
Lie Group Flows 

From                        we define the truncated Lie operator,  

                            and formally define a Lie group as 

 
 

form an embedded Lie subgroup, inheriting associativity 

for elementary Lie group update 

in the walk                                    

 
 

Thus, for given per-step flows                 ,  we apply 

parallel scan algorithm with defining each steps, 

          

This eventually provides the acceleration along the 

timescale, not dimensionality or model complexity that 

are largely treated before. 

Parallel Scan Algorithm 

We represent hamiltonian as truncated polynomial basis 

 
 

To keep the function space finite, the truncation operator 

with multiplication and Poisson bracket are replaced; 

 

 

This induces a finite-dimensional Poisson algebra. 
 

Starting from the base generator set                 , we 

iteratively construct                                                           , 

with removing redundant terms using algebraic identities: 

commutativity of the truncated product, antisymmetry of 

the poisson bracket, and Jacobi identity. 
 

Through this closure process, the union                                

forms the Neural Poisson Algebra. 
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Experiments 
We evaluate on Hamiltonian systems compared with 

Euler, Störmer–Verlet, Forest–Ruth 4th, and Gauss–

Legendre 4th. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As seen in the graph, our model shows log-scale 

complexity along the timescale, offers a scalable path 

for fast neural simulators in large-scale physics. 
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Motivation 

• HNNs preserve physics, but rely on sequential ODE 

integrators 

• Sequential dependence follows number of steps M 

• Long-horizon simulation: computationally prohibitive 

• Need for parallelization of Hamiltonian flows, along 

    the timestep M 
 

• Goal: construct Hamiltonian flows compatible with 

parallel scan -> How? 
 

• Associativity of flow composition is the missing 

key! 
 

• Represent the Hamiltonian using polynomial 

generators in a finite Poisson algebra. 

• Induced flows form a Lie group with strictly associative 

composition, enables parallel prefix-scan, Symplectic 

consistency is preserved by construction. 
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