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A IMPLEMENTATION DETAILS

A.1 ARCHITECTURE AND TRAINING

For our experiments, we train a range of MatLMs varying from size 78M to 2.6B for 10B-
160B tokens – we scale model size equally with the number of training tokens (Hoffmann et al.,
2022). For each MatLM granularity, we also train a corresponding baseline vanilla Transformer
model. That is, for each model size we train Baseline-XL, L, M, S with dff = 4 ∗ dmodel, 2 ∗
dmodel, dmodel, dmodel/2. All models have 16 layers, 16 attention heads, and a dmodel : dff ratio of
1 : 4. We train a 256k vocabulary using the SentencePiece library (Kudo & Richardson, 2018), use
a maximum context length of 1024 tokens, and a batch size of 1M tokens. We pretrained the 2.6B
on 256 v3 TPU chips. We provide further details on these models in Table 3. For further details on
training data, we point the reader to (Thoppilan et al., 2022).

Table 3: Model details for the models scales used to conduct the experiments described in Section
4.1, with a breakdown of total parameter counts, non-embedding parameter counts and FFN param-
eter counts for each model granularity.

Parameter Count (full / spliced) Non-Embedding Params (full / spliced) FFN Params (full) dmodel N(tokens)

78M (74M / 72M / 71M) 12.6M (8.4M/6.3M/ 5.3M) 8.4M 256 10B
180M (164M / 157M / 152M) 50M (33.7M/25.3M/21.1M) 33.6M 512 20B
310M (272M / 253M / 244M) 113M (75M/56M/47M) 75.6M 768 30B
463M (397M / 363M / 346M) 201M (134M/100M/84M) 134M 1024 40B
850M (696M / 620M / 582M) 453M (302M/227M/189M) 302M 1536 80B

1.3B (1B / 927M / 860M) 805M (537M/403M/335M) 537M 2048 120B
2.6B (2B / 1.7B / 1.54B) 1.8B (1.2B/0.9B/0.7B) 1.2B 3072 160B

A.2 DOWNSTREAM EVALUATION

We evaluate all the LM models trained on set of 26 English tasks similar to (Brown et al., 2020; Du
et al., 2022; Chowdhery et al., 2022; Anil et al., 2023), including:

1. Open-Domain Closed-Book Question Answering tasks: TriviaQA (Joshi et al., 2017), Natural
Questions (Kwiatkowski et al., 2019), and WebQuestions (Berant et al., 2013).

2. Cloze and completion tasks: LAMBADA (Paperno et al., 2016), HellaSwag (Zellers et al.,
2019), and StoryCloze (Mostafazadeh et al., 2016).

3. Winograd-style tasks: Winograd (Levesque et al., 2012) and WinoGrande (Sakaguchi et al.,
2019).

4. Reading comprehension: SQuAD v2 (Rajpurkar et al., 2018) and RACE (Lai et al., 2017).
5. Common sense reasoning: PIQA (Bisk et al., 2019), ARC (Clark et al., 2018), and Open-

BookQA (Mihaylov et al., 2018).
6. SuperGLUE (Wang et al., 2020a)
7. Natural language inference: Adversarial NLI (Nie et al., 2020).

Among all the downstream datasets, we classify LAMBADA, Natural Questions, SQuAD v2, We-
bQuestions, and TriviaQA under “GEN” tasks as these require generating a few tokens, and the
remaining tasks under “RANK” tasks as they consist of choosing an option among the choices given
along with the input. For all the granularities corresponding to each model, we present evaluation
numbers along with development set log perplexity loss on all the 26 tasks in Tables 9 to 15. We
also perform evaluation on 2.6B Mix’n’Match models and provide it in Table 16.

B TRAINING AND INFERENCE COSTS

We currently make minimal changes and optimizations to the training scripts of vanilla Transformer
architecture. In other words, we use the same code for both Baselime and MatFormer, except using
different sized splices of FFN block for each forward pass. Note that this implementation is subop-
timal, as it involves added communication costs of FFN weight matrices when using model parallel
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Table 4: 2.6B MatLM and Baseline training time per step, GFLOPs per step, and forward pass
latencies. Each model is trained on 256 v3 TPU chips. Note that MatLM Fwd pass latency for any
granularity will be same as corresponding Baseline granularity latency.

Model Time (s) / step GFLOPs / step Fwd pass latency (s)

MatLM 2.326 470841 -
Baseline-XL 0.728 186884 0.234
Baseline-L 0.670 147317 0.215
Baseline-M 0.652 125517 0.198
Baseline-S 0.630 117556 0.190

training (discussed in more details in Appendix B.1). Though using a suboptimal implementation,
we achieve the wall-clock time for MatLM training ∼ 15% less to sum of wall-clock times to train
all the 4 granulatities baseline counterparts. We also note that at train time, the peak memory usage
is roughly equal to the sum of memory usage for the independently trained baselines. On the other
hand, at inference time, both baseline and MatFormer have the same memory footprint. We give
exact FLOP count, wall-clock time, and forward pass time (inference cost) of each baseline and
MatLM 2.6B model (or its corresponding smaller granularities) in Table 4. During serving, we ob-
serve the 2.6B model FFN latency to attention latency ratio = 56 : 44. We note that this FFN:MHA
latency ratio depends highly on scale and sequence length. More specifically, for a given sequence
length FFN latency dominates the overall latency at scale, while the attention heads’ cost increases
with sequence length. We refer the reader to Kim et al. (2023) for a more extensive illustration
of this. We emphasize that though we trained one MatFormer and compare its training time with
Baselines combined, we get many more models than the 4 model granularities we explicitly trained.

B.1 IMPROVING MATFORMER TRAINING EFFICIENCY

While MatFormer training uses asymptotically 2× FLOPs compared to a regular Transformer, op-
timizations are necessary to also realize a 2× runtime training performance. We discuss a few
strategies here, leaving exact experimental testing to future work.

Delayed gradient synchronization via local accumulation. Since multiple forward and backward
passes are made for each mini-batch in common implementations of data parallelism, this induces a
gradient synchronization across all device for each backward pass with additional gradient accumu-
lation. As such, for MatFormers a minimum of 2× the parameters worth of gradients are exchanged
for the MLP layers, thus increasing the communication overhead. Additionally, for some frame-
works, such as PyTorch, gradients of the full-weight matrix size need to be exchanged, leading to
4× more communication for our default experimental setup. A more efficient way to communicate
gradients is to keep a local gradient accumulation buffer, which is used to accumulate all gradient
from all subnetworks into the main, full-sized weight gradient. After all forward-backward passes
have been completed, synchronization of gradients – with additional overall of computation and
communication – can ensue. This saves 2× communication overhead, reducing communication
overhead to the same cost as a regular Transformer.

Fused MatFormer kernels. Depending on the accelerator (GPU/TPU), the smallest MatFormer
forward and backward pass can be inefficient in that the matrices are too small to fully utilize the
accelerator. To improve utilization at the cost of additional memory for activations, it is possible
to run the following computational fusion strategy for MatFormer computation: (a) duplicate mini-
batch 4×, (b) do the forward/backward pass for each layer for all MatFormer stages at the same
time, (c) in doing so, load the tile for the weight matrix once, and reuse it for all relevant MatFormer
stages. This strategy is similar to tiling strategies in FlashAttention (Dao et al., 2022) or convo-
lution (Krizhevsky, 2009) which increase the arithmetic intensity for small weights by reusing of
matrix multiplication tiles written to SRAM.

B.2 SPECULATIVE DECODING ATTENTION SHARING

An additional benefit of MatLM is that the attention cache is shared between the draft and verifier
model. When the XL model verifies S model’s draft, it overwrites the attention cache with its richer
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(a) Validation loss
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(b) 1-shot RANK Evals
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(c) 1-shot GEN Evals

Figure 6: Validation loss & one-shot downstream evaluation scores for the 2.6B MatLM & baseline
models. Mix’n’Match helps generate accurate models from MatLM that lie on the performance-vs-
compute curve spanned by the explicitly optimized submodels.
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Figure 7: Validation loss for the 2.6B baseline models and their Mix’n’Match counterparts. Unlike
MatLM, these extracted subnetworks perform poorly.

latent representation compared to the one generated by the drafter model. Note that 1) this does
not involve extra computation since MatLM has a single universal model including both draft and
verifier model; 2) attention sharing isn’t possible in the Baseline since they are not explicitly trained
together. Hence, latent representation of one model is quite meaningless to the other model. Thus,
attention sharing gives further improvement over vanilla speculative decoding as shown in Table 1.

C MIX’N’MATCH

To implement Mix’n’Match, we experimented with several heuristics to select the best subnetwork,
but consistently observed that gradually using larger granularities in deeper layers worked the best.
More formally, we use non-decreasing hidden dimensions with the least slope (change in hidden
dimensions across consecutive layers) across layers. Given that this choice behaves nearly opti-
mally (performance lies on the pareto-optimal curve), we did not focus on search techniques. For
completeness, we have plotted additional extracted subnetworks (in addition to what we have plot-
ted in Figure 2) in Figure 6. These additional datapoints follow a similar trend. In Figure 7, we
plot the validation loss of applying Mix’n’Match to vanilla Transformer baselines, and find the abil-
ity to Mix’n’Match granularities is restricted to MatLMs. In future work, we plan to extend the
nested substructure to other components of the Transformer - attention heads, model dimensions,
and n(layers). This would combinatorially expand the search space, warranting the use of more
advanced search methods. We leave this exploration to future work.

D SCALING LAWS FOR LANGUAGE DECODERS

We provide results split by granularities for validation loss, average score on RANK tasks, average
score on GEN tasks, and consistency in Figures 9, 10, 11, and 12 respectively. We observe that
while the gap in validation loss between MatLMs and Baselines appears to be constant, the gap for
downstream evaluations reduces with scale - in fact, granularities L, M and S have better downstream
performance for models larger than 1B. For consistency, the gap appears to reduce with scale, but
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one would need to scale the models by many orders of magnitude beyond what’s possible today for
baselines to have comparable consistency with MatLMs.

D.1 SCALING LAWS OF MATFORMERS VS TRANSFORMERS.

Scaling laws are essential tools to estimate optimality under as the cost of training or inference is
increased. Scaling laws can take diverse viewpoints such as overall training cost in FLOPS, training
data and parameter efficiency, and inference mean FLOPS utilization vs latency for deployments.

The scaling relationship of MatFormers versus Transformers is both simple and complex. Simple,
because MatFormers scaling curves for pretraining are only slightly offset from Transformers – thus
MatFormers only require a fixed relative amount of additional compute and the same hyperparame-
ters that work for Transformers are effective for MatFormers. For the setting where we use the same
hyperparameters as Transformers, MatFormers need at most 10−20% more training tokens to reach
the same loss as a regular Transformer. Initial experiments where we tune hyperparameters for the
individual forward/backward passes and by performing more careful initialization of the subslices
the gap appears to shrink. While we do not have enough data to make definite statements, it appears
MatFormer scaling can be improved to be close to Transformers scaling needing less than 0 − 5%
additional training tokens.

The complex scaling relationship comes from the fact that MatFormers allow the training of multiple
models with a single training run which is a qualitative different from Transformers and difficult to
factor into scaling equations. Essentially, in terms of efficiency, if we compare the training FLOPs
equivalent of all the extractable models from MatFormers, then MatFormer training alone has a
clear advantage in any case where all parameters used to train standard Transformer models on the
same dataset exceed 2.58P , where P is the number of parameters of the MatFormer and the largest
Transformer model. This is so because MatFormers use 2.58 times more FLOPs per token for a
training run than a Transformers: 4× more FLOPs for attention layers parameters and {1 + 1/2 +
1/4 + 1/8 = 1.875}× more FLOPs for MLP layers.

E FURTHER ANALYSIS ON LANGUAGE DECODERS

E.1 KL DIVERGENCE BETWEEN S, M, L AND XL MODELS

Figure 8 showcases the smoother consistency calculation between two generative models measured
with KL-divergence of the smaller model’s outputs with the larger model outputs. Similar to the
exact match style hard consistency metric used in the main paper, there is a significant gap between
the consistency of MatLM’s submodels with the MatLM-XL model and between that of the corre-
sponding baseline models. This points to how sampling strategies based on the output probabilities
do not change the behavioral consistency between two models and that it still follows the trend of
generating the token with the highest probability. This smoother notion of consistency argues for
the metric-space preservation given that the output classifier/embedding matrix is shared across all
the submodels of MatLM.

E.2 ABLATIONS ON TRAINING METHOD

We experiment with several aspects of our training method on a 850M parameter MatLM. Our
training procedure is unique compared to others (further discussed in Section 2) in 2 ways: (a) we
learn all granularities in the same weight space and (b) we use joint optimization as described in
Section 3. To assess the effect of these differences on performance, first we train a Transformer
model with independent FFN modules with {S, M, L, XL} granularites using joint optimization
(Independent modules). Next, we train a MatLM model with the only difference being that at each
step, we optimize for a single granularity chosen uniformly at random (Subsampling). We find that
joint optimizing a MatLM performs significantly better than these baselines, implying efficacy of
both aspects of our training method.

We discuss additional ablations such as re-weighting losses to improve the performance of the XL
model in Appendix E.4, and additionally studied scaling trends for these ablations. We found the
reweighting loss trick to be especially powerful, bringing the performance on downstream evals
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Figure 8: The smoother variant of consistency measures the KL divergence between the smaller
models and the corresponding XL model. This metric, unlike the exact match accuracy variant,
also accounts for different sampling strategies on the output distribution during deployment. In this
figure, we plot KL divergence of S, M, L granularities with respect to XL for the 2.6B parameter
model.

Table 5: We compared the validation loss of models from Joint Optimization to training MatLMs
with independent MLP modules for each granularity (Independent modules) and sampling a single
granularity to optimize for at each step (Subsampling) for 850M parameter models. We find that
Joint Optimization performs significantly better than both these methods.

Model Training Strategy XL L M S

Baseline - 2.840 2.910 2.9710 3.017

MatFormer

Joint Optimization 2.874 2.928 2.980 3.030
Independent MLP modules 2.894 2.942 2.985 3.030

Subsampling 2.929 2.946 2.999 3.049

within 0.1% for the XL model. This also nudges us towards finding better hyperparameters and
weight initializations for reliable scaling of MatLMs (Yang et al., 2022).

E.3 CHANGING EMBEDDING SIZE

Because of the ubiquity of 64k vocabs size (Brown et al., 2020) we additionally train models upto
201M non-embedding parameters similar to those described in Appendix A, except that the embed-
ding size is 64k (the largest model corresponds to the 463M parameter model). We plot the scaling
trends in Figure 13. Though 4 models is not enough to extrapolate a trend, we observe that the
scaling trend for validation loss appears to be similar.

E.4 REWEIGHTING STRATEGIES

We additionally experiment with reweighting the losses for the individual granularities in order to
boost the performance of the largest granularity while minimally impacting the performance of the
smaller granularities. We present the relative weights used in Table 6 as λ4 : λ3 : λ2 : λ1, and find
that in general, upweighting the largest granularity greatly improves quality. Another interesting
related direction for improving MatFormer performance further is granularity appropriate initializa-
tion (Yang et al., 2022).

E.5 SCALING LAWS FOR REWEIGHTED STRATEGY

We conduct scaling experiments similar to those described in Section 4.1 for the reweighed models,
specifically for models with the ratio 2 : 1.5 : 1.25 : 1, and plot the results in Figure 14. We note
that the scaling trend is similar to the MatLM with a 1 : 1 : 1 : 1 relative weighting (a = 19.889, b =
−0.130, c = 1.374), but with a slightly better validation loss .
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Table 6: For 850M model, we experiment with modifying LJOINT to use a weighted average as
opposed to an unweighted average, and report the results across all granularities. We find that all
strategies that upweight the loss for the largest granularity perform well, with modest degradation
on the M and S granularties.

Model Relative Weights XL L M S

Baseline N/A 2.840 2.910 2.971 3.017

MatFormer

1:1:1:1 2.874 2.928 2.980 3.030
2 : 1.5 : 1.25 : 1 2.867 2.927 2.986 3.051
1 : 1.25 : 1.5 : 2 2.883 2.936 2.982 3.026

2 : 1 : 1 : 1 2.863 2.929 2.985 3.043√
8 :
√
4 :
√
2 : 1 2.862 2.924 2.990 3.063

F FURTHER ANALYSIS ON VISION ENCODERS

F.1 DECOUPLING EFFECT OF MATFORMER ON PRETRAINING AND FINETUNING

Table 7 investigates the effect of MatFormer on pretaining and finetuning phases of ViT-L/16 model.
ViT-L/16 is typically pretrained on ImageNet-21K and then finetuned on ImageNet-1K for the final
evaluation. Table 7 shows that having a MatFormer during pretraining generates a better model for
downstream finetuning compared to regular ViT pertaining. At the same time, finetuning a vanilla
pretrained ViT with MatFormer results in flexibility being induced into the model. Despite being
up to 2% less accurate than its counterparts at some granularities, a fine-tuned MatViT learned to
reallocate the information to provide strong nested models. Considering that this is insignificant
compared to pretaining costs, possible to take the largest pretrained ViT model and finetune with
MatFormer to obtain a deployable MatViT variant.

Table 7: 2 × 2 grid of pairs to evaluate (top-1 accuracy (%)) the effects of MatFormer and standard
training on the pretraining (PT) on ImageNet-21K and finetuning (FT) on ImageNet-1K using a L/16
architecture. Using a MatFormer during pretraining helps bring more accurate, and elastic encoders
for downstream uses.

PT↓ / FT→ # Params (M) ViT MatViT

ViT

306 85.26 85.57
206 85.12 84.27
156 85.02 82.79
131 84.42 82.1

MatViT

306 85.58 85.61
206 – 85.40
156 – 85.02
131 – 84.41

F.2 TRADITIONAL IMAGE RETRIEVAL EVALUATION

Table 8 showcases traditional image retrieval evaluation on ImageNet-1K where the query and the
document encoders are the same for nearest neighbor retrieval. The 1-nearest neighbor (NN) based
evaluation closely follows one-vs-all classification results shown in Figure 4. Both MatViT variants
B/16 and L/16 have submodels that have as good or better retrieval performance compared to their
independently trained counterparts. Concretely, MatViT-based retrieval can be up to 0.5% more
accurate than the baselines while a 200M parameter MatViT submodel can be more accurate than
the 300M parameter ViT baseline.
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Table 8: Image retrieval 1-NN accuracy (%) when the query and document encoders are the same
model. Similar to the image classification results, MatViT variants either match or outperform the
corresponding standard ViT counterparts. Note that all the smaller models of a given model in
MatViT are extracted for free while the baselines have to be explicitly trained for the constraints.

Encoder # Params (M) ViT MatViT

B/16

85 77.46 77.38
57 76.58 76.41
43 74.90 74.49
36 71.44 71.72

L/16

300 83.17 83.67
200 82.92 83.23
150 82.81 82.89
125 82.22 82.14
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(f) Consistency with the XL-models

Figure 9: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B pa-
rameters and observe the scaling trends for each model granularity on validation loss. We observe
that the gap between MatLM and the baseline appears to be constant at each granularity. The con-
sistency between the submodels of granularities and the XL models shows the effect of MatFormer
joint training on natively ensuring similar behavior across submodels.
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(a) XL-model Average Score on GEN tasks
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(b) L-model Average Score on GEN tasks
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(c) M-model Average Score on GEN tasks
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(d) S-model Average Score on GEN tasks
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(e) Average Score on GEN tasks for all granulari-
ties - XL, L, M, S.

Figure 10: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on GEN
tasks 1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with
scale, outperforming the baselines for S, M, L granularities for the largest models.
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(a) XL-model Average Score on RANK Evals
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(b) L-model Average Score on RANK Evals
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(c) M-model Average Score on RANK Evals
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(d) S-model Average Score on RANK Evals
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(e) Average Score on RANK Evals for all granu-
larities - XL, L, M, S

Figure 11: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each model granularity for the average score on RANK
1-shot evaluation. We observe that the gap between MatLM and the baseline reduces with scale,
outperforming the baselines for S, M, L granularities for the largest models.
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(c) Consistency of L-model with XL-model
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(d) Consistency of all model granularities with
XL-model - L, M, S

Figure 12: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters and observe the scaling trends for each submodel S, M, L for the consistency with the
XL model. We observe that the gap between MatLM and the baseline reduces with scale, but one
would need to scale the baseline by many orders of magnitude to have consistency comparable to
that of MatLMs.
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(e) Loss for all granularities - XL, L, M, S

Figure 13: We train various decoder-only MatLM models at a range of sizes from 29M to 267M
parameters with an embedding size of 64k and observe the scaling trends for each model granularity
on validation loss. We observe that the gap between MatLM and the baseline appears to be constant
at each granularity, similar to what is observed in Figure 9.
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Figure 14: We train various decoder-only MatLM models at a range of sizes from 78M to 2.6B
parameters with a reweighing ratio of 2 : 1.5 : 1.25 : 1 and observe the scaling trends for each
model granularity on validation loss. We observe that the gap between MatLM and the baseline
appears to be constant at each granularity, similar to what is observed in Figure 9.
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Table 9: Downstream Eval numbers and development set log perplexity loss on 78M model size
granularities.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 0.14 0.16 0.19 0.25 0.14 0.3 0.19 0.28
NaturalQuestions (EM) 0.06 0.03 0.03 0.06 0.03 0.03 0.03 0.03

WebQuestions (EM) 0.1 0.2 0.15 0.2 0.2 0.3 0.3 0.3
LAMBADA 0.06 0.02 0.02 0 0.02 0 0 0
HellaSwag 25.42 26.28 26 25.87 25.95 25.9 25.95 25.94
StoryCloze 52.81 53.39 53.13 53.34 54.46 53.5 54.46 54.36

WSC 52.98 51.93 53.68 50.88 55.79 54.04 52.28 52.63
WinoGrande 48.46 51.54 51.54 47.99 50.99 48.46 48.86 49.41
Winograd 53.11 52.75 52.38 53.85 55.31 55.31 52.75 55.68

SQuAD v2 (EM) 11.19 36.71 33.14 33.77 20.08 29.17 22.78 30.97
RACE-H 25.53 25.84 24.73 25.44 26.07 25.9 25.96 25.84
RACE-M 29.18 30.15 28.83 29.94 28.83 30.43 29.74 31.48

PIQA 55.77 55.22 54.62 55.28 54.52 54.79 56.86 54.08
ARC-C 21.5 20.9 21.08 21.67 21.59 21.33 22.35 22.1
ARC-E 34.55 35.48 34.3 35.73 34.89 36.11 34.55 35.98
OpenBookQA 25.4 28.6 27.6 28 28.2 28 29.8 29

BoolQ 48.72 44.89 51.87 47.37 51.28 46.85 52.11 45.87
COPA 62 64 62 61 63 63 60 60
RTE 53.79 52.35 52.35 51.99 51.26 54.51 51.99 52.71
WiC 49.53 47.34 49.06 47.34 47.34 47.34 47.65 47.34
MultiRC (F1) 53.17 51.72 53.42 53.28 56.86 53.82 55.46 53.42
ReCoRD 39.52 39.22 40.03 39.95 40.55 40.42 40.8 40.83
CB 41.07 42.86 44.64 39.29 44.64 41.07 42.86 44.64

ANLI-R1 30.9 32 32.3 31.9 32.5 32.3 32.5 31.7
ANLI-R2 31.1 30.9 31.1 30.1 30.7 30.8 30.6 30.3
ANLI-R3 31.75 30.75 30.58 30.25 30.33 29.67 30 30.17

Average 33.76 34.82 34.95 34.41 34.83 34.74 34.65 34.81

Avg over GEN Taks 2.31 7.42 6.7 6.85 4.09 5.96 4.66 6.31

Avg over RANK Tasks 41.25 41.34 41.68 40.97 42.15 41.6 41.79 41.59

Dev set log pplx 4.010 4.012 3.97 3.96 3.905 3.908 3.83 3.868

Table 10: Downstream Eval numbers and development set log perplexity loss on 180M model size granulari-
ties.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 1.04 0.9 0.98 1.26 1.16 1.89 1.86 2.00
NaturalQuestions (EM) 0.08 0.11 0.14 0.08 0.3 0.11 0.28 0.11

WebQuestions (EM) 0.59 0.94 0.44 0.98 1.28 0.89 1.33 0.79
LAMBADA 0.16 0.68 0.43 1.16 1.51 0.95 0.49 0.99
HellaSwag 27.77 27.3 27.45 27.61 27.58 27.84 28.86 28.56
StoryCloze 56.33 56.07 57.03 56.87 57.3 57.78 58.63 58.52

WSC 55.44 55.44 56.49 60.35 58.25 58.6 57.54 58.6
WinoGrande 52.01 50.12 50.28 49.17 51.22 50.43 51.54 49.09
Winograd 54.21 55.68 56.78 57.51 61.54 58.61 60.44 61.17

SQuAD v2 (EM) 22.13 17.28 20.05 18.02 26.42 11.42 25.76 16.53
RACE-H 27.93 27.9 27.5 28.53 28.7 28.82 28.73 28.73
RACE-M 33.29 34.47 34.19 34.05 34.54 33.91 33.29 34.19

PIQA 57.13 58.05 56.91 57.94 57.94 58.00 59.52 58.92
ARC-C 22.53 22.61 23.63 22.27 24.06 22.1 24.66 23.55
ARC-E 40.24 39.39 40.19 40.49 41.71 40.74 41.62 41.16
OpenBookQA 30.60 31.00 30.80 31.80 31.00 32.80 34.00 32.6

BoolQ 54.13 52.23 52.45 52.05 55.63 52.17 55.9 48.44
COPA 62 61 61 61 61 64 64 65
RTE 52.71 53.07 52.35 53.43 50.54 52.71 52.71 52.71
WiC 47.34 51.41 47.34 49.37 47.96 47.81 47.65 47.34
MultiRC (F1) 54.34 53.34 45.65 56.12 47.47 52.62 47.62
ReCoRD 48.58 49.4 48.99 50.13 50.56 51.25 52.82 52.51
CB 42.86 44.64 42.86 44.64 39.29 44.64 42.86 42.86

ANLI-R1 31.8 32.6 31.8 32.4 32.4 32.8 32.2 32.1
ANLI-R2 30.5 29.8 31.1 29.8 32.00 30.5 30.5 30.1
ANLI-R3 30.08 30.25 30.5 32.00 33.5 31.42 30.67 30.42

Average 35.99 35.51 35.96 36.1 37.06 36.14 37.33 36.33

GPT3-GEN 4.8 3.98 4.41 4.3 6.14 3.05 5.94 4.08

GPT3-RANK 43.42 43.02 43.48 43.67 44.42 44.02 44.8 44.01

Dev set log pplx 3.55 3.55 3.512 3.505 3.456 3.458 3.354 3.40

27



Under review as a conference paper at ICLR 2024

Table 11: Downstream Eval numbers and development set log perplexity loss on 310M model size granulari-
ties.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 2.09 2.4 2.2 3.17 2.84 2.73 5.18 3.12
NaturalQuestions (EM) 0.11 0.28 0.28 0.5 0.58 0.3 0.91 0.61

WebQuestions (EM) 2.12 1.38 1.08 1.67 1.67 1.43 2.41 1.57
LAMBADA 0.29 1.79 0.66 1.92 1.9 2.46 2.76 2.64
HellaSwag 29.89 29.69 30.05 30.02 31.18 30.63 32.52 31.58
StoryCloze 59.17 58.85 59.54 60.13 60.24 60.5 61.68 61.36

WSC 61.05 59.65 59.3 58.6 61.75 56.84 58.95 57.19
WinoGrande 51.46 52.88 49.57 50.91 52.41 50.75 50.91 52.01
Winograd 55.68 56.04 57.88 59.71 63 59.71 61.17 60.07

SQuAD v2 (EM) 22.38 22.79 13.38 17.83 20.03 18.66 22.03 21.81
RACE-H 29.45 28.33 28.9 28.67 29.22 29.07 29.67 28.79
RACE-M 35.31 36.14 36.14 36.91 36.42 36.14 37.6 36.07

PIQA 58.98 59.9 59.58 59.85 59.79 60.45 62.19 60.61
ARC-C 23.38 20.82 23.21 21.33 23.81 23.21 25 22.95
ARC-E 42.3 42.34 44.11 43.52 44.53 44.44 46.8 45.62
OpenBookQA 32.8 35.2 34.6 36.4 35.2 35.8 36.8 36.6

BoolQ 53.43 59.05 55.32 58.72 52.87 57.22 54.22 55.6
COPA 61 61 61 66 64 63 60 66
RTE 52.71 54.51 53.43 51.62 51.62 53.07 54.15 49.46
WiC 47.18 48.43 47.65 49.22 47.65 50.16 47.34 51.25
MultiRC (F1) 53.07 51.69 53.5 51.36 48.46 47.14 45.72 46.23
ReCoRD 54.34 53.86 55.18 55.33 56.75 56.79 58.39 58.07
CB 42.86 46.43 42.86 46.43 42.86 46.43 50 51.79

ANLI-R1 32 31.3 32 32.2 32.5 32.3 32.2 32.8
ANLI-R2 32.6 30.2 30.9 29.8 30.6 31.2 29.8 30.9
ANLI-R3 32.08 29.25 30.75 30.08 32.17 31.25 31.5 32.17

Average 37.22 37.47 37.04 37.77 37.85 37.76 38.46 38.34

Avg over GEN Taks 5.4 5.73 3.52 5.02 5.41 5.12 6.66 5.95

Avg over RANK Tasks 44.8 45.03 45.02 45.56 45.57 45.53 46.03 46.05

Dev set log pplx 3.31 3.33 3.30 3.285 3.224 3.235 3.15 3.18

Table 12: Downstream Eval numbers and development set log perplexity loss on 463M model size granulari-
ties.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 4.63 3.87 4.87 4.55 6.11 5.63 8.09 6.48
NaturalQuestions (EM) 0.61 0.58 0.8 0.89 0.94 1.16 1.66 1.25

WebQuestions (EM) 2.31 1.62 2.26 2.02 2.85 2.31 2.85 2.56
LAMBADA 2.1 1.65 2.6 2.1 3.94 2.93 3.49 3.49
HellaSwag 32.12 31.57 32.83 32.16 33.8 33.48 36.21 35.08
StoryCloze 61.25 60.98 61.36 61.46 63.66 62.21 64.24 64.08

WSC 57.54 64.91 61.4 62.11 66.32 62.11 61.05 63.16
WinoGrande 52.33 51.38 49.09 50.99 52.64 50.36 53.12 52.64
Winograd 60.07 63.74 60.07 62.27 67.4 61.54 68.5 63.74

SQuAD v2 (EM) 21.7 21.85 25.8 19.71 24.69 21.85 23.08 18.28
RACE-H 29.85 29.45 29.47 29.79 30.56 29.79 30.7 30.02
RACE-M 37.53 37.6 37.33 38.93 40.39 39.62 40.95 39.21

PIQA 61.26 61.53 61.48 62.08 60.99 63.22 63.17 63.71
ARC-C 23.04 22.7 24.06 22.35 24.49 22.18 23.72 23.63
ARC-E 45.83 44.44 46.3 45.62 47.73 47.85 51.73 49.12
OpenBookQA 37.2 36.4 37 37.8 36.4 39.2 41 38.4

BoolQ 52.39 52.69 56.12 52.05 50.28 51.28 54.98 47.95
COPA 67 62 73 63 71 63 67 66
RTE 52.35 53.07 53.43 52.71 52.35 52.71 52.35 51.99
WiC 47.34 47.34 47.34 47.34 47.34 47.34 47.34 47.34
MultiRC (F1) 45.63 46.02 54.4 46.38 52.79 49.28 52.34 41.71
ReCoRD 57.58 58.65 59.31 59.71 60.87 61 63.42 61.77
CB 42.86 42.86 44.64 42.86 44.64 42.86 42.86 42.86

ANLI-R1 32.6 32.5 31.7 33.1 31.4 32.3 32.5 32.6
ANLI-R2 30.7 30.7 28.4 30.5 30.4 30.6 31.2 31.8
ANLI-R3 30.83 30.67 30.08 30.75 30.83 30.67 30.92 30.75

Average 38.02 38.11 39.04 38.2 39.8 38.71 40.33 38.83

Avg over GEN Taks 6.27 5.91 7.27 5.85 7.71 6.78 7.84 6.41

Avg over RANK Tasks 45.59 45.77 46.61 45.9 47.44 46.31 48.06 46.55

Dev set log pplx 3.205 3.217 3.16 3.16 3.096 3.11 3.023 3.06

28



Under review as a conference paper at ICLR 2024

Table 13: Downstream Eval numbers and development set log perplexity loss on 850M model size granulari-
ties.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 9.26 6.62 10.82 9.78 11.07 11.72 13.31 13.76
NaturalQuestions (EM) 1.66 0.89 1.69 1.58 2.24 2.38 2.66 2.74

WebQuestions (EM) 3.89 3.35 4.08 4.18 3.74 4.43 4.08 5.31
LAMBADA 3.2 8.25 6.97 10.83 8.19 10.44 14.03 10.83
HellaSwag 36.11 36.64 38.26 37.7 40.63 39.64 43.4 42.55
StoryCloze 64.78 65.26 66.33 66.17 68.25 67.13 71.25 69.64

WSC 66.32 65.96 63.16 64.21 69.82 69.12 70.53 68.42
WinoGrande 52.17 51.54 52.25 52.57 55.17 52.96 54.14 54.62
Winograd 68.13 69.23 67.03 71.43 71.06 70.33 72.16 72.89

SQuAD v2 (EM) 29.9 23.79 29.07 25.51 25.07 26.39 33.41 28.46
RACE-H 30.39 30.76 31.93 31.88 32.53 31.88 33.79 32.73
RACE-M 40.95 40.95 42.06 41.16 42.27 42.55 44.64 42.48

PIQA 64.04 63.98 64.64 64.91 65.45 65.23 67.25 66.21
ARC-C 24.49 24.15 26.71 24.91 26.71 26.54 27.13 27.47
ARC-E 52.15 51.01 53.66 52.95 56.27 54.92 57.11 56.57
OpenBookQA 38.2 40.4 40.8 41.2 42.8 40.8 43 42

BoolQ 52.63 50.31 51.9 47.8 56.73 50.15 55.6 48.41
COPA 68 73 68 73 71 73 73 76
RTE 51.62 51.99 52.71 52.35 51.62 51.99 53.07 52.71
WiC 47.34 47.18 47.34 47.18 47.34 47.18 47.34 47.18
MultiRC (F1) 44.37 51.32 52.11 50.46 54.7 53 37.58 47.16
ReCoRD 63.52 64.27 65.03 65.36 67.55 66.53 69.56 68.03
CB 42.86 37.5 42.86 42.86 42.86 42.86 46.43 39.29

ANLI-R1 30.9 31.8 33.7 32.1 31.7 32.2 32.6 32.4
ANLI-R2 31.8 31.5 31.5 30.9 31.1 30.6 30.4 30.8
ANLI-R3 32 30.25 32.83 30.17 30.75 30 30.58 30.25

Average 40.41 40.46 41.44 41.27 42.56 42.08 43.39 42.65

Avg over GEN Taks 9.58 8.58 10.53 10.38 10.06 11.07 13.5 12.22

Avg over RANK Tasks 47.75 48.05 48.8 48.63 50.3 49.46 50.5 49.9

Dev set log pplx 3.017 3.03 2.971 2.98 2.91 2.928 2.84 2.874

Table 14: Downstream Eval numbers and development set log perplexity loss on 1.3B model size granularities.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 11.92 12 14.68 13.09 16.48 14.91 20.14 17.62
NaturalQuestions (EM) 1.88 2.19 2.24 2.47 3.07 2.99 4.79 4.13

WebQuestions (EM) 3.84 5.02 4.72 5.36 5.07 5.76 6.05 6.15
LAMBADA 7.3 9.94 13.55 12.34 17.97 13.51 22.65 19.21
HellaSwag 40.53 40.35 42.86 42.5 46 44.48 49.78 47.69
StoryCloze 67.29 68.2 69.75 69.91 72.37 71.14 73.81 72.8

WSC 64.56 65.96 64.91 69.12 67.72 69.82 72.63 69.82
WinoGrande 55.8 53.99 56.67 55.25 56.12 57.7 58.25 58.41
Winograd 71.06 68.5 67.77 70.7 73.99 70.33 72.53 72.89

SQuAD v2 (EM) 29.63 35.47 28.85 34.64 36.55 34.47 39.48 36.39
RACE-H 32.19 33.19 33.08 34.39 34.48 35.11 36.59 35.25
RACE-M 43.8 44.22 44.22 45.96 47.7 45.75 50.07 46.59

PIQA 66.49 64.36 66.05 66.38 67.52 66.97 69.1 67.68
ARC-C 27.99 25.77 27.65 27.22 29.01 28.75 30.55 31.48
ARC-E 56.44 54.08 58.54 57.03 59.85 58.84 63.26 61.83
OpenBookQA 41.4 42.2 41 42 43.4 42.8 44.8 45.4

BoolQ 52.57 49.85 54.86 52.42 53.76 56.06 55.35 53.52
COPA 70 75 69 77 74 74 77 75
RTE 52.35 53.07 53.07 52.35 54.15 53.43 52.35 49.82
WiC 47.34 47.34 47.18 47.34 47.34 47.34 48.43 47.02
MultiRC (F1) 42.98 46.69 43.82 49.09 45.29 48.2 40.99 46.42
ReCoRD 67.32 67 69.02 68.61 71.13 70.26 73.4 71.49
CB 42.86 44.64 46.43 42.86 48.21 44.64 42.86 37.5

ANLI-R1 32.5 33.5 31.9 33.8 33 33.3 32.4 32.1
ANLI-R2 30.3 34.7 30.5 34.6 30.6 33.1 31.5 33.5
ANLI-R3 30.5 33.17 31.5 33.67 31.33 33.5 32.58 33.67

Average 41.96 42.71 42.84 43.85 44.85 44.51 46.21 45.13

Avg over GEN Taks 10.91 12.92 12.81 13.58 15.83 14.33 18.62 16.7

Avg over RANK Tasks 49.35 49.8 49.99 51.06 51.76 51.69 52.77 51.9

Dev set log pplx 2.90 2.923 2.856 2.867 2.79 2.81 2.718 2.76
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Table 15: Downstream Eval numbers and development set log perplexity loss on 2.6B model size granularities.

Downstream Task Baseline-S MatLM-S Baseline-M MatLM-M Baseline-L MatLM-L Baseline-XL MatLM-XL

TriviaQA (EM) 18.58 18.64 19.83 21.41 25.17 24.9 28.84 28.01
NaturalQuestions (EM) 3.05 3.13 3.19 3.66 4.76 4.24 6.73 5.01

WebQuestions (EM) 5.61 6.74 4.43 6.3 6.1 6.74 8.27 7.78
LAMBADA 18.46 13.74 29.92 19.89 27.34 24.84 27.94 29.98
HellaSwag 46.41 46.01 49.04 48.94 52.87 52.2 57.14 55.33
StoryCloze 72.26 72.1 73.54 73.22 75.09 75.04 77.02 75.79

WSC 71.23 69.82 70.88 71.58 75.09 74.39 80 77.54
WinoGrande 56.83 57.85 57.62 56.91 60.93 59.19 62.19 59.59
Winograd 76.56 71.43 72.89 74.36 76.56 74.73 81.68 78.75

SQuAD v2 (EM) 34.89 37.97 34.33 40.07 34.89 42.24 43.47 42.59
RACE-H 33.62 34.76 35.59 35.85 36.91 36.82 38.91 37.28
RACE-M 47.63 47.49 49.44 49.51 50.77 50.07 53.34 51.67

PIQA 67.74 67.79 68.39 68.28 69.21 69.59 71.49 71.11
ARC-C 29.95 30.29 31.83 31.91 32.51 34.22 35.67 35.41
ARC-E 60.82 59.97 61.2 62.42 63.51 64.56 67.76 64.86
OpenBookQA 45.6 43.8 45.4 44.8 49 46.4 49 49.4

BoolQ 53.58 52.87 53.15 53.52 59.36 54.89 60.8 57.22
COPA 74 74 77 76 75 78 82 81
RTE 49.1 53.07 49.82 54.15 48.01 54.51 48.01 52.35
WiC 47.34 47.34 47.18 47.34 47.34 47.18 47.02 47.49
MultiRC (F1) 43.4 52.28 43.65 51.64 46.99 53.7 39.24 53.77
ReCoRD 71.34 71.9 72.79 72.97 74.86 74.57 76.71 75.32
CB 28.57 44.64 46.43 46.43 41.07 50 50 44.64

ANLI-R1 32.4 32.3 30.4 32.3 32.5 32.1 31.2 31.5
ANLI-R2 30.4 30.1 30.6 31 30.1 30.2 31.7 30.8
ANLI-R3 30.75 30.83 31.25 31 33.5 30.92 32 31.92

Average 44.23 45.03 45.76 46.36 47.29 47.93 49.54 49.08

Avg over GEN Taks 16.12 16.04 18.34 18.26 19.66 20.59 23.05 22.68

Avg over RANK Tasks 50.93 51.94 52.29 53.05 53.86 54.44 55.85 55.37

Dev set log pplx 2.77 2.787 2.722 2.732 2.66 2.68 2.592 2.63
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Table 16: Downstream eval numbers and development set log perplexity on 2.6B MatLM
Mix‘n’Match granularities. For original granularities, please refer to Table 15. First row repre-
sents the non-embedding parameters of the model.

Downstream Task 830M 1B 1.11B 1.32B 1.43B 1.55B 1.65B

TriviaQA (EM) 18.89 22.43 23.8 25.77 26.26 26.15 26.6
NaturalQuestions (EM) 3.49 3.77 4.02 4.07 4.46 4.65 5.12
WebQuestions (EM) 5.95 6.1 6.64 6.69 6.94 6.69 6.69
LAMBADA 16.34 20.16 23.07 24.8 24.32 25.87 29.13
HellaSwag 47.98 50.46 51.29 52.78 53.75 54.16 54.56
StoryCloze 73.01 73.33 74.83 75.2 75.68 75.41 75.63
WSC 70.88 70.53 74.04 72.98 74.74 73.33 77.19
WinoGrande 57.85 58.88 60.93 58.88 59.67 60.06 59.91
Winograd 73.26 73.26 76.19 74.36 76.56 77.66 78.02
SQuAD v2 (EM) 36.49 39.72 38.05 41.33 41.08 40.26 41.36
RACE-H 34.71 35.93 35.48 36.74 36.62 36.22 36.96
RACE-M 46.59 48.89 49.44 50.28 50.42 51.32 50.91
PIQA 68.5 69.04 69.53 70.4 70.46 70.51 70.29
ARC-C 31.06 33.11 33.19 34.81 35.75 35.84 34.56
ARC-E 62.29 62.58 62.63 64.86 65.99 65.49 64.69
OpenBookQA 44.6 46.2 46.8 47 47.4 47.4 47.6
BoolQ 54.86 55.08 54.46 55.78 58.38 57.19 56.88
COPA 76 76 75 80 77 80 80
RTE 53.43 53.79 53.79 52.71 53.79 54.51 53.79
WiC 47.34 47.34 47.18 47.34 47.18 47.34 48.12
MultiRC (F1) 53.34 53.85 52.97 54.23 57.57 55.09 54.91
ReCoRD 72.21 73.25 73.98 74.43 74.72 75.05 75.37
CB 48.21 46.43 48.21 50 50 44.64 55.36
ANLI-R1 32.4 32.1 32 32.4 32.3 31.4 32.4
ANLI-R2 30.5 30.6 30.6 30.6 30.7 30.4 31.4
ANLI-R3 31.17 31.17 31.17 31.5 31 31.5 31.33
Average 45.82 46.69 47.28 48.07 48.57 48.39 49.18
Avg over GEN Taks 16.23 18.44 19.12 20.53 20.61 20.72 21.78
Avg over RANK Tasks 52.87 53.42 53.99 54.63 55.22 54.98 55.71

Dev set log pplx 2.774 2.729 2.706 2.68 2.675 2.663 2.65
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