Poisson-Algebraic Parallel Scan: A Fast

Symplectic Framework for Neural Hamiltonians

Motivation

HNNSs preserve physics, but rely on sequential ODE
Integrators

Sequential dependence follows number of steps M
Long-horizon simulation: computationally prohibitive
Need for parallelization of Hamiltonian flows, along
the timestep M

Goal: construct Hamiltonian flows compatible with
parallel scan -> How?

Associativity of flow composition is the missing
key!

Represent the Hamiltonian using polynomial
generators In a finite Poisson algebra.

Induced flows form a Lie group with strictly associative
composition, enables parallel prefix-scan, Symplectic
consistency Is preserved by construction.

Neura] Poisson DAG
{fs g}ojfle 9

Methodology

Polynomial Poisson Algebra and DAG structure
We represent hamiltonian as truncated polynomial basis

P, :=span{q®p’ | la| + |8 <7} go(zt)= Y cas(t;0)¢*p°
a|+|B|<r
To keep the function space finite, the truncation operator

with multiplication and Poisson bracket are replaced,;
ﬂ-i’?‘(f) — Z ca,ﬁqapﬁ f *x g = ﬂ-gfr(fg): {fag}Q — 7Tg'."({f:g})
|+ 8| <r

This induces a finite-dimensional Poisson algebra.

Starting from the base generator set G(0) = P,, we
iteratively construct G(k) = {r<(f 9), 7= ({f,9}) | f.9 € Gk — 1)},
with removing redundant terms using algebraic identities:
commultativity of the truncated product, antisymmetry of
the poisson bracket, and Jacobi identity.

Through this closure process, the union G(< K) = ;. , G(k)
forms the Neural Poisson Algebra.

Lie Group Flows
From g, € G(< K) we define the truncated Lie operator,
Lo<rf=m<{f.9} and formally define a Lie group as

Trxc = { Beg = exp(eLysr) = JZ:,O Glh< | 9GS0

form an embedded Lie subgroup, inheriting associativity
for elementary Lie group update U,, = ®., = exp(eL, <),
in the walk Wg : {0,1,..., M} = J,

Parallel Scan Algorithm
Thus, for given per-step flows Uy,...,U,;, we apply
parallel scan algorithm with defining each steps,

Vi) =Umy, Vo) = Vo 2 0 Vg
This eventually provides the acceleration along the
timescale, not dimensionality or model complexity that
are largely treated before.

Jiwoong Kim, Erdembileg Davaasuren,

Youngsuk Lee, Sungwoo Park*

*Corresponding author

Department of Computer Science and Engineering, Korea University

— o ¢,

KOREA RSO

_UNIVERSITY ﬁ. NEURAL INFORMATION
‘;.i. . PROCESSING SYSTEMS
ole

MeurReps Workshop

Experiments

We evaluate on Hamiltonian systems compared with
Euler, Stormer—Verlet, Forest—Ruth 4™, and Gauss—
Legendre 4,

Runtime Log Growth with Timesteps (Train)

Time (seconds)
c)

750 1000 1250 1500 1750 2000
Timesteps (M)

Runtime Log Growth with Timesteps (Inference)

n
o
c
5]
o
@
2104
@

S

=

Timesteps (M)

As seen In the graph, our model shows log-scale
complexity along the timescale, offers a scalable path
for fast neural simulators in large-scale physics.

References

Vladimir | Arnold (1989). “Mathematical Methods of Classical Mechanics.”
Guy E Blelloch (1990). “Prefix sums and their applications.”

Ricky T Q Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud (2018).
“Neural ordinary differential equations.”

Samuel Greydanus, Misko Dzamba, and David Yosinski (2019). “Hamiltonian
neural networks

Jerrold E Marsden and Tudor S Ratiu (1999). “Introduction to Mechanics and
Symmetry.”

