A CAR Classifiers

In this appendix, we provide some details about our CAR classifiers.

Implementation. To determine the concept activation regions, we fit a SVC s¢ for each concept
¢ € [C]. This process is described in Algorithm 1.

Algorithm 1: Fit CAR Classifier
Input: Neural network f =log: X — H — Y, kernel function » : H? — R, concept

positives P¢ C X, concept negatives N¢ C X
Output: CAR SVC Classifier s¢ : H — {0, 1}

s& + SVC(k) ; /* Initialize SVC classifier */
D+ {(g(x),Ipe(x)) | & € P |N*}; /* Assemble SVC training set */
(s¢).fit(D) ; /* Fit SVC classifier */
return s¢,

where I[p. is the indicator function on the set P°¢. Our implementation leverages the SVC class
from scikit-learn [71]. We use the default hyperparameters for each CAR classifier that appears in
our experiments. The resulting classifier s, can then be used to assess if a test point x € X has a
representation g(x) € H that falls in the CAR H€ or not:

He if s og(x)
9(@) € { H™e if s€og(x) =

1

Choosing the kernel. Algorithm 1 requires the user to specify a kernel function . To select this
kernel, a good approach is to train several SVCs s¢ with different kernels « and see how each SVC
generalizes on a validation set. We illustrate this process with MNIST in Figure 8. We note that
the Gaussian RBF kernel outperforms the other kernels on the validation set, although the Matern
kernel achieves perfect accuracy on the training set. This highlights the importance of evaluating a
CAR classifier on a held-out dataset to make sure that the related CAR offers a good description of
how concepts are distributed in the latent space H. In our experiments, we found that Gaussian RBF
kernels are often the most interesting option.

Concept set size. Algorithm 1 requires the user to specify concepts sets P¢ and N°. What size
N¢ = |P¢| = |N¢| should we choose for these concept sets? It seems logical that larger concepts
sets are more likely to yield more accurate CARs. To study this experimentally, we propose to fit
several concept classifiers for MNIST by varying the size N¢ of their training concept sets P and

=
<)

o
©

o
o

e
N

o
o

Kernel
Gaussian RBF
Linear
Polynomial
Sigmoid
Matern

Overall Concept Accuracy
© ©
R w

i

0.2

Training Validation
Set

Figure 8: Accuracy of CAR classifiers for MNIST concepts with different kernels.

19

1.00
0.98
0.96
>
o
e
2 0.94
O
<
@
@ 0.92
Concept
0.90 — Loop
Vertical Line
—— Horizontal Line
0.88 —— Curvature
0 50 100 150 200 250

Concept Sets Size

Figure 9: Accuracy of CAR classifiers for MNIST concepts for various concept set size N¢ (average
and 95% confidence intervals based on 10 runs).

N¢. We report the results in Figure 9. As we can see, the curves flatten above N¢ > 200. Increasing
the concept sets size beyond this point does not improve the accuracy of the resulting CAR classifier.
We recommend to acquire concept examples until the performance of the CAR classifier stabilizes.
In our experiments, we found that N¢ = 200 examples is often sufficient to obtain accurate CAR
classifiers.

Tuning hyperparameters. In the case where the user desires a CAR classifier that generalizes as
well as possible, tuning these hyperparameters might be useful. We propose to tune the kernel type,
kernel width and error penalty of our CAR classifiers s¢ for each concept ¢ € [C] by using Bayesian
optimization and a validation concept set:

1. Randomly sample the hyperparameters from an initial prior distribution 6;, ~ Pprior.

2. Split the concept sets P, N into training concept sets Pg..;,, NC.ai, and validation concept
sets P, , NE,.

3. For the current value 8}, of the hyperparameters, fit a model s¢ to discriminate the training
concept sets Pyins Nrain-

Yeepe, Lsio 9(@)=1) + X e ne sk g(2)=0)

[P UNE

val al

4. Measure the accuracy ACC,, =

5. Update the current hyperparameters 65, based on ACCy,; using Bayesian optimization
(Optuna in our case).

6. Repeat 3-5 for a predetermined number of trials.
We applied this process to the CAR accuracy experiment (same setup as in Section 3.1.1 of the main
paper) to tune the CAR classifiers for the CUB concepts. Interestingly, we noticed no improvement
with respect to the CAR classifiers reported in the main paper: tuned and standard CAR classifier

have an average accuracy of (93 + .2)% for the penultimate Inception layer. This suggests that the
accuracy of CAR classifiers is not heavily dependant on hyperparameters in this case.

B TCAR Global Explanations

In this appendix, we provide some details about the TCAR scores.

Implementation. When the CAR classifiers are available, they permit to compute TCAR scores
through Algorithm 2.

TCAR between concepts. Up until now, we have discussed TCAR scores that indicate how models
relate classes to concepts. It is possible to define a similar score to estimate how models relate two

20

Algorithm 2: Compute Class-Concept TCAR Score

Input: Neural network f =log: X — H — Y, CAR classifier s§ : H — {0, 1}, set of
examples Dy, C X of a given class k € [dy]

Output: TCAR score TCAR], € [0, 1]

count < 0; /* Initialize concept positive count */
for x € D, do
if s¢ o g(x) = 1 then
‘ count <— count + 1; /* Increment count if example in the CAR */
end
end
TCAR}, +— count/|p,| ; /* Normalize count to get TCAR */

return TCAR;,

concepts with each other. Given a set D C X of examples, we define the TCAR score associated to
the concepts ¢1, ca € [C] as the ratio

oen la(D)H H]
TEART = 10D N Usen)

Again, TCAR = 0 corresponds to no overlap and TCAR = 1 describes a perfect overlap. We note that
the concept-concept TCAR score can be interpreted as a Jaccard index between the sets g(D) [| H
and g(D) (| H*2. This score is symmetric with respect to the concepts: TCAR® 2 = TCAR®"“.
The computation of this score is done as in Algorithm 3.

Algorithm 3: Compute Concept-Concept TCAR Score

Input: Neural network f =log: X — H — Y, CAR classifiers s¢! : H — {0,1} and
s :H — {0,1}, set of examples D C X

Output: TCAR score TCAR“? € [0, 1]

numerator < 0 ; /* Initialize score numerator */
denominator < 0 ; /* Initialize score denominator */
for x € D do
if s¢' o g(x) = 1 and s o g(x) = 1 then
‘ numerator < numerator + 1 ; /* Increment if example in both CARs */
end

if st og(x) =1ors?og(x)=1then

‘ denominator <— denominator +1; /* Increment if example in one CAR */

end

end

TCAR®> 4— numerator/denominator ; /* Assemble the TCAR score */
return 7CAR*

TCAR between MNIST concepts. As an illustration, we compute concept-concept TCAR scores
for the MNIST concepts and report the results in Figure 10. We see that the model relates concepts
that tend to appear together (e.g. curvature and loop). Hence, concept-concept TCAR scores can
serve as a proxy for the concept semantics encoded in a model’s representation space. We note the
similarity with the correlation between concept-based feature importance illustrated in Figure 6. The
main difference is that concept-concept TCAR scores do not explicitly refer to input features.

21

Generalizing concept sensitivity. In our formalism, it is perfectly possible to define a local concept
activation vector through the concept density p¢ : H — R™T defined in Definition 2.1. Indeed, the
vector Vi, p°lh] € H points in the direction of the representation space H where the concept density
(and hence the presence of the concept) increases. Hence, this vector can be interpreted as a local
concept activation vector. Note that this vector becomes global whenever we parametrize the concept
density p© with a linear kernel (1, ho) = h] h,. Equipped with this generalized notion of concept
activation vector, we can also generalize the CAV concept sensitivity S} by replacing the CAV w® by
Vhp©[h] for the representation h = g(x) of the input x € X:

Si(@) = (Veplg(@)])T(Vrlklg(2)]).

In this way, all the interpretation provided by the CAV formalism are also available in the CAR
formalism.

C CAR Feature Importance

In this appendix, we provide some details about our concept-based feature importance.

Implementation. Concept-based feature importance uses the concept densities p to attribute an
importance score to each feature in order to confirm/reject the presence of a concept ¢ € [C]
for a given example x € X. This process is described in Algorithm 4. We stress that features
importance scores are computed with concept densities and not with SVC classifiers. The reason for
this is that SVCs are non-differentiable functions of the input and are therefore incompatible with
gradient-based attribution methods such as Integrated-Gradients [25]. One could argue that a sparse
version of the density p¢ could be used by only allowing support vectors from the SVC to contribute.
Our first implementation was relying on this approach. Unfortunately, this often led to vanishing
importance scores. A possible explanation is the following: Gaussian radial basis function kernels
t(h1, hy) = exp [—(7||h1 — ha||;,)?] decay very quickly as ||hy — ha||,, increases. Hence, unless
the example & we wish to explain has a representation g () located near a support vector of the SVC
classifier, the sparse density (and its gradients) vanishes. On the other hand, using the density from
Definition 2.1 allows us to incorporate the representations of all concept examples. This makes it more
likely that the representation g () is located near (at least) one of the representation that contributes
to the density. This permits to solve the vanishing gradient problem that led to vanishing attributions.
It goes without saying that this solution comes at the expense of having to compute a density that
scales linearly with the size N of the concept sets. In our implementation, we make this tractable by
restricting to small concept sets (N¢ < 250) and by saving the concept sets representations g(P°)
and g(N°) to limit the number of queries to the model. We use Captum’s implementation of feature
importance methods [72]. When using radial basis function kernels, we tune the kernel width ~

1.0

Loop

Vertical 0.0047

Line - 0.6
-4
)
=
Horizontal -04
Line 0.0022 0.48
=02
Curvature 0.0005 0.096
=00
Loop Vertical Horizontal Curvature

Line Line

Figure 10: TCAR score between MNIST concepts.

22

with Optuna [73] with 1, 000 trials so that the Parzen window classifier [z+ o p°, where Iz+ denotes
the indicator function on R, accurately discriminates between positives representations g(P¢) and
negative representations g(/N©).

Algorithm 4: Compute concept-based feature importance

Input: Neural network f =log: X — H — Y, kernel function x : H2 — R™, concept
positives P¢ C X, concept negatives N'¢ C X, feature importance method
a: ARY) x X — R¥x, example z € X

Output: Feature importance vector a € R4X for the example x

p° < Density(g, x, P¢,N°) ; /* Initialize concept density as Def. 2.1 %/
a+a(ptog,x); /* Compute feature importance vector */
return a

where A(R?) denotes the hypothesis set of scalar functions on the input space X In this case, this
corresponds to the set of neural networks with input space X and scalar output.

Completeness. Completeness is a crucial property of some feature importance methods. It guarantees
that the feature importance scores can be used to reconstruct the model prediction. To make this
more precise, let f : X — R be a model with scalar output and let x € X be an example we
wish to explain. Feature importance methods assign a score a;(f,) to each feature ¢ € [dx]|. This
score reflects the sensitivity of the model prediction f(x) with respect to the component x; of «.
Completeness is fulfilled whenever the sum of this importance scores equals the model prediction

up to a constant baseline b € R: Z?jl a;(f,z) = f(x) — b. The baseline varies from one method
to the other. For instance, Lime [21] uses a vanishing baseline b = 0, SHAP [24] uses the average
prediction b = Ex [f(X)] and Integrated Gradients [25] use a baseline prediction b = f (&) for some
baseline input &. With completeness, the importance scores a;(f, «) are given a natural interpretation:
their sign indicates if the features tend to increase/decrease the prediction f(x) and their absolute
value indicates how important this effect is. When combined with CAR concept densities p€, this
interpretation is even more insightful.

Proposition C.1 (CAR Completeness). Consider a neural network decomposed as f =1 o g, where
g : X — H is a feature extractor mapping the input space X to the representation space H andl
is a label function that maps the representation space H to the label set Y. Let p° : H — R be a

concept density for some concept ¢ € [C), defined as in Definition 2.1. Let a : A(RY) x X — R be

a feature importance method satisfying the completeness property: ijl a;(f,x) = f(x) — b for

some baseline b € R and for all x € X. Then, we have the following completeness property for the
concept-based density:

dx
> ai(ptog,x) = pog(a) — b

i=1

Remark C.1. With this property, we can interpret features 7 € [dx] with a;(p° o g, x) > 0 as those
that tend to increase the concept density. This means that those features are important for the feature
extractor g to map the example in a region of the representation space H where the concept is present.
Hence, those are features that are important to identify a given concept ¢ € [C]. Conversely, features
1 € [dx] with a;(p°og,x) < 0 tend to decrease the concept density and therefore brings the example
x in a region of the representation space H where the concept is absent. These features can therefore
be interpreted as important to reject the presence of a given concept ¢ € [C].

Proof. We simply note that p© o g is a scalar function as p¢ o g(x) € RT for all z € X'. Hence, the
proposition immediately follows by applying the completeness property to f = p© o g. O

Input baseline choice. The choice of baseline input & has a notable effect on feature importance
methods [74]. What constitutes a good input baseline is problem dependant. Intuitively, Z should
correspond to an input £ € X where no information is present [55]. Let us now explain how this
information removal is achieved with the datasets that we use in our experiments. (D For MNIST,

23

we chose a black image = 0 as an input baseline. This is because MNIST images have a black
background an the information comes from white pixels that represent the digits.) For ECG,
we chose a constant & = 0 time series as an input baseline. This is because ECG time series are
normalized (x; € [0,1] for all t € [dx]) and the pulse information comes from time steps where
the time series is non-vanishing z; # 0. @ For CUB, choosing a baseline is more complicated.
The reason for this is that the background colour changes from one image to the other and rarely
corresponds to a single colour. To address this, we proceed as in the literature [22] and select a
baseline & that corresponds to a blurred version of the image we wish to explain: (x) = G, ® x,
where G, is a Gaussian filter of width ¢ and ® denotes the convolution operation. We note that this
baseline depends on which input £ € X we want to explain. In our implementation, we use o = 50
to have images that are significantly blurred. 4) For SEER, we chose a constant vector Z = 0 as an
input baseline. This is because all continuous features are standardized and all categorical features
are one-hot encoded.

D CAR Latent Isometry Invariance

In this appendix, we prove that CAR explanations are invariant under isometries of the latent space
when built with a radial kernel. Let us first rigorously define the notion of isometry between two
vector spaces.

Definition D.1 (Isometry). Let (#, ||-||,,) and (#’, ||-||,,,) be two normed vector spaces. An isometry
from H to H' isamap 7 : H — H’ such that for all by, hy € H:

[7(h1) = 7(h2)lly = [[h1 = hally, -

We say that the two spaces (#, ||-||,,) and (', ||-||,,) are isometric if there exists a bijective isometry
7 from H to H’.

An explanation method is invariant to latent space isometries if applying a bijective isometry 7 to
the model’s latent space H does not affect the explanations produced by the method. To make this
more formal, we write the model as f = log = loT ' o7 o g, where 77 is the inverse of

the bijective isometry 7. In this setup, we could produce explanations with CARs by making the

following replacements for the feature extractor and the label map: g ++ T ogand 1 > L o 7~ 1.

The explanations are defined to be invariant to latent space isometries if they are unaffected by this
replacement. It is legitimate to expect this since the previous replacement leads to the same model

f = f and substitutes the latent space by an isometric latent space H > H' = 7(H).

Let us now discuss the isometry invariance of CAR explanations. First, we recall that CARs are
defined through a kernel . Not all kernels lead to isometry invariant CAR explanations. We will
show that it holds for a family of kernels known as radial kernels.

Definition D.2 (Radial Kernel). A radial kernel is a kernel function « : 42 — R that can be written
as

k(h1,he) = x (k1 — h2|ly),)]

with a function x : Rt — RT.

A typical example of radial kernel is the Gaussian radial basis function kernel (RBF) that corresponds
to x(z) = exp [—(yx)?] for some v € RT. We are now ready to state and prove the isometry
invariance property of CAR explanations.

Proposition D.1 (CAR Isometry Invariance). Consider a neural network decomposed as f =1 o g,
where g : X — H is a feature extractor mapping the input space X to the representation space H
and l is a label function that maps the representation space H. to the label set). Let k : H? — RT
be a radial kernel k(hy1,h2) = Xx(||h1 — hz||,,) that we use to define CAR’s concept density in
Definition 2.1. Let T : H — H' be a bijective isometry between the normed spaces (H, ||-||,,) and

("', ||Il44,)- All the explanations outputted by CAR remain the same if we transform the latent space

with the isometry T by making the following replacements: g~ T o g andl Vs Lo 771,

Proof. For each concept ¢ € [C], we note that CAR explanations exclusively rely on the concept

density p¢ from Definition 2.1 and the associated support vector classifier s¢. Hence, it is sufficient
to show that these two functions are invariant under isometry.

24

Concept Density. We start with the concept density p°. We note that the kernel function x can

be applied to vectors from #’ as ' (h', hy) = x(||h} — hl2||w) for all (h},hs) € H'. Applying

CAR in the latent space H’ isometric to H corresponds to using this kernel to compute an alternative
density p’¢. Let us fix an example & € X. Under the isometry, the concept density for this example

transforms as p° o g(x) »1> p'¢ o1 og(x). Let us show that this is in fact an invariance:

p O‘I'Og Def 2.1 ZF@ T Og ‘I'Og(ilic’n)] _ Iil [TOg(SIJ),T Og(:l:ﬁc’n)]
Def. D.2 cn —c,n
= Zx(llfog(w)—fog(w’ M) = x ([og(@®) —7og(x™")ll;)

PEDTS™ (lg@) — 9@ ™)) - x (llg(@) — g(2™™)l)

We deduce that the concept density is invariant under isometry: p¢ o g(x) = p° o g(x).

SVC. The proof is more involved for the SVC s¢. We assume that the reader is familiar with the
standard theory of SVC. If this is not the case, please refer e.g. to Chapter 7 of [75]. For the sake
of notation, we will abbreviate g(x>™) and g(x~>") by h®" and h™" respectively. Similarly, we
abbreviate 7o g(x>™) and T o g(2"*") by h'“" and h' ™" respectively. The SVC concept classifier
can be written as

h) = Ip+ (Za k[h, h®"] — a"%"k]h, hﬁc”]+ﬂ> 2
n=1

-e,n

where I+ is the indicator function on R, the real numbers o™, a maximize the objective

NC (’ (’
a—\c):§ ac,n+aﬂc,n_7§ :E :acn c,m hcn hcm]
n=1

= n=1m=1
| O{—‘c,na—\c,m/{ [h“C,n’ h“C,m} _ 2ac,na—\c,mﬂ [,,LC,’I’L7 h‘!C,m] (3)
under the constraints
a®" >0 o >0 VneN9,

Ne
§ :ac,n —a %" = 0.
n=1

Finally, the bias term can be written as

1
/8: SC_S“C a hCn hCm
ST (ST T Y |

neSc meSe
+ § : § : a—uqmﬁ[hc,n’hﬁcm § : § : af hﬁ(‘ n hc m]
neScmeSe neSTc meSe

+ > a“’mn[hw”,hﬁc’mo,)

neS~c mes—e
where §¢ = {n € [N | a®™ # 0} and S7¢ = {n € [N°] | a™=™ # 0} are the indices of the
support vectors. Under isometry, the SVC classification for a latent vector h € H transforms as
5¢(h) % s'S(h') with b’ = 7(h) and

Ne
Ic N re,n / emy _ Ioen f ! /I—e,n /
si(h) =Tgs | > @KW K" =/ ~o" b/ [0 W+ B |. 5)

o 0 @ o ®

25

We will now show that s¢ (h) = s'5(h’) so that the SVC is invariant under isometries. We proceed
in 3 steps.

(D We show that v’ [R', hy] = k [hy, ho] for any (hy, hs) € H? and b} = 7(hq), by = 7(hs):

Def. D.2
K [Ry Ry U= x (I (ha) = T (ha)lly)
Def. D.1
"= X (lha = hafly)
Def. D.2 [hy, ho) .

By injecting this in (5), we are able to make the following replacements: x’ [k, h'*"| = & [h, h®"]
and &' [A',h'"°"] = K [h, A" forall n € [N°].

@ We show that o™ = o™ and o/ 7%™ = %" for all n € [N€]. To that aim, we note that a’®
and a’7¢ maximize the objective

N¢ N°©
£/ c /ﬁ(‘ 2 a/(‘ n + a/ﬁc NN § 2 a/c n /(' m / h/c ,n h/c m]

n=1m=1
/= 1= 1 I=ce 1= / /= / 2 /=
+ o Gy /mem . [h c,n h c,m} —2a/6M o/ Te™ [h c,n’h c,m]

Ne N¢ N€©
@ E a/c,n + a/ﬁc,n _ E E O/c n /c m hc \n hc m]
n=1

n=1m=1
+ oé/—\c,na/—\c,mﬁ [hﬁC,n, hﬁC,’ﬂl} _ 2a/c,na/—\c,m‘% [hc,n’ hﬁc,m]

&) e ofme
=L(a/¢, 7).

Since this objective is identical to the one from the original SVC and the constraints are unaffected
by the isometry, we deduce that the solution to this convex optimization problem is identical to the
solution of (3). Hence, we have that o/ = a®™ and o/7%™ = a~%™ for all n € [N¢]. Again, we
can make these replacements in (5).

(@ We show that 3/ = 3. First, we note that the support vector indices are invariant under isometry:
S={ne€[N°Y| " #0} ={n € [N | a®™ # 0} = S§° and similarly S'7¢ = S7¢. Hence
we have

1 C —-c c,m c,n c,m
ﬂ’—WQS CHED DDA A

neSc meSe

+ z : § : O/_‘c’mlil [h/c,’rL7h/ﬁc,7n] o § : z : a/c,m,i/ [hlﬁc,n7hlc,m]

neSc meS~e neS"c meSe

+ Z Z O/_‘C’m/ﬁ/ [h/ﬂc,n’ hl—\c,m]>

neESTcmeS~e

®§® 1 (‘ -c c,n c,m
S SUL=187 = > Y amk [RO

neSc meSe
+ § : 2 : aﬂc,mﬁ[hc,n’hﬂc,m] _ § : } : a’ Mk [h_‘c’n,h&m]
neS¢meSe neS~c meSe

+ Z Z Q"G [hﬁc,n’ hﬁc,m]>

neESTcmeSTe
= IB'
By making the replacements from points (D, @ and Q) in (5), we deduce that s¢ (h) = s'%(h/). O

E Empirical Evaluation

This appendix provides useful details to reproduce the empirical evaluation from Section 3.

26

Computing Resources. All the empirical evaluations were run on a single machine equipped with a
18-Core Intel Core i9-10980XE CPU and a NVIDIA RTX A4000 GPU. The machine runs on Python
3.9 [76] and Pytorch 1.10.2 [77].

Dataset licenses. The MNIST dataset dataset is made available under the terms of the Creative
Commons Attribution-Share Alike 3.0 License. The ECG dataset dataset is made available under the
terms of the Open Data Commons Attribution License v1.0. The CUB dataset is made available for
non-commercial research and educational purposes.

Models. The detailed architecture of the models are provided in Tables 2, 3 and 4. The InceptionV3
architecture is the same as in the literature [60]. We use its official Pytorch implementation.

Data Split. All the datasets are naturally split in training and testing data. In the ECG dataset, the
different types of abnormal heartbeats are imbalanced (e.g. the fusion beats constitute only 0.7% of
the training set). Hence, we create a synthetic training set with balanced concepts using SMOTE [78].
As in [41], the CUB dataset is augmented by using random crops and random horizontal flips.

Model Fitting. In fitting each model, we use the test set as a validation set since our purpose is not
to obtain the models with the best generalization but simply models that perform well on a set of
examples we wish to explain (here the examples from the test set). All the models are trained to
minimize the cross-entropy between their prediction and the true labels. The hyperparameters are as
follows. (D For MNIST we use a Adam optimizer with batches of 120 examples, a learning rate of
1073, a weight decay of 10~ for 50 epochs with patience 10. Q) For ECG we use a Adam optimizer
with batches of 300 examples, a learning rate of 1073, a weight decay of 10~° for 50 epochs with
patience 10. Q) For CUB, we use a stochastic gradient descent optimizer with batches of 64 examples,
a learning rate of 1073, a weight decay of 4 - 10~° for 1, 000 epochs with patience 50.

Concepts. The concept mapping between MNIST classes and concepts is provided in Table 5. For the
ECG and the CUB datasets, the presence/absence of a concept for each example is readily available
in the dataset.

Concept classifiers. All the concept classifiers are implemented with scikit-learn [71]. For CAR
classifiers, we fit a SVC with Gaussian RBF kernel and default hyperparameters from scikit-learn.
For CAV classifiers, we fit a linear classifier with a stochastic gradient descent optimizer with learning
rate 10~2 and a tolerance of 10~2 for 1, 000 epochs and the remaining default hyperparameters from
scikit-learn.

Statistical significance. The statistical significance test from Section 3.1.1 is performed with the
scikit-learn [71] implementation of the permutation test. For MNIST and ECG, we consider 100
permutations per concept. For CUB, this test is more expensive since the latent spaces are high-
dimensional. We consider only 25 permutations per concept in that case.

Concept-based feature importance. In the experiment from Section 2.3, we use Captum’s imple-
mentation [72] of Integrated Gradients [25] with default parameters. In the case of CUB, storing the
feature importance scores for each concept and for the whole test set requires a prohibitive amount of
memory. To avoid this problem, we select C' = 6 concepts and subsample 50 positive and 50 negative

Table 2: MNIST Model

Block Name Layer Type Hyperparameters Activation

Conv2d Input Channels = 1, Output Channels = 16, Kernel Size = 5, Stride = 1, Padding = 0 ReLU
Convl Dropout2d p=0.2
MaxPool2d Kernel Size = 2, Stride =2

Conv2d Input Channels = 16, Output Channels = 32, Kernel Size = 5, Stride = 1, Padding=0 ReLU
Conv2 Dropout2d p=0.2
MaxPool2d Kernel Size = 2, Stride =2

Linl Flatten
Linear Input Features = 512, Output Features = 10
Lin2 Dropout p=0.2
Linear Input Features = 10, Output Features = 5
Dropout p=0.2
Linear Input Features = 5, Output Features = 10

27

Table 3: ECG Model

Block Name Layer Type Hyperparameters Activation

Convl Convld Input Channels = 1, Output Channels = 16, Kernel Size = 3, Stride = 1, Padding = 1
MaxPoolld Kernel Size =2

Conv2 Convld Input Channels = 16, Output Channels = 64, Kernel Size = 3, Stride = 1, Padding = 1
MaxPoolld Kernel Size =2

Conv3 Convld Input Channels = 64, Output Channels = 128, Kernel Size = 3, Stride = 1, Padding = 1
MaxPoolld Kernel Size =2

Lin Flatten

Linear Input Features = 2944, Output Features = 32
Leaky ReLU Negative Slope = 1072 Leaky ReLU
Linear Input Features = 32, Output Features = 2

Table 4: CUB Model
Block Name Layer Type Hyperparameters Activation

InceptionOut InceptionV3 [60] Pretrained = True

Linear Input Features = 2048, Output Features = 200

examples per concept from the test set. This corresponds to a set of 600 examples. We compute the
feature importance for these examples only.

Alternative architecture. We extended the analysis of Section 3.1.1 to a ResNet-50 architecture. We
fine-tune the ResNet model on the CUB dataset and reproduced the experiment from Section 3.1.1
with this new architecture. In particular, we fit a CAR and a CAV classifier on the penultimate layer
of the ResNet. We then measure the accuracy averaged over the CUB concepts. This results in
(89 £ 1)% accuracy for CAR classifiers and (87 & 1)% accuracy for CAV classifiers. We deduce that
CAR classifiers are highly accurate to identify concepts in the penultimate ResNet layer. As in the
main paper, we observe that CAR classifiers outperform CAV classifiers, although the gap is smaller
than for the Inception-V3 neural network. We deduce that our CAR formalism extends beyond the
architectures explored in the paper and we hope that CAR will become widely used to interpret any
more architectures.

F Use Case

This appendix provides useful details to reproduce the use case from Section 3.2.

Computing Resources. The use case was run on a single machine equipped with a 18-Core Intel
Core 19-10980XE CPU and a NVIDIA RTX A4000 GPU. The machine runs on Python 3.9 [76] and
Pytorch 1.10.2 [77].

Table 5: MNIST Concepts

Class Concept Loop Vertical Line Horizontal Line Curvature

0 v/ 7
1 v

2 v v
3 v
5 v/ v
6 V4 v/
7 v

8 V4 v/
9 V4 /

28

Table 6: SEER Model

Layer Type Hyperparameters Activation
Linear Input Features = 21, Output Features =400 ReLU
Dropout p=0.3

Linear Input Features = 400, Output Features = 100 ReL.U
Dropout p=0.3

Linear Input Features = 100, Output Features = 2

Dataset license. The SEER dataset is made available under the terms of the SEER Research Data
Use Agreement.

Model. The detailed architecture of the model is provided in Table 6.

Data split. We randomly split the whole SEER dataset into a training set (90% of the data) and a
test set (the remaining 10%). Since patients with a death outcome are in minority (less than 3%), we
oversample them to obtain a balanced training set.

Model fitting. In fitting the model, we use the test set as a validation set since our purpose is not
to obtain the model with the best generalization but simply a model that performs well on a set of
examples we wish to explain (here the examples from the test set). The model is trained to minimize
the cross-entropy between its prediction and the true labels. We use a Adam optimizer with batches
of 500 examples, a learning rate of 10~2, a weight decay of 10~° for 500 epochs with patience 50.

Concepts. The concepts correspond to prostate cancer grades. Those grades can be computed from
the Gleason score as follows [70]:

if Gleason; + Gleasony, < 6
if Gleason; = 3 A Gleasony = 4
if Gleason; =4 A Gleasony = 3
if Gleason; + Gleasons = 8
if Gleason; + Gleason, > 9.

Grade(Gleason;, Gleasony) =

T LW N~

It goes without saying that the model is trained with the Gleason scores only, not with the grades.
Concept classifiers. We fit a SVC with linear kernel and default hyperparameters from scikit-learn.

Concept-based feature importance. We use Captum’s implementation [72] of Integrated Gradi-
ents [25] with default parameters.

G Explanation Robustness

Adversarial perturbations. We perform an experiment to evaluate the robustness of CAR explana-
tions with respect to adversarial perturbations. In this experiment, we work with the MNIST dataset
in the same setting as the experiment from Section 3.1.2. We train a CAR concept classifier for each
MNIST concept ¢ € [C]. We use the CAR classifier to output TCAR scores relating the concept ¢
with each class k € [dy]. As in the main paper, since the ground-truth association between concepts
and classes is known (e.g. the class corresponding to digit 8 will always have the concept loop), we
can compute the correlation r(TCAR, TrueProp) between our TCAR score and the ground-truth
proportion of examples that exhibit the concept. In this experiment, the correlation is evaluated
on a test set Diest = Dagv U Dorig that contains adversarial test examples D, 4, and original test
examples Dy,is. Each adversarial MNIST image .4y € Dagv is constructed by finding a small (w.r.t.
the || - || o norm) perturbation € € R%x around an original test image & € X that maximizes the
prediction shift for the model f : X — V-

€ = arg max CrossEntropy[f(x), f(z + €)] s.t. [[€]loc < -1
EcRIx

29

Table 7: MNIST Adversarial Perturbation Sensitivity
Adversarial % r(TCAR, TrueProp)

0 .99

5 .99

10 .99

20 .99

50 .97

70 95

100 .90
The adversarial image is then defined as x,qy = « + €. We measure the correlation
r(TCAR, TrueProp) by varying the proportion % of adversarial examples in the test set. The

results are reported in Table 7.

We observe that the TCAR scores keep a high correlation with the true proportion of examples that
exhibit the concept even when all the test examples are adversarially perturbed. We conclude that
TCAR explanations are robust with respect to adversarial perturbations in this setting.

Background shift. For completeness, we have also adapted the background shift robustness exper-
iment in Section 7 from [27]. We use CAR to explain the predictions of our Inception-V3 model
trained on the original CUB training set. The explanations are made on test images where the
background has been replaced. As [27], we use the segmentation of the CUB dataset to isolate
the bird on each image. The rest of the image is replaced by a random background sampled from
the Place365 dataset [80]. This results in a test set Doy With a background shift with respect
to the training set. By following the approach from Section 3.1.2 of our paper, we measure the
correlation r(TCAR, TrueProp) between the TCAR score and the true proportion of examples
in the class that exhibit the concept for each (class, concept) pair. We measured a correlation of
r(TCAR, TrueProp) = .82 in the background-shifted test set. This is close to the correlation for
the original test set reported in the main paper, which suggests that CAR explanations are robust with
respect to background shifts. Note that this correlation is still better than the one obtained with TCAV
on the original test set.

H Using CAR to Understand Unsupervised Concepts

Our CAR formalism adapts to a wide variety of neural network architectures. In this appendix, we
use CAR to analyze the concepts discovered by a self explaining neural network (SENN) trained on
the MNIST dataset. As in [81], we use a SENN of the form

S
@) =Y 6.() - g.(@),

Where g,(x) and 04(x) are respectively the activation and the relevance of the synthetic concept
s € [S] discovered by the SENN model. We follow the same training process as [81]. This yields a
set of S = 5 concepts explaining the predictions made by the SENN f : X —).

We use our CAR formalism to study how the synthetic concepts s € [S] discovered by the SENN are
related to the concepts ¢ € {Loop, Vertical Line, Horizontal Line, Curvature} introduced in our
paper. With our formalism, the relevance of a concept ¢ for a given prediction « — f(x) is measured
by the concept density p© o g(x). To analyze the relationship between the SENN concept s and the
concept ¢, we can therefore compute the correlation of their relevance:

T‘(S, C) = COITX~ Popppirical (Dgest) [95 (X)’ pc © g(X)] .

When this correlation increases, the concepts s and c tend to be relevant together more often. We
report the correlation between each pair (s, ¢) in Table 8.

We note the following:

30

Table 8: SENN Concepts Correspondence

Correlationr(s,c) | Loop Vertical Line Horizontal Line Curvature
SENN Concept 1 | -0.28 -0.12 0.26 0.11
SENN Concept 2 | -0.50 0.71 -0.03 -0.69
SENN Concept3 | -0.47 0.10 0.71 -0.14
SENN Concept 4 | -0.33 0.02 -0.06 -0.01
SENN Concept5 | 0.57 -0.00 -0.63 0.07

1. SENN Concept 2 correlates well with the Vertical Line Concept.
2. SENN Concept 3 correlates well with the Horizontal Line Concept
3. SENN Concept 5 correlates well with the Loop Concept.

4. SENN Concepts 1 and 4 are not well covered by our concepts.

The above analysis shows the potential of our CAR explanations to better understand the abstract
concepts discovered by SENN models. We believe that the community would greatly benefit from the
ability to perform similar analyses for other interpretable architectures, such as disentangled VAEs.

I Using CAR with NLP

CAR is a general framework and can be used in a wide variety of domains that involve neural
networks. In the main paper, we show that CAR provides explanations for various modalities:

1. Large image dataset
2. Medical time series

3. Medical tabular data

We now perform a toy experiment to assess if those conclusions extend to the NLP setting. We
train a small CNN on the IMDB Review dataset to predict whether a review is positive or negative.
We use GloVe [82] to turn the word tokens into embeddings. We would like to assess whether the
concept ¢ = Positive Adjective is encoded in the model’s representations. Examples that exhibit
the concept c are sentences containing positive adjectives. We collect a positive set P¢ of N¢ = 90
such sentences. The negative set A/© is made of N sentences randomly sampled from the Gutenberg
Poem Dataset. We verified that the sentences from A ¢ did not contain positive adjectives. We then fit
a CAR classifier on the representations obtained in the penultimate layer of the CNN.

We assess the generalization performance of the CAR classifier on a holdout concept set made of
N¢ = 30 concept positive and negative sentences (60 sentences in total). The CAR classifier has
an accuracy of 87% on this holdout dataset. This suggests that the concept c is smoothly encoded
in the model’s representation space, which is consistent with the importance of positive adjectives
to identify positive reviews. We deduce that our CAR formalism can be used in a NLP setting. We
believe that using CARs to analyze large-scale language model would be an interesting study that we
leave for future work.

J Increasing Explainability at Training Time

Improving neural networks explainability at training time constitutes a very interesting area of
research but is beyond the scope of our paper. That said, we believe that our paper indeed contains
insights that might be the seed of future developments in neural network training. As an illustration,
we consider an important insight from our paper: the fact that the accuracy of concept classifiers
seems to increase with the depth of the layer for which we fit a classifier. In the main paper, this is
mainly reflected in Figure 4. This observation has a crucial consequence: it is not possible to reliably
characterize the shallow layers in terms of the concepts we use.

In order to improve the explainability of those shallow layers, one could leverage the recent devel-
opments in contrastive learning. The purpose of this approach would be to separate the concept set

31

P¢ and V¢ in the representation space H corresponding to a shallow layer of the neural network.
A practical way to implement this would be to follow [79]. Assume that we want to separate con-
cept positives and negatives in the representation space H induced by the shallow feature extractor
g : X — H. As [79], one can use a projection head p : — Z and enforce the separation of the
concept sets through the contrastive loss

exp(T~! - cos[p o x;),pog(x;
= Y log p([pog(zi),pog(x;)])

- , (6)
(i) €(Pe)? Ywne(PeUN) (o) SXP(T T - cos[p o g(@:), p o g(a)])

where cos(z;,2zy) = m and 7 € R™ is a temperature parameter. The effect of this loss is to
group the concept positive examples from P¢ together and apart from the concept negatives N¢ in
the representation space . To the best of our knowledge, concept-based contrastive learning has not
been explored in the literature. We believe that it would constitute an interesting contribution to the
field based on the insights from our paper.

K Further Examples

In this appendix, we provide several examples to illustrate the experiments from Section 3.

Concept classifiers. The accuracy of the concept classifiers for all the MNIST and ECG concepts are
given in Figures 11 and 12. Each box-plot is built with 10 random seeds where the concept sets P°
and \¢ are allowed to vary. We observe that the CAR classifiers are more accurate for each of the
observed concepts

Global explanations. The global concept explanations for all the MNIST concepts and some of
the CUB concepts are given in Figures 13 and 14. As the examples from Section 3.1.2, we see that
TCAR explanations are more consistent with the human concept annotations.

Saliency maps. Examples of concept-based an vanilla saliency maps for MNIST, ECG and CUB
examples are given in Figures 15, 16, 17, 18 and 19. As explained in the main paper, we observe that
concept-based saliency maps are indeed distinct form vanilla saliency maps. Furthermore, saliency
maps for different concepts are not interchangeable. In the CUB case, we note that concept are not
always identified with the minimal amount of features (e.g. some of the saliency maps from Figure 19
highlight pixels that do not always belong to the bird’s breast). This surprising observation seems
to occur even for concept-bottleneck models that are explicitly trained to recognize concepts [44].
We believe that this could be improved by training concept classifiers with images that include a
segmentation highlighting the concept of interest (e.g. the bird’s breast). We leave this idea for future
works.

32

o o b4
=) © ©
o o o

Concept Loop Accuracy

4
@
o

0.75

1.00

o o o
0o 1) ©
o o o

Concept Horizontal Line Accuracy

4
@
o

e o o b o
~ @ o © ©
o o o o o

Concept Supraventricular Accuracy

o
S
o

1.000

e o
© ©
a <
o v

0.925

0.900

0.875

0.850

Concept Fusion Beats Accuracy

0.825

:ﬁ@*

Method
I CAR
= cav
Convl Conv2 Linl Lin2
Layer
(a) Loop concept
=
Method
N CAR ¢
mm CAV
Convl Conv2 Linl Lin2

Layer

(c) Horizontal line concept

o o =
© © o
® © o

4
©
N

Concept Vertical Line Accuracy
o o o o
© b © ©
& ® a o

o
©
N}

o o
o
® ©

o
©
N

Concept Curvature Accuracy
o o o
© © ©
E a o

o
©
w

4
©
N

* ¢ + +
Method

| + ’
3
I CAR

4 [CAV

Convl Conv2 Linl Lin2
Layer

(b) Vertical line concept

Method ¢
I CAR
Ea CcAv
]

* 3

Convl Conv2 Linl Lin2
Layer

(d) Curvature concept

Figure 11: Concept accuracy for MNIST concepts

Method
B CAR
== CAV
3

I = ﬁﬁ T+

Convl Conv2 Conv3 Lin
Layer

(a) Supraventricular concept

¢ Method
e . CAR
= CAV
* i i ? |
- ‘
¢
Convl Conv2 Conv3 Lin
Layer

(c) Fusion beats concept

o o o 4
) @ © ©
S} a =) o

Concept Premature Ventricular Accuracy
IS
<
&

o
~
=)

Concept Unknown Accuracy
o o o o o o °
®» © © © © o o
& ® S N R @ o

o
@
B

Method
B CAR
= cAv

Convl Conv2 Conv3 Lin
Layer

(b) Premature ventricular concept

Method
I CAR
’ . cAv
Convl Conv2 Conv3 Lin
Layer

(d) Unknown beat concept

Figure 12: Concept accuracy for ECG concepts

Class: 0

Class: 1

Class: 2

Method
= TCAR
— TCAV
== True Prop.

Method
== TCAR
m— TCAV
= True Prop.

o6
s
S
@
0.4
Method
0.2
== True Prop.
0.0
Loop Vertical Horizontal Curvature Loop Vertical ~ Horizontal ~ Curvature Loop Vertical Horizontal ~ Curvature
Line Line Line Line Line Line
Concept Concept Concept
(a) Class 0 (b) Class 1 (c) Class 2
Class: 3 Class: 4 Class: 5
10 Method 10 Method
== TCAR = TCAR
08 - TCAV 08 | == TCAV
i = True Prop. | = True Prop.
o @
5 0.6 . 0.6
S g
@ a
0.4 0.4
Method
= TCAR
- TCAV 02 02
=" True Prop.
0.0 0.0
Loop Vertical Horizontal Curvature Loop Vertical Horizontal Curvature Loop Vertical Horizontal Curvature
Line Line Line Line
Concept Concept Concept
(d) Class 3 (e) Class 4 (f) Class 5
Class: 6 Class: 7 Class: 8
1.0 Method
= TCAR
08 —TCAV
: == True Prop.
o6
s
S
@
0.4
Method Method
= TCAR == TCAR
- TCAV 0.2 — TCAV
== True Prop. = True Prop.
0.0
Loop Vertical Horizontal Curvature Loop Vertical ~ Horizontal ~ Curvature Loop Vertical Horizontal Curvature
Line Line Line Line Line Line
Concept Concept Concept

(g) Class 6

(h) Class 7

Class: 9

Method
m TCAR
m— TCAV
= True Prop.

Loop Vertical Horizontal Curvature
Line it

Concept

(j) Class 9

Figure 13: Global concept explanations for MNIST

34

(i) Class 8

Class: House Sparrow

Class: House Sparrow

Class: House Sparrow

Method
== TCAR
- TCAV
=== True Prop.

Brown Grey Yellow Black White Buff

Concept: Breast Color

(a) House sparrow breast colour

Class: Pied Kingfisher

Method
= TCAR
— TCAV
= True Prop.

Brown Grey Yellow Black

Concept: Wing Color

White Buff

(b) House sparrow wing colour

Class: Pied Kingfisher

Method
== TCAR
- TCAV
== True Prop.

Brown Grey Yellow Black White Buff
Concept: Primary Color

(c) House sparrow primary colour

Class: Pied Kingfisher

1.0 Method
== TCAR
— TCAV
0.8

m=_True Prop.

206

S

S

@
0.4
0.2
0.0

Brown Grey Yellow Black White Buff

Concept: Breast Color

(d) Pied kingfisher breast colour

Class: Tree Swallow

Method
== TCAR
= TCAV
= True Prop.

Brown Grey

Yellow Black
Concept: Wing Color

White Buff

(e) Pied kingfisher wing colour

Class: Tree Swallow

1.0 Method
m TCAR
- TCAV
0.8 | wum True Prop.
206
s
g
@
0.4
0.2
0.0 -

Brown Grey Yellow Black White Buff
Concept: Primary Color

(f) Pied kingfisher primary colour

Class: Tree Swallow

10 Method 10 Method 10 Method
= TCAR = TCAR = TCAR
— TCAV — TCAV — TCAV
08 | mm True Prop. 08 = True Prop. 08 | wum True Prop.
206 206 o6
s s s
S S g
a @ a
0.4 0.4 04
0.2 0.2 0.2
0.0 0.0 — 0.0 o

Yellow Black White Buff
Concept: Breast Color

Brown Grey

(g) Tree swallow breast colour

Brown Grey Yellow Black

Concept: Wing Color

White Buff

(h) Tree swallow wing colour

Brown Grey Yellow Black White Buff
Concept: Primary Color

(i) Tree swallow primary colour

Figure 14: Global concept explanations for CUB

35

(a) Loop (b) Vertical line (c) Horiz. line (d) Curvature (e) Vanilla

Figure 15: Concept-based saliency maps for MNIST

36

A k N . ul A
\\ Aw \ /‘ o el o\ AMJ \
v, /| I Vo

(a) Supraventricular (b) Premature ventricular

T s
I
fl

A
|
|

\/

khj\\

(d) Unknown

\/

\ /M'\\ B
\ V|
(e) Vanilla

Figure 16: Concept-based saliency maps for ECG

37

(a) Brown belly (b) Solid belly pattern

Figure 17: Concept-based saliency maps for CUB (1/3)

38

(a) Stripped back pattern (b) Solid back pattern

Figure 18: Concept-based saliency maps for CUB (2/3)

39

(a) Black breast (b) White breast

Figure 19: Concept-based saliency maps for CUB (3/3)

40

