines Comparison

We were not able to compare our method to other threat detection baselines as most related work
treats the detection problem under different assumptions. StreamSpot [24] and Unicorn [23] perform
graph classification, Holmes [25] path classification and Threatrace [22] node classification — in
comparison, we deal with fine-grained link prediction. ShadeWatcher [21] is the only work resorting
to link prediction on provenance graphs and therefore the closest candidate to comparison to our
approach. Unfortunately, contrary to what stated in the authors’ repository, and even after contacting
the authors, we could not reproduce their results.

16

	Introduction
	Preliminaries
	Static Heterogeneous Graphs
	Continuous-Time Dynamic Heterogeneous Graphs
	Temporal Link Prediction for Anomaly Detection

	Provenance Graphs
	Anomaly Detection in Provenance Graphs
	DARPA Datasets

	Method
	Encoding Edge Directionality
	Encoding Heterogeneous Information

	Experiments
	Experimental Setting
	Results
	False Positives Case Study

	Conclusion
	DARPA Dataset
	The TGN Framework
	Message module
	Memory
	Graph propagation module

	Details of Adapted HGT Layer
	Experiment details

	Related Work
	Notes on Threat Detection Baselines Comparison

