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1 Restore Cropping and Resizing without the Original Intrinsic

In the main paper Sec. 3.6, when the original intrinsic is unknown, we restore the modified image by
defining an inverse operation AK to restore K’ to an intrinsic follow the simple camera assumption.
Suppose the input image I’ of size (w X h), we apply monocular camera calibration to estimate its
intrinsic as K’. We introduce the reverse operation as:
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The restoration operation is defined as AK = AK,AK . After the restoration, the width of the new
image is w’ = 2 max(w — b, ) and the height of the new image is ' = 2r' max(h — b, b ). An
illustration depicting the restoration process is presented in Fig. 1.
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Figure 1: We illustrates the construction of AK;, when b, > w — b’,. We mark the focal point using a red
dot. To position the focal point at the center of the image, we pad the right side of the images with zeros.
When padding is applied to the right side of the image, the origin of the 2D image coordinate system remains
unchanged. Therefore, we set b;, to be 0. Conversely, when padding is applied to the left of the image, we must
assign a non-zero value to b, in order to account for the shift in image coordinates.

2 Experiments
2.1 In-the-Wild Monocular Camera Calibration

Train, Validation, and Test Split. We randomly sample 800 images from the training set to
formulate the validation split. For SUN3D, MVS, Scenesl1, and RGBD, we follow [23]. For
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Table 1: Dataset Statistics. We document the intrinsic, focal point, and camera FoV (in degree) in the table.
The upper and lower part suggests seen and unseen datasets during training. [Key: Syn. = Synthesized]

Dataset Calibration Scene Syn. e fy b, by w h FoV, FoV,
NuScenes [5] Calibrated Driving 1266.42 | 1266.42 816.27 491.51 1600 900 64.56 39.12
KITTI[11] Calibrated  Driving 718.86 | 718.86  607.19 185.22 1241 376 81.60 29.31
Cityscapes [7] Calibrated ~ Driving 2267.86 | 2230.28 1045.53 518.88 2048 1024 48.60 25.86
NYUv2 [17] Calibrated Indoor 518.85 | 519.47  325.58 253.74 640 480 63.33 49.59
SUN3D [24] Calibrated Indoor 570.34 | 570.32  320.00 240.00 640 480 58.59 45.64
ARK:itScenes [3]  Calibrated Indoor 1601.95 | 1601.95 936.55 709.61 1920 1440 62.15 48.65
Objectron [1] Calibrated Object 1579.18 | 1579.18  721.01  934.70 1440 1920 48.53 62.01
MVImgNet [25] StM Object Varying Intrinsic

MegaDepth [16] StM Outdoor X Varying Intrinsic

Waymo [20] Calibrated ~ Driving X 2060.56 | 2060.56 947.46  634.37 1920 1280 49.73 34.34
RGBD [18] Pre-defined  Indoor X 570.00 | 570.00  320.00 240.00 640 480 58.62 45.67
ScanNet [8] Calibrated Indoor X 1165.72 | 1165.74  649.09 484.77 1296 968 58.30 45.33
MVS [10] Pre-defined ~ Hybrid X 570.34 | 570.34  320.00 240.00 640 480 58.59 45.64
Scenesl11 [6] Pre-defined  Synthetic X 570.00 | 570.00  320.00 240.00 640 480 58.62 45.67

ScanNet and MegaDepth, we follow [27]. For ARKitScenes and Objectron, we follow [4]. For
NuScenes, CityScapes, and Waymo, we follow the official train split and use the validation as the test
split. For KITTI, we use the sequences collected in date “2011_10_03" as testing split and others as
training split. For MVImgNet, we use the “MVImgNet_42.zip” for testing and the first 4 zip files for
training. For NYUv2, we follow [22]. To address the excessive image counts in certain test splits, we
randomly downsample each dataset’s test set to 800 images. Note, since SUN3D, MVS, Scenesl11,
and RGBD only contain 160 images, we include all of them as the testing set.

Intrinsic Documentation. In Tab. 1, we record the intrinsic of training and testing data without
augmentation. Many datasets in Tab. 1, such as the KITTI dataset, conduct calibration multiple
times, leading to slight variations in their intrinsic. Since the difference is minor, we opt to record the
intrinsic of the first test sample for each dataset.

MegaDepth gathers images captured by diverse imaging devices from the internet, resulting in a
wide range of intrinsic. We denote this specific scenario with the term “Varying Intrinsic". For
MVImgNet, while it is generated using SfM similar to MegaDepth, its images are collected with a
single type of camera. Therefore, while we document its intrinsic as “Varying Intrinsic”’, we still
apply augmentation. In MVImgNet and Objectron datasets, which emphasize object-centric images,
augmentations have a tendency to remove foreground objects, leaving behind textureless backgrounds.
To prevent this, we reduce the augmentation by 1/5 compared to other synthetic datasets.

Training and Testing Intrinsic Distribution. In Fig. 2, we plot the training and testing set intrinsic
distribution of the seen datasets, i.e., the upper half of Tab. 1. We use camera FoV as a normalized
measurement to indicate intrinsic variations. Since we include image cropping during synthesis, we
introduce a generalized camera FoV for cropped images, defined as:

— Oy 0—by h—b 0—b
FoV, = arctan(w ) — arctan( 7 ), FoV, = arctan( Y) — arctan( ). (3)

We report the FoV distributions in Fig. 2. From Fig. 2, MegaDepth (marked in brown dots) gathers im-
ages captured by diverse imaging devices from the Internet, resulting in a wide range of intrinsic. The
large variation of MegaDepth intrinsic makes it an ideal dataset for benchmarking monocular camera
calibration. In the main paper Tab. 2, our method achieves superior performance on MegaDepth
dataset. This further validates the generalization capability of our method.

In Fig. 2, we also compare our experimental setting with our baselines [12—15]. Our baselines set
up the experiment (main paper Tab. 3) on a single dataset GSV using synthesized images with FoV
ranging from 40° to 80°. Since they assume identical FoV for image axis X and Y directions, their
FoV distribution is represented by a Red Line. From Fig. 2, our experiments include images collected
from multiple datasets with diverse augmentation. This makes our experiments far more challenging
and comprehensive compared to the baselines.

In-the-Wild Monocular Calibration without SUN3D dataset. In Tab. 1, for indoor datasets
SUN3D, RGBD, Scenesl1, and hybrid datasets MVS, they share a similar intrinsic. But each of
them is captured with different devices. SUN3D is collected with SUSXtion PRO LIVE [21]. RGBD
uses Microsoft Kinect [26]. Scenes11 uses synthetically generated images [23]. The MVS dataset
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Figure 2: We plot the Camera FoV distribution of the seen dataset training and testing split. We compare it to
the experimental setting with our baseline works [12—15]. The baselines synthesize images with the FoV ranging
between 40° to 80° on the GSV dataset [2] only (main paper Tab. 3). Since [12—15] assume identical camera
FoV on image axis X and Y direction, their FoV distribution is represented by the single Red Line. In contrast,
we adopt a significantly more challenging and comprehensive experimental setting. We synthesize images over
multiple datasets without an assumption of identical camera FoV. Further, we include cropping in the synthesis.
Combining both points, our training and testing data possess a diverse FoV distribution. Additionally, a small
FoV is in general more challenging for calibration since the distortion from camera projection is minor at a
small FoV. Our experiments contain diverse small FoVs compared to baselines. During plotting, we compute a
generalized camera FoV if the image is cropped defined in Eq. (3).

Table 2: In-the-Wild Monocular Camera Calibration Excludes SUN3D Dataset. We repeat the main paper
Tab. 2 experiment after excluding the SUN3D dataset in training. The exclusion of SUN3D dataset does not
change the conclusion. We use | and 1 to indicate an improved and inferior performance compared to the main
paper Tab. 2. [Key: ZS = Zero-Shot, Asm. = Assumptions, Syn. = Synthesized]

Dataset Calibration Scene ZS Syn. Perspective [13] Ours Ours + Asm.
E€f €p E€f €p E€f €p
NuScenes [5] Calibrated Driving X v 1 0.610 0.248 | 0.066 0.082 | 0.372 0.400
KITTI[!1] Calibrated ~ Driving X v | 0.670 0.221 | 0.081] 0.113 | 0.420 0.368
Cityscapes [7] Calibrated Driving X v 0.713 0.334 | 0.074, 0.081 0.383 0.367
NYUv2 [17] Calibrated Indoor X v | 0449 0.409 | 0.076/ 0.163 | 0.332  0.379
ARKitScenes [3]  Calibrated Indoor X v 10362 0410 | 0.085 0.164 | 0.338 0.377
MVImgNet [25] StM Object X v | 0.204 0.500 | 0.074] 0.065 | 0.085 0.072
Objectron [ 1] Calibrated Object X v 10178 0.339 | 0.054, 0.069 | 0.063 0.079
MegaDepth [10] StM Outdoor X X 0.493  0.000 0.138  0.056 | 0.1121 0.000
SUN3D [24] Calibrated Indoor 4 X 0.260  0.271 0.094 0.051 | 0.086 0.000
Waymo [20] Calibrated Driving v X 0.564 0.020 0.199 0.030 | 0.150, 0.020
RGBD [18] Pre-defined  Indoor v X 0.264 0.000 0.136  0.058 | 0.1031 0.000
ScanNet [8] Calibrated Indoor v X 0.385 0.010 0.169  0.020 | 0.1501 0.010
MVS [10] Pre-defined  Indoor v X 0.312  0.000 0.198  0.027 | 0.1301 0.000
Scenesl1 [6] Pre-defined Synthetic X 0.348 0.000 0.196 0.038 | 0.1577 0.000

comprises a combination of default downsampled high-resolution images from COLMAP and images
captured using cellphones [23]. ScanNet shares a similar camera FoV. But ScanNet is collected with
an iPad camera [8]. The problem arises as we include the SUN3D dataset in our training set. However,
since one of the objectives of this research is to provide a beneficial model for other researchers, it is
reasonable to incorporate a widely adopted intrinsic pattern. Despite it, people may still question
whether the inclusion of SUN3D decisively influences the zero-shot performance of unseen datasets
RGBD, Scenes11, MVS, and ScanNet, since the intrinsic has been seen during training. We answer
this question via re-experimenting the main paper Tab. 2 after excluding the SUN3D.

We report the results in Tab. 2. From Tab. 2, the exclusion of SUN3D leads to improved performance
on Waymo and inferior performance on RGBD, Scenes11, MVS, and ScanNet datasets. This suggests
the inclusion of SUN3D helps generalize datasets with similar intrinsic values. One interesting
discovery is that the removal of SUN3D consistently results in improvements across synthetic
datasets. We interpret this as an indication that SUN3D exhibits a distinct distribution in comparison



Table 3: In-the-Wild Monocular Camera Calibration with Augmetnation. We synthesize novel zero-shot
intrinsic with augmentation following main paper Sec. 4.1 to the unseen dataset. We add new results to the
last 5 rows of the table. The rest of the table is identical to the main paper Tab. 2. Note, synthesis breaks the
simple camera assumption. Fig. 4 to Fig. 8 visualize the intrinsic estimation of the last 5 rows via applying same
augmentation. [Key: ZS = Zero-Shot, Asm. = Assumptions, Syn. = Synthesized]

Dataset Calibration Scene ZS Syn. Perspective [19] Ours Ours + Asm.
€f €p E€f €p €f €p

NuScenes [5] Calibrated Driving X 0.610  0.248 0.102 0.087 | 0.402 0.400
KITTI[11] Calibrated ~ Driving X 0.670  0.221 | 0.111 0.078 | 0.383 0.368
Cityscapes [7] Calibrated Driving X 0.713 0.334 | 0.108 0.110 | 0.387 0.367
NYUv2[17] Calibrated Indoor X 0.449 0.409 | 0.086 0.174 | 0.376 0.379
ARKitScenes [3]  Calibrated Indoor X 0.362 0.410 | 0.140 0.243 | 0.400 0.377
SUN3D [24] Calibrated Indoor X 0.442 0.501 | 0.113 0.205 | 0.389 0.383
MVImgNet [25] SftM Object X 0.204 0.500 | 0.101 0.081 | 0.108 0.072
Objectron [1] Label Object X 0.178 0.339 | 0.078 0.070 | 0.088 0.079
MegaDepth [16] StM Outdoor X X 0.493 0.000 | 0.137 0.046 | 0.109 0.000
Waymo [20] Calibrated  Driving X 0.564 0.020 | 0.210 0.053 | 0.157 0.020
RGBD [18] Pre-defined  Indoor X 0.264 0.000 | 0.097 0.039 | 0.067 0.000
ScanNet [£] Calibrated Indoor X 0.385 0.010 | 0.128 0.041 | 0.109 0.010
MVS [10] Pre-defined  Indoor X 0.312 0.000 | 0.170 0.028 | 0.127 0.000
Scenes11 [0] Pre-defined  Synthetic X 0.348 0.000 | 0.170 0.044 | 0.117 0.000
Waymo [20] Calibrated  Driving 0.655 0.266 | 0.210 0.158 | 0.385 0.381
RGBD [18] Pre-defined  Indoor 0.352  0.453 | 0.129 0.286 | 0.345 0.339
ScanNet [£] Calibrated Indoor 0.480 0.496 | 0.126 0.246 | 0.367 0.365
MVS [10] Pre-defined  Indoor 0.437 0.454 | 0.163 0.281 | 0.290 0.349
Scenesl1 [0] Pre-defined  Synthetic 0.451  0.445 | 0.168 0.410 | 0.381 0.383
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Figure 3: We visualize the performance of uncalibrated two-view pose estimation with respect to the monocular
camera calibration error e ;. The steep curve indicates that uncalibrated two-view pose estimation is a challenging
problem. The red dot marks pose performance using our estimated intrinsic as reported in main paper Tab. 6.

to other training datasets. As a result, fitting the training distribution becomes easier, while fitting
the testing distribution becomes more challenging. Considering the analysis provided above, it is
considered reasonable to include the SUN3D dataset.

In-the-Wild Monocular Calibration with Augmentation. From Tab. 3, we synthesize novel
intrinsic to unseen datasets following the augmentation defined in the main paper Sec. 4.1. Following
main paper Sec. 3.6, the quality of the intrinsic can be assessed using the bounding box. In Fig. 4 to
Fig. 8, we apply the same augmentation as Tab. 3 and visualize the intrinsic quality with bounding
boxes. From Tab. 3, our focal length estimation shows superior robustness since the error ey remains
consistent to the result without augmentation. Our focal point error e;, goes up. However, in real-world
applications, we consider the focal point error e to be of lesser concern. Assuming a simple camera
model naturally removes the focal point error e;,. In Tab. 3, we apply extensive augmentation, which
breaks the simple camera assumption. But the assumption holds true in most real-world applications.
Further, it is expected to have a high focal point error e;,. From Fig. 4 to Fig. 8, the focal length error
ey indicates the correct restoration of the image aspect ratio. The focal point error e; indicates the
accurate restoration of the cropping location. Intuitively, accurately locating the cropped area is a
challenging task when applied to in-the-wild images. Meanwhile, as observed from Fig. 4 to Fig. 8,
our model still relatively accurately locates the cropped area.



3 Downstream Applications

Uncalibrated Two-View Camera Pose Estimation. Fig. 3 plots the uncalibrated two-view camera
pose estimation performance w.r.z. increasingly noisy intrinsic. We follow a naive way to synthesize

noise into intrinsic:
fo=0+c-ep)-fo, [ =(+c-ep)-fy, 4)

where ¢ is a random sign whose value is either 1 or —1. Variable f, z//’ fz, and f,, are noisy
and groundtruth focal length in axis X and Y respectively. From Fig. 3, the uncalibrated pose
performance is highly sensitive to intrinsic noise, suggesting itself a challenging problem. Just as the
geometric matching community [9, 19,27] employs two-view pose estimation to assess the quality of
correspondences, uncalibrated two-view pose estimation can also be utilized to evaluate the quality
of intrinsic parameter estimation.

Additional Image Cropping and Resizing Restoration Results. We visualize the unseen ScanNet,
Waymo, RGBD, MVS, and Scenes11 datasets in Fig. 4, Fig. 5, Fig. 6, Fig. 7, and Fig. 8 respectively.
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Figure 4: Image Crop & Resize Detection and Restoration Visualization on ScanNet.
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Figure 5: Image Crop & Resize Detection and Restoration Visualization on Waymo.



(a) Input & Incidence (b) Est. Restoration (¢) GT. Restoration (d) Original Image

Figure 6: Image Crop & Resize Detection and Restoration Visualization on RGBD. There exists overall
image content due to the testing split only containing 160 images with overlapping content.
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Figure 7: Image Crop & Resize Detection and Restoration Visualization on MVS. There exists overall
image content due to the testing split only containing 160 images with overlapping content.
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Figure 8: Image Crop & Resize Detection and Restoration Visualization on Scenes11.
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