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Abstract

Despite advancements in photorealistic image generation, current text-to-image
(T2I) models often lack diversity, generating homogeneous outputs. This work
introduces a framework to address the need for robust diversity evaluation in T2I
models. Our framework systematically assesses diversity by evaluating individual
concepts and their relevant factors of variation. Key contributions include: (1) a
novel human evaluation template for nuanced diversity assessment; (2) a curated
prompt set covering diverse concepts with their identified factors of variation
(e.g. prompt: AN IMAGE OF AN APPLE, factor of variation: color); and (3) a
methodology for comparing models in terms of human annotations via binomial
tests. Furthermore, we rigorously compare various image embeddings for diversity
measurement. Our principled approach enables ranking of T2I models by diversity,
identifying categories where they particularly struggle. This research offers a
robust methodology and insights, paving the way for improvements in T2I model
diversity and metric development.

1 Measuring diversity in text-to-image models
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Figure 1: Evaluating diversity requires specifying both the concept being assessed and the factor of
variation to reduce ambiguity in the annotation process.

Output diversity is widely considered desirable for text-to-image (T2I) generation models aiming
to accurately represent the natural variability of entities in the real world. This is crucial not only
technically, for serving as faithful world models, but also for downstream applications like supporting
creative processes and ensuring broad conceptual representation across contexts. For example, a
diverse model generating “an image of a house” should produce variations in architectural style and
background. However, current diversity metrics often conflate it with other properties like fidelity
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(e.g., Fréchet Inception Distance (FID) [14]). While progress has been made by developing dedicated
metrics (e.g., Vendi Score [10]]), the conditions for measuring diversity remain poorly defined and
lack standardization, highlighting the need for a principled framework.

In particular, previous work often measures the variability of generated images in scenarios that do not
explicitly account for diversity. For instance, images may be generated using a prompt set that neither
requires nor controls for output variations [e.g., 31} [1]], or models may be compared using a generic
human evaluation template that does not specifically probe for diversity [e.g.,3]. This can result
in measures of diversity that are ambiguous or inconclusive (see Fig.[I). To address this challenge,
we propose a framework to measure diversity without conflating constructs [43 144, 25/ [16] 41]:
we operate under the premise that systematically evaluating diversity requires specifying both the
concept being assessed and the attribute of interest, as illustrated in Fig[I] We empirically validate
this by demonstrating that human accuracy in evaluating diversity is at chance level when the attribute
is not defined. Building on this observation, we introduce a novel evaluation framework designed to
measure the per-attribute intrinsic diversity of T2I models. This framework includes a synthetically
generated prompt set spanning common concepts and their variations, as well as a human evaluation
template. The template, informed by empirical findings on a golden set, improves human accuracy by
dividing the evaluation into two subtasks: counting and counts comparison.

Considering the high cost of human evaluations for model ranking, developing automated metrics
that accurately reflect human judgment is crucial for advancing T2I models. While various diversity
metrics have been proposed [10} [16]], their alignment with human perceptions of diversity often
remains unevaluated. To address this, we use our proposed human evaluation template and prompt set
to examine the reliability of autoevaluation metrics. Specifically, we investigate the Vendi Score [[10],
a widely adopted diversity metric [19, [12] whose correlation with human-perceived diversity has
not yet been thoroughly established. Our analysis reveals that the Vendi Score, when optimized for
the appropriate representation space, can achieve approximately 65% accuracy in capturing human
diversity judgments. We also find that the accuracy improves to 80% when the model pairs are
more different, highlighting the need for more discriminant representations. Furthermore, we apply
our framework to compare five recent generative models: Imagen 3 [2]], Imagen 2.5 [39], Muse
2.2 5], DALLE3 [3], and Flux 1.1 [20]. This comparison identifies Imagen 3 and Flux 1.1 as the
top-performing models regarding attribute diversity. We believe our framework provides a robust
foundation for future work in developing more human-aligned evaluation metrics and improving T2I
model diversity. This research makes three key contributions:

* It formalizes the problem of quantifying diversity in T2I models and proposes a practical
evaluation approach using pre-defined factors of variation.

* It introduces an evaluation framework consisting of a detailed prompt set (covering 86
concept-factor variation pairs) and a validated human evaluation template.

* It applies this framework to evaluate prominent T2I models and automatic evaluation metrics.

2 The three ingredients for diversity evaluation
To evaluate diversity, our framework is based on three components: a definition of what specific
diversity is being measured, a prompt set to elicit relevant outputs, and a human evaluation template

for reliably comparing models. These are described below.

2.1 A clearly specified problem: Diversity per attribute

Prelude: formalizing diversity. Consider a set of images X = {x1, za, ..., 2, }, where each image
x; belongs to a space X C R”. We posit that the visual appearance of each image z; is primarily
determined by a set of K underlying independent generative factors f; = {f},..., f/}. A potential
generative model could be formulated as:
K
p(x:) = [ (il £H)p(fF).- (1
k=1

We focus on scenarios where images represent scenes containing instances from well-defined concepts
(e.g., bottle, forest). Given a concept, we can often map these abstract generative factors to concrete,
observable attributes. For instance, an image x; depicting a bottle can be described by attributes such
as: fmaerial ¢ fo]ags plastic, metal}, f5"%¢ € {cylindrical, square}, and f5¢ € {open, closed}.
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Let C = {c!,...,c’} be the set of concepts, A7 = {a’!,... a?¥} the relevant attributes for a
given concept ¢/, and V7 the finite set of possible values for attribute a?"*. Each image x; depicting
a concept is associated with a specific value vf * € Vi for each attribute al**. We define a sample
of images X7 (for the same concept /) as perfectly diverse if it comprehensively covers all attribute
variations. More precisely, for every attribute a’* € A7 and every possible value v € V7 there
must exist at least one image xj € X7 such that the attribute a’/* for image xf takes the value v.

A tractable notion of diversity. Measuring diversity across the complete set of generative factors
underlying natural data is significantly challenging. Firstly, the sheer number of potential factors (K)
is often immense. Secondly, as highlighted by Tsirigotis et al. [38]], the combination of their possible
values grows exponentially, leading to a ‘curse of generative dimensionality’ where no realistic finite
sample can cover all possible combinations. Thirdly, many factors may inherently possess continuous
value ranges, making exhaustive coverage impossible even for a single factor.

Given these challenges, and since achieving the perfect diversity (as defined earlier) is intractable
with a finite sample, we instead propose to measure tractable diversity. This approach focuses on
a carefully selected subset of the most salient and practically relevant generative factors (K”) for a
specific concept. Identifying which factors are practically relevant is non-trivial and must be tailored
for a given use case. In this work, to identify these factors, we focus on commonly observed concepts
reflective of T2I model training data. To effectively sample from the distribution of generative factors
within these concepts, we leverage the knowledge encoded by Large Language Models (LLMs) [30].
Specifically, we prompt an LLM (Gemini 1.5 M [37]) to identify relevant aspects of variation for
evaluating the diversity of a given concept. The full system instruction is given in the Appendix.

2.2 A systematically generated prompt set

Our goal is to rigorously evaluate genera-
tive models and diversity metrics, specifi-
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over time or across different systems.

To structure this process, we classify con- Figure 2: Each slice represents a concept, grouped and
cepts into three widely applicable cate- color-coded by its overall category.

gories: Food and Drink (items like coffee

cup, cake), Nature (elements like river, but-

terfly), and Human-made Objects (artefacts like bridge, laptop). We leverage the generative capabili-
ties of Large Language Models (LLMs) to systematically produce a wide range of concepts within
these categories. The instruction to generate “ImageNet-like” concepts guides the LLM towards
producing concrete, typically visualizable nouns, similar in scope to those in large-scale image
datasets. For each generated concept, we then perform a subsequent step, again using an LLM, to
identify a semantically relevant aspect of variation (attribute) that is intrinsic or commonly associated
with that concept. This yields concept-attribute pairs (¢’, a’*) such as: (apple, color), (car, type),
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(tree, species), (coffee cup, material), (chair, style). This two-stage, LLM-driven process allows
us to systematically build a prompt set specifically designed to probe and evaluate diversity along
meaningful, contextually relevant dimensions for a broad range of common concepts. Finally, the
authors manually verified all concept-attribute pairs and removed 5 where the attribute was potentially
difficult / ambiguous to categorize (e.g. (food, cuisine)).

2.3 A validated, bespoke human evaluation template

Prior work has shown that developing an appropriate human evaluation template is an essential
component in the process of measuring a desired capability of a generative model [42,[7]. To that end,
we develop a human evaluation template that: (a) allows annotators to understand the task well, (b)
captures their judgment faithfully, and (c) yields meaningful ground truth annotations for per-attribute
diversity, subsequently used to validate automated evaluation metrics. The annotators are provided
with 4 options for the side-by-side comparison: (i) Left more diverse, (ii) Right more diverse, (iii)
Equally diverse, (iv) Unable to answer.

A template to measure per-attribute diversity. Our template for measuring per-attribute diversity
employs a comparative, side-by-side approach due to the difficulty of evaluating diversity within
a single set. Many existing diversity metrics also require a reference set. We considered the
following design choices for our human evaluation template to ensure meaningful assessment (1) Set
size: Balancing the perception of diversity with minimizing annotation fatigue and enabling robust
computation for metrics requiring larger sets (e.g., Vendi score). (2) Attribute specification: Explicitly
stating the attribute for evaluation versus allowing open-ended diversity assessment. (3) Anchoring
task: Incorporating an intermediate task to guide annotators to focus on the intended attribute.

Validating the template with a golden set. To evaluate the quality of the evaluation template, we
curate a golden set of 10 <concept, aspect> pairs, where concept corresponds to a concept that
should be considered common across images in a set and aspect describes the associated aspect of
variation that we want to measure diversity against. We validate the evaluation template by comparing
cases where (i) the concept remains constant across images in the set while the aspect varies (ii) the
concept varies across images while the aspect remains the same, and (iii) both the concept and the
aspect vary across images within the set. We expect images in set (i) to be considered more diverse
than images in set (ii), and similarly images in set (iii) to be considered more diverse than images in
set (ii). Finally, we expect that images in sets (ii) and (iii) are considered equally diverse as we want
to focus on the aspect as axis of variation.

In Fig.[3] we present the annotation accuracy of hu-

man experts using our template under various condi- Lo 4x4 8x8
tions, treating our definitions (in the previous para- ’ |

graph) as ground truth. The different templates are 30'8 |
shown in Fig.[9] The accuracy for the w/o aspect £°%° |
task is 30.0% for comparisons of sets of size 4 and 304 | |

26.7% for sets of size 8. In contrast, the template 0.2

that includes the aspect shows a significant increase 0.0 - .
in accuracy (82.5% for set size 4 and 53.3% for set & v@qé N & \;)er &
size 8), indicating that explicitly mentioning the de- &° & &° o

sired aspect of variation improves annotation accu-

racy. This improvement likely stems from prevent- Figure 3: Match with the golden set depend-
ing annotators from unintentionally conflating the ing on different set sizes.

concept and the aspect when not guided to focus

on a specific axis. Furthermore, we observe that adding the count anchoring question enhances
accuracy, especially for the set size of 8, reaching 77.9%.

For the count task, we found a strong (p = 0.88) and statistically significant (p < .001) correlation
between the annotators’ final diversity comparison and the comparison inferred from their individual
subset counts (where a higher count on one side implies a more diverse final response for that
side, and equal counts imply equal diversity). This confirms that the anchoring count question
effectively guides annotators. To further validate our setup, we analyzed instances where annotators’
responses deviated from the ground truth in our golden set. We examined the distributions of attribute
counts for two image subsets: (1) those labelled “diverse” in the ground truth, where we expected
a count mode of “8” and (2) those labelled “non-diverse”, where we expected a mode of “1”. The
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(a) The “diverse” golden set. (b) The “non-diverse” golden set.

Figure 4: The distribution of counts for sets of images labelled as “diverse” or “non-diverse” in the
golden set for the pilot study.

results of this analysis are presented in Fig.[d While generally, annotator responses aligned with the
golden set labels, we observed a few exceptions. For instance, in one case labelled as a diverse set of
chairs, all annotators counted only 3 or 4 distinct chair types, indicating lower diversity than expected.
Upon closer inspection, these chairs appeared visually similar despite potentially different underlying
material prompts (e.g., metal, iron, aluminum).

3 Our framework in practice

We demonstrate our framework’s practical application by: (i) collecting comprehensive human
annotations with our template to compare models, (ii) using these annotations as ground truth
to evaluate diversity metrics, and (iii) comparing model rankings from human versus automatic
evaluations to highlight the gap between human-perceived diversity and current metric capabilities.

3.1 Ranking models via human evaluation

With the proposed prompt set from Sec. [2.2]and the human evaluation template introduced in Sec.
we evaluate the attribute-based diversity of five generative models, namely: Muse 2.2 [5], Imagen 2.5
[39], Imagen 3 [2], DALLE3 [3], and Flux 1.1 [20]. For each model, we generate 20 distinct samples
for each prompt, randomly combine them in 10 different sets of 8 images, and run side-by-side
evaluations for all 10 combinations of 2 models. For each side-by-side comparison, evaluations from
5 different raters were collected. Raters had access to a slide deck with instructions to perform the
task and were compensated for the time invested in the data collection. Details can be found in the
Appendix (Sec[B) Before comparing each model pair in terms of diversity, we evaluate the overall
annotations quality by computing the inter-annotator agreement via Krippendorff’s alpha reliability
(o) [L1]]. In Fig. @ we observe that for all cases o > 0.8, indicating a high-degree of agreement
across annotators [24]].

Ratings aggregation. Given the high levels of inter-annotator agreement for all runs of the human
evaluation, we aggregate annotations for each side-by-side comparison across raters by taking the
mode of the ratings. We then follow this step with a second aggregation, this time at the level of
all side-by-side comparisons for each concept. For instance, when comparing a given model pair,
there are 10 side-by-side comparisons for the concept apple (each side-by-side comparison here
corresponds to the evaluation of two sets of 8 images). At the end of this process, for the considered
models pair, we obtain a single human evaluation result for each concept in the prompt set.

Model ranking. Using the results from the ratings aggregation, we propose to use Binomial tests to
verify the following hypothesis: there is a significant difference between the outcomes of a given pair
of models. To do so, we count the number of categories for which each model was deemed best and
perform a two-sided Binomial test under the null-hypothesis that the rate for which each model is
the best for a concept is equal to 50% (i.e. both models have equal win rates). Results considering
a 95% confidence level for all tests are shown is Fig. [5b] Imagen 3 and Flux 1.1 are significantly
better or not worse than all other models. Imagen 2.5 and Muse 2.2 are not significantly better than
any contender, showing that our benchmark is able to capture an overall progress in diversity when
comparing newer and older models. DALLE3 is significantly better than Imagen 2.5, but does not
significantly surpass the performance of the other models considered for comparison.
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Figure 5: Human evaluation results. (a) Inter-annotator agreement results in terms of Krippendorff’s
a-reliability. (b) We compare model rankings in terms of significance in the number of wins with two-
sided Binomial tests under a 95% confidence level. Each entry in the grid represents a comparison
between two models. The sign indicates the model in the row is better (>), worse (<), or not
significantly different (=) than the model in the column.

3.2 Comparing autoevaluation metrics

While human evaluation is often considered gold standard, it can be impractical to rely solely on
human annotation. We then leverage the collected human annotations to perform an extensive study
of the role of embeddings for the Vendi Score

Autoraters based on the Vendi Score. Given a set of images X/* = {x{ #1 (corresponding

to a given model, concept ¢/ and attribute a’F € A7), we extract embeddings h=(27*) for each
image. hz is a pretrained feature extractor that can be dependent on a set of conditions = = {£;} C
(C x A) U {£°} where £ is a condition unrelated to the considered categories and attributes that can
be added to test the impact of conditioning. The different feature extractors and conditions we used
are detailed in the following paragraph, but here are a few generic examples to clarify the notation:
(i) h= takes only images as input. In this case, Z = {). (ii) hz is a vision and language model. In this
case, embeddings can be conditioned on text data that depends on the concept only (i.e., = = {¢/}),
attribute only (i.e., = = {a’**}), or both concept and attribute (i.e., = = {c/,a’*}). To test the
impact of conditioning on text, we can instead choose an unrelated prompt (i.e., using = = {£°}).
Finally, we aggregate the embeddings using a diversity metric to obtain a score for the set. As we do
not have access to a reliable reference in our setting, we use the Vendi Score [10], a reference-free
and widely adopted metric [28| 16} 12} [18]. The Vendi Score is defined as follows:

Definition 1 (Adapted from [[10], Definition 3.1). Given a concept &7, an attribute o/** and a set of
conditions =, let {xi’k, ..., x5kY denote a set of images representing a given concept and attribute.
Letk : X x X — R be the cosine similarity between the embeddings of two images, K= € R"*™ be
the kernel matrix, with Ki,, = k=(z] ¥ aBk), and let X, . . .| \E be the eigenvalues of K= /n. The
Vendi Score for the set {ml’ s iLk} is defined as:

sE(x]i’k Sl k) = = exp(— Z )\ log)\ 2)

Experimental setup. We compare three different types of embeddings. First, we compare embed-
dings obtained using only the image input. Here we consider two models trained for IMAGENET
classification — the IMAGENET INCEPTION model introduced in [36] and an IMAGENET VIT-B/16
model trained on IMAGENET21K as described in [35]. We also consider one self-supervised model,
DINOV2 [26]. Second, we consider embeddings conditioned on both the image and textual attribute.
We use PALI embeddings [4] at various points after fusing the text and visual input, and CLIP [29]]
combined text and image embedding. We use these embedding models to obtain an embedding for

'Results with other autoraters can be found in the Appendix Sec.??.
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Figure 6: Autoevaluation results: the performance of the Vendi Score given different embeddings
across three settings: (a) the golden set; (b) all the annotations gathered; (c) the “easy” subset of the
annotations where raters identified a diversity gap of > 4 for a pair. On the golden set, VIT performs
best but this does not transfer to side-by-side comparisons. The performance is generally better on the
“easy” split of the data, showing that the embeddings perform considerably worse when the difference
between the generated sets of images is more subtle—models are more similar.

each image in a set. We then use the Vendi Score in order to aggregate embeddings and obtain a
diversity prediction for the set. Finally, we consider the first word output by the PALI model as a
discrete token. We aggregate these outputs by counting the number of unique words generated for a
set to get an estimate for diversity.

For each pair of image sets, we analyze the agreement between a diversity assessment based on our
autoraters, and the assessment resulting from the human annotations, not taking into account pairs
where the annotators found the sets to be equally diverse. If the autoraters and the human evaluations

both indicate the same set as being the most diverse (i.e., s=(X { ’k) > sz(X ;’“) and annotators rated

the set X f’k generated with model 1 based on concept ¢/ and attribute a’* as more diverse than X g’“
generated with model 2 based on the same concept and attribute), we say that for that pair of sets,
the autorater is correct, else it is incorrect. We then report accuracy by aggregating the number of
pairs for which the autoraters are correct. Results are reported in Figs. We can see that, on
the “diverse” golden set, the VIT model does the best, and then the tokens of PALI. This is perhaps
surprising, as the VIT model is not specifically trained to focus on the aspects we are considering for
diversity but to be able to discriminate between broad classes. However, we see minimal difference
in results if we consider the model data. All approaches perform similarly and lead to accuracies that
are not significantly different. We hypothesize that the reason for the observed small difference in
results was that the models were similar to each other. As a result, we looked at ratings where the
annotators perceived a larger gap between models by using the counts as a proxy. We consider a
subset of the data where the difference in counts between the two sets is greater than 4, keeping about
24% of the data. We find that now, on the model data we see a bigger difference in results. First, all
autoraters are more accurate. Second, we can see that again the image based approaches (e.g., the
INCEPTION model, the DINO model and VIT model) perform best.

In Figs. [7]and [T3| we visualize examples for four side-by-side comparisons where the corresponding
autoraters indicate that a group of images have highest or lowest diversity. We can see that results
are reasonable and that in general, images with low diversity arise due to mode collapse, i.e. the
model generates a very similar image for the same concept. This could explain why the INCEPTION
model performs poorly on the pilot data but well on the model comparison data. INCEPTION features
are effective for identifying these issues but no effective for identifying diversity in the case of
confounding aspects (e.g., the background is changing while the animal is staying the same).

3.3 Ranking models with autoevaluation approaches

Ranking is achieved by counting the frequency at which the model on the left achieves a higher
score than the model on the top (i.e. for "model 1" on the left axis and "model 2" on the top,
we count how many times s=(X7%) > s=(XJ™*), with XJ"* generated with model 1, and XJ*
generated with model 2), and subtracting 0.5. The win rate matrices with all models and the score
distributions for Imagen 3 and Flux 1.1, the two models that were preferred by human annotators,
are shown in Sec.[D.3]in the Appendix. In order to test the significance of these comparisons, we
aggregate the scores per concept and perform a Wilcoxon signed-rank test under a 95% confidence
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level. On the left panel, we consider the IMAGENET INCEPTION embeddings, as they yielded the
highest accuracy on the model data. In the middle and the right panels, we consider text-conditioned
embeddings, as they are closest to our human evaluation procedure. We show the results using
PALI(EMB1), as they show a marginal advantage on model data. On the middle panel, we show
the results corresponding to conditioning the embedding model on the attribute only, while on the
right panel, conditioning takes into account both attribute and object. Results with other embeddings
can be found in the Appendix (Sec[D.5). Through the autoevaluation model ranking, we find that
independently of the chosen embedding, Imagen 3 is not worse than all other models, and Flux
1.1, Imagen 3 and DALLES3 are better than Imagen 2.5 and Muse 2.2. We also observe that using
the IMAGENET INCEPTION embeddings and the PALI(EMB 1) with a conditioning on object and
attribute captures more differences across the three top models, and that using both types of the
PALI(EMB1) embeddings captures more differences between Imagen 2.5 and Muse 2.2.

By adopting the model comparison results obtained with the human annotations as shown Fig. [5b]as
ground-truth, we find that all used embeddings are of similar quality in terms of closeness to human
perception of diversity. They all did not flip conclusions, but the autoevaluation approach seems more
sensitive to certain variations depending on the choice of embedding model and conditioning. Text
conditioning, while closest to the human evaluation procedure, did not show a significant advantage
with the current choice of embedding models and conditioning. However, we observe in Fig. [§|the
influence of the conditioning. The additional results in the Appendix (Sec. [D.3)) show the influence
of the choice of embedding models. It is possible that better choices of models and conditioning
prompts can lead to better results, but we leave this question open for future investigation.

4 Related work

The primary method for evaluating text-to-image models involves gathering human judgments on a
specific benchmark (i.e., a set of prompts). Previous research highlights that the composition of this
benchmark significantly influences the resulting model rankings. This has led to the development
of benchmarks with broader skill coverage, e.g., text rendering and spatial reasoning [6] 21}, [42]],
as well as benchmarks targeting specific skills like numerical reasoning [17]. Although human
evaluation remains the gold standard, numerous automatic metrics have been proposed to potentially
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Figure 8: Ranking by autoevaluation. We compare model pairs given the Vendi Score based on (a)
Inception, (b) PALI(emb1) conditioned on the attribute, and (c) PALI(emb1) conditioned on object
and attribute. Each entry in a grid represents a comparison between two models. Significance is
tested via the Wilcoxon signed-rank under a 95% confidence level. The sign indicates the model in
the row is better (>), worse (<), or not significantly different (=) than the model in the column.

replace human judgments, at least for certain applications [e.g., [13l 42} [15} 23 [34]. Rigorous
validation of these metrics is crucial across diverse conditions, including different prompt sets,
human evaluation templates, and models [42]. An important facet of evaluating text-to-image models
involves measuring the diversity of their output [9,40]]. This has resulted in different metrics, both
reference-based [132} [14, [33]] and reference-free 10} 30, 25} 27, 22]. The advantage of reference-free
metrics is their independence from a ground-truth set, which permits the evaluation of diversity in
broader contexts. One such recent metric, the Vendi score [[L0], has influenced subsequent research
[18, 12} [16]. Despite these developments, none of the proposed metrics have undergone thorough
evaluation, frequently being tested only on generic prompts or in simplified settings. Moreover,
surprisingly, the majority of previous studies lack human evaluation to demonstrate the validity of
these metrics. To address this gap, we introduce a prompt set designed for evaluating diversity across
particular attributes and propose and validate a human evaluation template to gather ground-truth
diversity judgments. Finally, we compare existing metrics and models under various conditions.

5 Discussion

Ensuring diversity in text-to-image (T2I) model outputs is essential, serving as a measure of their
ability to express real-world variety. However, rigorous evaluation of this diversity, particularly for
specific attributes, remains challenging. This paper introduces a novel framework for attribute-specific
T2I diversity evaluation. It comprises a systematic prompt set and a human evaluation template,
which has been validated to significantly improve the accuracy of human judgments by explicitly
defining the attribute of interest. This framework provides a crucial ground truth for understanding
and measuring diversity beyond general impressions.

Applying this framework, we ranked prominent T2I models based on their attribute-specific diversity,
identifying Imagen 3 and Flux 1.1 as strong performers. Furthermore, we leveraged our human data
to evaluate automated evaluation approaches based on the Vendi Score. Our results demonstrate that
the choice of embedding space, upon which autoevaluation metrics operate, is crucial for achieving
results that broadly align with human judgments. Notably, our findings indicate that Vendi Score-
based autoevaluation approaches can capture human-perceived diversity with approximately 80%
accuracy and correctly yield similar results for pairwise model comparisons when a comparable
statistical analysis methodology is employed. The proposed framework and our collected data are
intended to encourage future work on both T2I model improvement and the development of more
reliable evaluation metrics. The broad impact of this work lies in its potential to improve T2I model
quality in terms of diversity by providing an evaluation framework grounded in human perception.
Moreover, unlike the previous work that often relies on attribute classifiers (e.g., gender), our
evaluation methodology can be employed to measure demographic diversity in a classification-free
manner. This potentially contributes to the development of more responsible Al systems.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims in the abstract and introduction are regarding the dataset and human
evaluation template are supported by Sections [2.2]and[2.3] Claims related to experimental
results are supported by results in Sec. [3]

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our work in Sec.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

13



523

524

525

526

527
528

529

530
531
532

533

535

536

537
538
539

540

541
542
543
544

545

546
547
548
549
550
551
552
553
554
555
556
557
558
559
560

562
563
564
565
566
567
568
569

571
572
573
574
575
576

Answer: [NA]
Justification: [NA|
Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: For ensuring reproducibility of the human evaluation results, we describe in
detail the procedure to collect human annotations in Sec. @ For the auto-evaluation results,
all details related to how the embeddings were extracted for all considered cases, as well as,
hyperparameters for computing the Vendi Score are available in the Appendix.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

14



577

579
580

581

583
584

585

586

587
588

589
590
591
592

593
594
595

596

598
599
600

601
602

603
604

605

606
607
608

609

610
611
612

613

614

615
616

617
618

619

620
621

622

623
624

625

626

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The dataset created in this work will be publicly available upon acceptance
and is currently available to reviewers, ACs, and SACs as per the data submission policy for
the Datasets and Benchmarks track.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

 Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide experimental details in Sec. [3]as well as in the Appendix. Our
work does not involve training models, but we do disclose the hyperparameters necessary to
compute metrics.

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide error bars and statistical significance tests for all major experiments
in the paper.

Guidelines:

* The answer NA means that the paper does not include experiments.
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8.

10.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

* It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CIL, if the hypothesis
of Normality of errors is not verified.

 For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: Where possible (for models that were not call through an API), we stated the
computational resources that were used to run the experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We followed the code of Ethics by, for example, ensuring participants in the
data collection were fairly compensated by their time ($13.88 hourly wage) respecting the
minimum hourly wage for their location.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
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12.

Justification: We include a discussion on the broader societal impacts of our work in Sec.[3]
and in the Appendix.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: [NA|
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All text-to-image models used in our work are cited where appropriate and
used in according to their respective lincenses.

Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.
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13.

14.

15.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We introduced a new set of prompts, with corresponding images and human
evaluation results. The paper describe the process to collect the data which is available with
the necessary documentation.

Guidelines:

» The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [Yes]

Justification: We presented in the Appendix the instructions given to the annotations as well
as details about the compensation.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [Yes]
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783 Justification: We included information regarding raters instructions (that included potential
784 risks) in the Appendix.

785 Guidelines:

786 * The answer NA means that the paper does not involve crowdsourcing nor research with
787 human subjects.

788 * Depending on the country in which research is conducted, IRB approval (or equivalent)
789 may be required for any human subjects research. If you obtained IRB approval, you
790 should clearly state this in the paper.

791 * We recognize that the procedures for this may vary significantly between institutions
792 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
793 guidelines for their institution.

794 * For initial submissions, do not include any information that would break anonymity (if
795 applicable), such as the institution conducting the review.

796 16. Declaration of LLM usage

797 Question: Does the paper describe the usage of LLMs if it is an important, original, or
798 non-standard component of the core methods in this research? Note that if the LLM is used
799 only for writing, editing, or formatting purposes and does not impact the core methodology,
800 scientific rigorousness, or originality of the research, declaration is not required.

801 Answer: [Yes]

802 Justification: We disclose the use of LLMs to generate our prompts in Sec.[2.2]

803 Guidelines:

804 * The answer NA means that the core method development in this research does not
805 involve LLMs as any important, original, or non-standard components.

806 * Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
807 for what should or should not be described.
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Supplementary Material

A Human evaluation task details

A.1 Instructions

Before completing the annotation task, annotators were given a comprehensive set of instructions
including the following guidelines:

 The goal of the task is to compare the how diverse two sets of images are with respect to a
given attribute;

* For the given two sets of images, answer the question about how diverse the concept is with
respect to the specific attribute highlighted in the prompt;

* You should count how many different instances of a particular attribute they observe on the
left and right sets of images, separately;

» For example, if the attribute is “background” and the prompt is “animal”, raters should
count how many different backgrounds appear in each set of images and finally judge how
diversity of the two sets compares to each other with respect to this attribute;

* Finally, based on the counts, pick one of the following options: (1) Left is more diverse; (2)
Right is more diverse; (3) Equally diverse; (4) Unable to answer.

Along with the written instructions, annotators were also given examples corresponding to options 1,
2, and 3.

A.2 Additional information

In total, 24591 annotations were collected in our study, including the pilot runs. The average time to
complete the task with the final template was 32 seconds.

B Human evaluation template

B.1 Golden set concept-attribute pairs

The concept - attribute pairs used for the golden set and the validation of the human evaluation tem-
plate include: <color, flower>, <material, container>, <color, language>, <background,
animal>, <material, chair>, <side dish, cookie shape>, <pattern, clothing>, <style,
building>, <weather, biome>, <color, vehicle>.

B.2 User interface screenshots

ANIMAL LANGUAGE; attribute: color ! ] BUS; attribute: Type

Q1: How many values of the
attribute are present in the left set?

Q1: Which set of images is
more diverse with respect to
the attribute?

CILEFT CIRIGHT OJ EQUAL
[ UNABLE TO ANSWER

Q1: Which set of images is
more diverse with respect to
the attribute?

CILEFT CIRIGHT OJ EQUAL
[J UNABLE TO ANSWER

E. Q2 How many values of the
attribute are present in the right

Q3 Which set of images is more
diverse with respect to the
attribute?

CILEFT CRIGHT [ EQUAL

I UNABLE TO ANSWER

J J J

Q2: How confident are you in
your assessment:
CISLIGHTLY CIVERY

Q2: How confident are you in
your assessment:
CISLIGHTLY CIVERY

Figure 9: Examples of human evaluation templates used in the pilot study. In the template variant
w/o aspect, only the category is provided. In the variant with count, an additional question is
included for each set, prompting annotators to specify the number of distinct values observed for the
target attribute within the corresponding image set. For exact examples see Figs. @-@
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Figure 10: A screenshot of the user interface for one annotation example for the condition "No
aspect”.

Figure 11: A screenshot of the user interface for one annotation example for the condition "Aspect".

PIPELINE STAGE

e attrbute are present nth left set
umber between 1 and .

How many values of the afrbute are present I th rght
Setof images? Please enter a number betveen 1 and &

Figure 12: A screenshot of the user interface for one annotation example for the condition “Count”.
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C Additional human evaluation results

In Fig.[I3]we show the histogram of counts averaged across the 5 raters each set in all side-by-side
comparisons.

Histogram of annotated counts

8000
000
8000
= 5000
5
3 4000
3000
2000
0 — _H_m =
1 2 3 4 5 6 7 8

Annotated count

Figure 13: Distribution of all counts annotated by human raters.

D Additional autoevaluation results

D.1 Compute Usage

We used accelerators for running automatic evaluation metrics and generating the images. We run all
metrics on a TPU V3 hardwarg| The image generation pipeline ran on 4 TPUs.

D.2 Performance for detecting equally diverse image sets

We evaluate how good embeddings are at detecting equally diverse image sets. To not have a
threshold-dependent metric, we use the area-under-the-ROC curve (AUC). We construct the true
binary label as whether the image sets are labelled as equally diverse or not. We construct the scores
as the absolute difference between the metric scores. We then plot the AUC. A good metric would
have an AUC close to one, indicating that when the differences are small, the image sets are more
likely to have been labelled as the same by the human annotators. We plot results in Figure[T4] and
find that no metric performs particularly well (AUC < 0.6 in all cases). However, the IMAGENET
INCEPTION one performs best, presumably as it is trained to be invariant to small differences and so,
as we can see in Figures[7}{I3] as a lack of diversity usually arises when images are very similar, the
embedding performs well. However, we hypothesise that in the face of confounders (e.g. we want to
measure diversity of the color of an object but not the type of object), we would not expect such an
embedding to do well.

AUC for different metrics

Iy
)

— Inception (AUC: 0.580)
VIT (AUC: 0.504)
—— DINO (AUC: 0.547)
—— CLIP (AUC: 0.557)
PALI (emb 1) (AUC: 0.550)
—— PALI (logits) (AUC: 0.503)

True Positive Rate
o
]

0.0
0.00 0.25 0.50 0.75 1.00
False Positive Rate

Figure 14: AUC to measure metrics ability to identify sets of equal diversity. It is clear that no metric
is particularly effective at differentiating visually similar versus not sets of images.

2https://cloud.google.com/tpu/docs/v3
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D.3 Additional qualitative results

In Fig.[T3]we visualize examples for four side-by-side comparisons where the corresponding autoraters
indicate that a group of images have highest or lowest diversity.

Model 2 diverse sets 2 non-diverse sets

CLIP
Sun (Time of day)

PALI (TOKENS)

A
Animal (Species) Necklace (Material) Tree (Species) Whale (Species)

Figure 15: Qualitative results for different models, showing two very diverse and two non diverse
sets.

D.4 Impact of the prompt for the multimodal embeddings

We explore how the choice of prompt impacts results for the multimodal embeddings. We explore
four different prompts which differ in their specificity and relatedness to the attributes under question.
[attribute] and [object] are placeholders and filled in based on the object / attribute under test.
The templates we consider are as follows:

. OBJECT_ATTRIBUTE: What is the [attribute] of the [object]?
. ATTRIBUTE: What is the [attribute]?

. OBJECT: What is the [object]?
. EIFFEL: Where is the Eiffel Tower?

AW N =

We would expect the first two questions to be most effective as they directly ask about the property
for which we are measuring diversity. The object may be related but can be a confounder and the
“Eiffel Tower” question is unrelated.

Results are shown in Figure[I6] Surprisingly, we find that we do not see consistent benefit from the
two most related prompts (OBJECT_ATTRIBUTE, ATTRIBUTE), implying that the embeddings are
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(a) Results on the “diverse” golden set. (b) Results on the annotation set, where annotators

see count differences > 4.

Figure 16: Additional auto-eval results that show how results vary based on the textual prompt for the
multimodal embeddings. We can see that we do not see consistently better results with more related
prompts (What is the [attribute] of the [object]?,What is the [attribute]?),im-
plying the textual input is being ignored.

mostly vision based. A more controllable multimodal embedding we hypothesise would be more
effective in this setting.

D.S Model ranking with autoevaluation approaches
In this section, we include more results for model ranking based on our auto-evaluation approaches:

* Figures[I7] [I8]and [T9]show the results of compare model rankings in terms of significance
in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level using
additional models to compute embeddings. This figure completes Figure §]in Sec.[3:3] In
theses figures, we can see:

— Model ranking based on other embeddings. We observe that similarly to the observa-
tions in Sec.[3.3] for all embeddings except IMAGENET VIT, Imagen3 is not worse
than all other models. We also observe that independently of the choice of embedding,
Flux1.1, Imagen3 and DALLE3 are not worse than Muse2.2 and Imagen2.5. The
differences between the models in the top group and the bottom group are more or less
detected depending on the embeddings.

— As mentioned in the main text, we also see the differences between multimodal models.
These results highlight how the influence of the choice of embedding models and of
conditioning on the model ranking results.

. Figures@ [21]and 22] show the win rates corresponding to the results shown in Figure|[§]
in Sec. and the additional results described above on the left panels, and compare the
distributions of the two best and closest models in terms of behavior according to human
evaluation, Imagen3 and Flux1.1, on the right panels. These figures correspond respectively
to image models, multimodal model conditioned on attributes, and multimodal models
conditioned on objects and attributes.
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DALLE3 | = [ > [ X | > [ > DALLE3 | < | < [ X | > | >

Muse22 | < | = [ < [ X | > Muse22 | < [ < | < | x [ >

Imagen25| < | < | < | < | X Imagen2s5| < [ < | < | < | X
(@) ViT embeddings. (b) DINO embeddings.

Figure 17: Model ranking using auto evaluation approaches with additional image models. We
compare model rankings in terms of significance in the number of wins with Wilcoxon signed-rank
tests under a 95% confidence level. Each entry in the each of the grids represents a comparison
between two models. The > sign indicates the model in the row is better, worse (<), or not
significantly different (=) than the model in the column. The win rates in each of the grids are
computed using the scores based on (a) IMAGENET VIT embeddings and (b) DINO embeddings.

¢ o8 9 4 = 7 o8 g 9 = ¢ o8 9 9

5 2 2 % § : 2 2 3 B g 2 2 3 B

= & & = & E E a = E = & &a = &

Flux 1.1 X = | > | > Flux 1.1 X = | = ks > Flux 1.1 X < | = =
Imagen3 | = | x | > | = | > Imagen3 | = | x | = | > | > Imagen3 | > | x | > | > | >
DALLE3 < < X = | = DALLE3 = | = X > > DALLE3 = < X > >
Muse 2.2 < = = X = Muse 2.2 < < < X > Muse 2.2 < < < X =
Imagen2.5 | < < = | = X Imagen2.5 | < < < < X Imagen25| = | < < | = X

(a) CLIP embeddings. (b) PALI(emb2) embeddings. (c) PALI(tokens) embeddings.

Figure 18: Model ranking using auto evaluation approaches with additional vision and language
models conditioned on attributes. We compare model rankings in terms of significance in the
number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in the
each of the grids represents a comparison between two models. The > sign indicates the model in the
row is better, worse (<), or not significantly different (=) than the model in the column. The win rates
in each of the grids are computed using the scores based on (a) CLIP embeddings, (b) PALI(emb2)
embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on attributes.
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(a) CLIP embeddings. (b) PALI(emb2) embeddings. (c) PALI(tokens) embeddings.

Figure 19: Model ranking using auto evaluation approaches with additional vision and language
models conditioned on objects and attributes. We compare model rankings in terms of significance
in the number of wins with Wilcoxon signed-rank tests under a 95% confidence level. Each entry in
the each of the grids represents a comparison between two models. The > sign indicates the model
in the row is better, worse (<), or not significantly different (=) than the model in the column. The
win rates in each of the grids are computed using the scores based on (a) CLIP embeddings, (b)
PALI(emb2) embeddings, and (c) PALI(tokens) embeddings. All models are conditioned on objects
and attributes.
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(a) Inception

Imagen3 vs Flux1.1
Flux1.1/ 0.4
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s
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Flux1.1 | Imagen3 vs Flux1.1

- imagen3
- Flux1.1
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DALLE3 |

Muse2.2

Flux1.1
Imagen3
DALLE3
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Imagen3 vs Flux1.1
Flux1.1

=== Imagen3
- Fluxl.l
Imagen3

Flux1.1
Imagen3
DALLE3
Muse2.2
imagen2.5

Figure 20: Model ranking using auto evaluation approaches. Win rate matrices and score
distributions for Flux1.1 and Imagen3 using image models to compute embeddings.
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Figure 21: Model ranking using auto evaluation approaches. Win rate matrices and score distribu-

tions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings,
conditioned on attributes.
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Figure 22: Model ranking using auto evaluation approaches. Win rate matrices and score distribu-

tions for Flux1.1 and Imagen3 using text-conditioned multimodal models to compute embeddings,
conditioned on objects and attributes.
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D.6 Evaluating diversity using foundation models

Besides the investigating multiple embeddings with the Vendi Score for evaluating diversity as
presented in Sec. |3} we also propose to use the Gemini model family [37] for comparing T2I models
in terms of attribute-based diversity. For that, we use the following instruction: "I am currently
comparing two models with the prompt [prompt] and I would like to know which model generates
more diverse images with respect to the attribute [attribute], while disregarding any other attribute
in the images. In the following image I show [number of images] images generated by one model in
the left, which is [model in the left side] and [number of images] images generated by another model
in the right, which is [model in the right side]. You must count the number of different instances of
[attribute] in both sets and use this information to decide which set is the most diverse. If there is a
set of images which is more diverse than the other with respect to [attribute], can you tell me which
one is the most diverse set and explain why? Any other aspects in the images besides [attribute ] must
not be taken into account. You can also respond that both sets are equally diverse." In addition to the
instruction, similarly to the human evaluation, two sets of images are given to the model as input.

In Fig. 23] we show the results of three different Gemini models on the task by showing the accuracy
in the golden set described in Sec. @ The most recent version of Gemini, v2.5 Flash, achieves the
best performance, even surpassing the human raters in this task. These results indicate that such
approaches are promising strategies for evaluating diversity which are: (i) able to capture cases where
diversity is equally represented in both sets and (ii) do not rely on extracting embeddings.

0926

0.815 0.815

08 0556

Accuracy on Golden Set

Annotators v1.5 Flash v2.0 Pro v2.5 Flash
Evaluator

Figure 23: Accuracy of autoraters based on the Gemini model family on the task of comparing
diversity of side-by-side sets of 8 images from the golden set. Most recent versions of Gemini
perform better in the task, with the v2.5 Flash model surpassing the accuracy of human evaluators.
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