
A Implementation Details596

A.1 VLM Task Proposals & Success Detection597

A.1.1 Task Proposals598

The task proposal problem can be defined formally as a mapping from the space of images of the599

robot’s environment I to the space of language tasks T . So as to account for the current capabilities600

of open-source VLMs and the limitation on tasks that can actually be physically completed by601

the robot, we strict T to be a discrete set of tasks for each environment the robot is placed in:602

T = {⌧1, ⌧2, ..., ⌧|T |}.603

We leverage the CogVLM [24] open-source VLM for both task proposals and success detection.604

Like many open-source VLMs, CogVLM is demonstrated to work particularly well on a set of605

popular image-understanding benchmarks, many of which are Visual Question Answering (VQA)606

benchmarks [81, 82, 83, 84, 85]. We leverage the model’s good performance on VQA tasks by607

converting the problem of task proposals into a VQA problem. Table 2 depicts how a prompt for608

task proposal can be reformulated into a simpler VQA-style prompt:609

Task Proposal Prompt VQA Prompt

Original: move the orange crayon from
the blue plate to the table

VQA-style: Is the orange crayon currently
on the blue plate?

Answer that implies task is feasible:

True
Original: put the orange crayon on the
cloth

VQA-style: Is the orange crayon on top of
the cloth?

Answer that implies task is feasible:

False
Original: move the red object from the
blue plate to the table

VQA-style: Is the red object on the blue
plate?

Answer that implies task is feasible:

True

Table 2: Task Proposals to VQA

Using this framework, to actually propose a task, first the feasibility of each task is determined by610

few-shot prompting an LLM to transform task strings from T into VQA-style prompts. These VQA-611

style prompts are fed to the VLM and the response is again decoded by an LLM. Task feasibility is612

then determined by matching the final LLM output with the answer that would imply task feasibility.613

With this procedure, the set of viable tasks Tviable ✓ T is constructed, after which the upper-614

confidence bound ranking procedure outlined in section 3 is used to pick a task.615

A.1.2 Success Detection616

We leverage a framework very similar to that used for task proposals for success detection. Although617

not always the case, it is very often the case that the same VQA-style question for task proposal can618

be used for success detection, with the answer implying success the opposite of the answer that619

implies task feasibility. This is because a common reason for not proposing a task is that it has620

already succeeded.621

A.2 Goal-conditioned Policy622

A.2.1 Model Architecture623

Here we outline the neural network architecture and training details of our goal-conditioned policy.624

The image of the current observation and desired goal observation are frame stacked along the625

channel dimension and fed through a ResNet-34 [86]. Instead of the usual BatchNorm [87] we626

15

utilize GroupNorm [88] in the ResNet. Following the ResNet is a 3-layer MLP which outputs the627

mean and standard deviation parameterizing a Gaussian action distribution. Each hidden layer has628

dimension 256 and uses Swish [89] activations. In practice we output just the mean (and fix the629

standard deviation to be state-independent).630

A.2.2 Training631

To pre-train a base goal-conditioned policy on BridgeData v2 we use the Adam [90] optimizer with632

cosine learning rate decay from an initial 0.0003 to 0 over the course of 500k gradient steps. We633

also use linear learning rate warmup for 2000 gradient steps. We use a L2 weight decay of 0.001634

and for Adam use �1 = 0.9 and �2 = 0.98, along with clipping gradients to have maximum norm635

of 1.0. Before channel-wise concatenation the current and goal images are processed via a standard636

series of image augmentations, including random resized cropping, brightness, contrast, saturation,637

and hue augmentations. During pre-training, goal images are sampled uniformly at random from638

0 to 24 timesteps into the future, approximately matching the subgoal horizon the image subgoal639

generator SuSIE was trained with.640

To train an improved GC-policy leveraging the autonomous data, we co-train on the autonomous641

data and pre-training dataset (BridgeData v2). For the improved policies trained on individual642

scenes, we up sample the autonomous data 10⇥ with respect to its proportion to the pre-training643

data. (e.g., When the per-scene autonomous data is the size of 3% of the pre-training dataset, we use644

a sampling ratio of 30% for autonomous data and 70% for the pretraining data. For the generalist645

GC-policy trained on all the autonomous data, the dataset sampling ratio is 80% for the pre-training646

data and 20% for autonomous data. Following the approach used in BC-Zero [59], data from the au-647

tonomous data is relabeled with actions being the sum of two consecutive actions (a0t at+ at+1).648

This counteracts the tendency of the robot during autonomous data collection to take lower magni-649

tude actions than those in the pre-training dataset, a behavior that results from the Gaussian MLP650

head averaging modes in the state-conditioned action distribution. Like during the pre-training stage651

goals are sampled uniformly at random [0, 24] timesteps into the future for the pre-training data, and652

for the autonomous data goals are sampled [0, 12] timesteps into the future.653

A.3 Language-conditioned Policy654

A.3.1 Model Architecture655

The language-conditioned policy architecture is a ResNet-34 with FiLM conditioning. Language in-656

structions are first encoded by a frozen MUSE encoder and then passed through two fully connected657

layers. The image observation is passed through the ResNet which is conditioned on the language658

embedding via FiLM layers applied at the end of every ResNet block. The MLP action head is the659

same for the language-conditioned policy as the goal-conditioned policy.660

A.3.2 Training661

The training procedure of the language-conditioned policy is exactly the same as that for the goal-662

conditioned policy.663

A.4 Image Subgoal Generation664

We leverage SuSIE [25] as our language-conditioned image subgoal generator. During generation665

we use classifier-free guidance with a weight of 2.0 for the image and 7.5 for the text prompt. Each666

autonomous trajectory consists of 5 subgoal generations with the low-level policy given 20 timesteps667

(identical to the horizon SuSIE was trained with) to reach the subgoal.668

Generating a sequence of subgoal images one after another offers various practical advantages over669

creating a single final goal image. Particularly for autonomous robot deployment, a significant670

benefit arises when the robot’s actions alter the environment in a manner unrelated to the intended671

goal. In such cases, iterative regeneration can seamlessly integrate these environmental changes into672

the generated subgoals, eliminating the necessity for the policy to reset the environment to achieve673

the desired goal image.674

16

B Robot Setups & Scene Descriptions675

Scene

#

Workspace

image
Task Descriptions

Autonomous

Successful

Trajectories

1

1. put the green block in the wooden bowl
2. remove the green block from inside the wooden bowl
and put it on the table
3. put the red fruit in the wooden bowl
4. remove the red fruit from inside the wooden bowl and
put it on the table

2056

2
1. put the purple eggplant in the brown bowl
2. remove the purple eggplant from inside the brown bowl
and put it on the table

282

3

1. move the green marker to the left side
2. move the green marker to the right side
3. put the blue block in the wooden bowl
4. remove the blue block from inside the wooden bowl
and put it on the table
5. put the lemon in the wooden bowl
6. remove the lemon from inside the wooden bowl and
put it on the table

364

4

1. put the red object on the green plate
2. take the red object out of the green plate and put it on
the table
3. put the carrot on the green plate
4. take the carrot out of the green plate and put it on the
table

206

5 1. open the drawer
2. close the drawer 221

6
1. put the mushroom in the blue bowl
2. remove the mushroom from the blue bowl and put it on
the table

46

7

1. put the mushroom in the metal pot
2. remove the mushroom from the metal pot and put it on
the table
3. move the green spoon to the left
4. move the green spoon to the right

82

8

1. put the carrot on the blue plate
2. remove the carrot from the blue plate and put it on the
table
3. put the purple eggplant on the blue plate
4. remove the purple eggplant from the blue plate and put
it on the table
5. put the lemon on the blue plate
6. remove the lemon from the blue plate and put it on the
table

700

9

1. put the green veggie on the blue plate
2. remove the green veggie from the blue plate and put it
on the table
3. put the pink spoon on the blue plate
4. remove the pink spoon from the blue plate and put it
on the table

200

Table 3: Details on 9 robot scenes

17

Table B lists the scenes, associated language tasks, and the number of successful autonomous tra-676

jectories collected for each of the 9 scenes. In each scene, we decide the objects to be placed in the677

scene and specify a list of meaningful language tasks, and SOAR autonomously proposes the tasks678

to self-practice.679

C SOAR-Data Details680

Dataset # Traj. # Env. Lang. Failed Traj. Public Collection

RoboNet [65] 162k 10 ⇥ ⇥ X scripted
MT-Opt [18] 800k 1 ⇥ X X scripted, learned
RGB Stacking [68] 400k 5 ⇥ X ⇥ learned
BridgeData V2 [12] 60.1k 24 X ⇥ X human, scripted
RobotSet [91] 98.5k 11 X ⇥ X human, scripted

SOAR-Data 25k 5 X X X 100% autonomous
Table 4: SOAR-Data is a large and publicly available robotic manipulation dataset that is collected
fully autonomously and includes both successful and failed trajectories. It has diverse scenes and all
trajectories have language annotations. Uniquely among datasets containing autonomous data, the
SOAR-Data setup is cheap and replicable, making it an appealing real-world benchmark for learning
from suboptimal data.

D Limitations681

Here we highlight two limitations of our work which suggest promising directions for future re-682

search. Although SOAR effectively harnesses autonomous data to improve policies significantly,683

further improvement could be achieved by incorporating unsuccessful autonomous trajectories as684

training data. Additionally, while our results showcase the capacity of the SOAR framework to685

robustify existing skills on unseen environments, an interesting area of future work is acquiring686

skills not present in the pre-training dataset through devising strategies to explore and gather data687

conducive to learning these new skills.688

18

	Introduction
	Related Work
	Method
	Experimental Results
	Conclusion
	Implementation Details
	VLM Task Proposals & Success Detection
	Task Proposals
	Success Detection

	Goal-conditioned Policy
	Model Architecture
	Training

	Language-conditioned Policy
	Model Architecture
	Training

	Image Subgoal Generation

	Robot Setups & Scene Descriptions
	SOAR-Data Details
	Limitations

