
Supplemental Material for:

On A Mallows-type Model For (Ranked) Choices

A Characterizing the Choice Probability (Theorem 1)

A.1 Proofs of Intermediate Results (Lemmas 1 to 3)

Proof of Lemma 1. Let us first assign a weight to each ranking π ∈ Σ and subranking πk ∈ Σk
(k ∈ {0, . . . , n}) by

w(π) :=
qd(π)

ψ(n, q)
and w (πk) :=

∑
π∈Σ:πk⊆π

w(π). (7)

We note that on the one hand, w ∝ λ. On the other hand, it is unclear in priori whether w(·) is the
probability mass function since one needs to verify that w(·) is equipped with the right normalizing
constant. We will first prove that w(πk) can also be written as w (πk) = qd(πk)+L(πk) · ψ(n−k,q)ψ(n,q) .
Then we will show that for every k ∈ [n],

∑
πk∈Σk

w(πk) = 1. In other words, w(·) = λ(·).

Step 1. Recall that for every πk ∈ Σk, d(πk) =
∑k−1
i=1 I{πk(i) > πk(i+ 1)}(n− i) and L (πk) :=

| {x ∈ Rc(πk) : x < πk(k)} |. We prove from (7) that

w (πk) = qd(πk)+L(πk) · ψ(n− k, q)

ψ(n, q)

by backward induction on k.

Base step. Suppose k = n. Pick an arbitrary πk ∈ Σk = Σ. Because πk is a full ranking,

w(πk) = qd(πk) · 1

ψ(n, q)

(a)
= qd(πk)+L(πk) · ψ(n− k, q)

ψ(n, q)
.

In the derivations above, part (a) is due to the facts that ψ(n− k, q) = ψ(0, q) = 1 and L(πk) = 0
by definition.

Inductive step. Pick an arbitrary K ∈ {0, 1, . . . , n − 1}. Suppose our statement holds for every
k = K + 1, . . . , n. We want to show that our statement holds for k = K. In other words, pick an
arbitrary πk ∈ Σk. We wish to show that Σk, w(πk) = qd(πk)+L(πk) · ψ(n−k,q)ψ(n,q) .

We first claim that for every πk+1 ∈ Σk+1 such that πk ⊆ πk+1, πk(k) > πk+1(k + 1) if and only
if L(πk+1) ≤ L(πk) − 1. To see why, note that if πk(k) > πk+1(k + 1), L(πk) = L(πk+1) + 1.
Otherwise, L(πk) ≤ L(πk+1), and hence L(πk)− 1 < L(πk+1). As a consequence, d (πk+1) can
be expressed in terms of d (πk) :

d (πk+1) =

k∑
i=1

I {πk(i) > πk(i+ 1)} · (n− i)

=

k−1∑
i=1

I {πk(i) > πk(i+ 1)} · (n− i)︸ ︷︷ ︸
d(πk)

+ I {πk(k) > πk(k + 1)}︸ ︷︷ ︸
I{L(πk+1)≤L(πk)−1}

·(n− k)

= d (πk) + I {L (πk+1) ≤ L (πk)− 1} · (n− k).

Moreover, given πk, there is a one-to-one correspondence between πk+1 and k + 1 and we use
πk ⊕ L−1(i)(k + 1) to represent the (unique) πk+1 such that πk ⊆ πk+1 and L(πk+1) = i, (i ∈
{0, 1, . . . , n− k − 1}).
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w (πk) =
∑

π∈Σ:πk⊆π

w(π) =
∑

πk+1∈Σk+1:πk⊆πk+1

w (πk+1)

=

n−k−1∑
i=0

w
(
πk ⊕ L−1(i)(k + 1)

)
=

n−k−1∑
i=0

qd(πk⊕L
−1(i)(k+1))+L(πk⊕L−1(i)(k+1)) · ψ(n− k − 1, q)

ψ(n, q)

=
ψ(n− k − 1, q)

ψ(n, q)
·

L(πk)−1∑
i=0

qd(πk⊕L
−1(i)(k+1))+i +

n−k−1∑
i=L(πk)

qd(πk⊕L
−1(i)(k+1))+i


=
ψ(n− k − 1, q)

ψ(n, q)
·

L(πk)−1∑
i=0

qd(πk)+n−k+i +

n−k−1∑
i=L(πk)

qd(πk)+i


=
ψ(n− k − 1, q)

ψ(n, q)
· qd(πk) · qL(πk)

 n−k−1∑
i=n−k−L(πk)

qi +

n−k−1−L(πk)∑
i=0

qi


︸ ︷︷ ︸

ψ(n−k,q)
ψ(n−k−1,q)

= qd(πk)+L(πk) · ψ(n− k, q)

ψ(n, q)
.

Hence our statement holds for k = K, too, thus w (πk) = qd(πk)+L(πk) · ψ(n−k,q)ψ(n,q) for any k.

Step 2. We verify that for every k ∈ {0, 1, . . . , n},
∑
πk∈Σk

w(πk) = 1.

For all k, k′ ∈ {0, 1, . . . , n}, we invoke (7) and have
∑
πk∈Σk

w(πk) =
∑
π∈Σ w(π) =∑

πk′∈Σk′
w(πk′). Therefore, take an arbitrary k ∈ {0, 1, . . . , n} and k′ = 2,∑

πk∈Σk

w(πk) =
∑
π2∈Σ2

w(π2) =
∑

i∈{0,...,n−1}

w(π1 ⊕ i)

=
ψ(n− 1, q)

ψ(n, q)
· (1 + q + . . .+ qn−1)

= 1

Hence, the weight w is the probability mass function λ. □

Proof of Lemma 2. By Lemma 1, we have

λ(πk ⊕ y)

λ(πk)
=
qd(πk+1)+L(πk+1) · ψ(n−k−1,q)

ψ(n,q)

qd(πk)+L(πk) · ψ(n−k,q)ψ(n,q)

=
qd(πk)+I{z>y}·(n−k)+L(πk+1)

qd(πk)+L(πk)
1− q

1− qn−k

=qI{z>y}·(n−k)+L(πk+1)−L(πk) 1− q

1− qn−k
.

By the definition of L(·),

I{z > y} · (n− k) + L(πk+1)− L(πk) =

{∑
x∈Rc(πk) I{z < x ≤ y} − 1 if y > z

n− k −
∑
x∈Rc(πk) I{y < x < z} − 1 if y < z

.

The proof is finished. □

Proof of Lemma 3. We prove this lemma by backward induction on k.
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Base step. Since when k > n−M + 1, R(πk−1) ∩ S = ∅ is not satisfied for all πk−1 ∈ Σk−1. We
suppose k = n−M + 1. Pick an arbitrary πk = πk−1 ⊕ z such that R(πk−1) ∩ S = ∅. Item z is an
item in S, so the choice outcome is deterministic. If z = xi, the conditional choice probability is 1,
and if z ∈ S \ {xi}, the conditional choice probability is 0.

Inductive step. Pick an arbitrary K ∈ {1, . . . , n −M}. Suppose our statement holds for every
k = K + 1, . . . , n−M + 1. We want to show that our statement holds for k = K.

Pick an arbitrary πk = πk−1 ⊕ z such that R(πk) ∩ S = ∅. Similar to the base step, if z = xi, the
conditional choice probability is 1, and if z ∈ S \ {xi}, the conditional choice probability is 0. When
z /∈ S, rename the items in Rc(πk) as y1, y2, . . . , yn−k so that y1 < y2 < . . . < yn−k. We have the
following decomposition.

Q := Pr({xi|S}|πk−1 ⊕ z) =

n−k∑
j=1

Pr({xi|S}|πk ⊕ yj) · Pr(πk ⊕ yj |πk−1 ⊕ z)

Since R(πk) ∩ S = ∅, we have {x1, x2, . . . , xM} ⊆ {y1, y2, . . . , yn−k}, we use xi to denote the
relative position of item xi in these n− k items, hence item xi is renamed as yxi under “y" notation.
For example, if xi = 4, then there are 3 items with smaller indices (i.e., preferred under π∗ = e) than
item xi in {yi}n−ki=1 . Hence, we can rewrite {yi}n−ki=1 as

{y1, . . . , yx1−1, yx1
, yx1+1, . . . , yxi−1, yxi , yxi+1, . . . , yn−k}.

By induction hypothesis, we have

Pr({xi|S}|πk⊕πk+1(k+1)) =



qi−1

1+q+...+qM−1 if πk+1(k + 1) ∈ {ya}x1−1
a=1 ,

qi−j−1

1+q+...+qM−1 if πk+1(k + 1) ∈ {ya}
xj+1−1
a=xj+1 for j ∈ {1, . . . , i− 1},

1 if πk+1(k + 1) = yxi ,
qM+i−j−1

1+q+...+qM−1 if πk+1(k + 1) ∈ {ya}
xj+1−1
a=xj+1 for j ∈ {i, . . . ,M − 1},

qi−1

1+q+...+qM−1 if πk+1(k + 1) ∈ {ya}n−ka=xM+1,

0 if πk+1(k + 1) = yxj for xj ∈ S \ {xi}.

By Lemma 2, we know Pr(πk ⊕ yj |πk−1 ⊕ z). Finally, we can get

Q =


qM−p(z|S)+i−1

1+q+...+qM−1 if z > xi and z ̸∈ S,

qi−p(z|S)−1

1+q+...+qM−1 if z < xi and z ̸∈ S.

Hence our statement holds for k = K, too, thus finishing the proof. □

A.2 Putting Things Together for Theorem 1

Proof of Theorem 1. Name all items as {yz}nz=1 such that y1 < y2 < . . . < yn. We have

Pr({xi|S}) =
n∑
z=1

Pr({xi|S}|(yz)) · λ((yz))

Use xj to denote the position of item xj in the universe, hence item xj is renamed as yxj under “y"
notation. By Lemma 3, we have the following equation:

Pr({xi|S}|(yz)) =



qi−1

1+q+...+qM−1 if yz ∈ {ya}x1−1
a=1 ,

qi−j−1

1+q+...+qM−1 if yz ∈ {ya}
xj+1−1
a=xj+1 for j ∈ {1, . . . , i− 1},

1 if yz = yxi ,
qM+i−j−1

1+q+...+qM−1 if yz ∈ {ya}
xj+1−1
a=xj+1 for j ∈ {i, . . . ,M − 1},

qi−1

1+q+...+qM−1 if yz ∈ {ya}na=xM+1,

0 if yz = yxj for xj ∈ S \ {xi}.

By Lemma 1, we have λ((yz)) = qz−1

1+...+qn−1 . After calculation, we get Pr({xi|S}) = qi−1

1+q+...+qM−1 .
□
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B Consistency of MLE for OAM (Theorem 2)

B.1 Main Body of the Proof

Proof of Theorem 2. First fix the underlying parameters of the RMJ-based ranking model (π∗, q∗).
Let the choice data HT = (S1, x1, . . . , ST , xT ) be given, where St is the display set shown to the
tth participant and xt is his/her choice. Invoking Proposition 3 of [13], the MLE problem for OAM,
the choice model induced by the RMJ-based ranking distribution, can be written as

(π̂, q̂) ∈ argmaxπ,q

T∑
t=1

log

(
1− q

1− q|St|

)
+ log q

∑
(i,j):i̸=j

I{j ≻π i}wij ,

where

wij :=

T∑
t=1

I
{
{i, j} ⊆ St and xt = i

}
is the number of times that both items i and j are displayed and item i is chosen (among the T
samples). Furthermore, recall that π̂ can be obtained from the integer programming formulation (5),
which is further equivalent to the following formulation by substituting the relation xij + xji = 1:

{x̂ij : i < j} ∈ argmin{xij :i<j}

∑
(i,j):i<j

(wji − wij)xij

s.t. xij + xjr − xir ≤ 1 ∀ 1 ≤ i < j < r ≤ n
xij ∈ {0, 1} ∀ 1 ≤ i < j ≤ n

(8)

The ranking π̂ is obtained by letting i ≻π j if and only if x̂ij = 1. Given the solution of π̂, the
estimator q̂ is obtained by the one-dimensional convex optimization

α̂ ∈ argminα∈(0,+∞) LT (α) := α
∑T

t=1

∑
x∈St

I{x ≻π̂ xt}+
T∑
t=1

log
∑|St|−1

j=0
e−jα (9)

so that α̂ = − log q̂.

We break the rest of the proof into two parts: the “if" part and the “only if" part.

The “if" part. Let S∞ be the collection of display sets that are displayed infinite times. Suppose for
every pair of items {i, j} is covered infinitely many times. That is, there exists a display set S ∈ S∞
such that {i, j} ⊆ S. We wish to show that (π̂, q̂) → (π∗, q∗) almost surely as the sample size
T → ∞.

We first claim that π̂ → π∗ almost surely. Without loss of generality, assume π∗ = e, the identity
ranking. In other words, we wish to show that with probability one, there exists τ such that for all
T ≥ τ , the unique solution to (8) is {xij = 1, i < j}. Pick an arbitrary pair of items i, j such that
i < j. Let Nij :=

∑T
t=1 I

{
{i, j} ⊆ St

}
be the number of times that both items i and j are displayed.

Because both i and j are covered by some S ∈ S∞, we have Nij → ∞ as T → ∞. Note that
invoking the choice probabilities in (4), OAM is a q∗-separable choice model, i.e., for every display
set S such that {i, j} ⊆ S, Pr({j|S}) ≤ qPr({i|S}); see [13] for more details. Since the choices
are generated independently conditional the display sets, we invoke the law of large numbers and
conclude that wij → ∞, wji → ∞, and wji/wij → q′ for some q′ ≤ q as the sample size T → ∞.
Furthermore, since there are only a finite number of pairs, with probability one, there exists τ such
that for all T ≥ τ ,

wji − wij < 0 for all i < j.

In that case, it is straightforward to see that the unique solution to (8) is {xij = 1, i < j}. The “if"
part is hence completed by noting the result below. Its proof resembles the standard argument for
consistency of MLE except for a few technical differences, such as allowing for an arbitrary display
set offering process (which leads to not necessarily i.i.d choice data) and non-compactness of the
range of α. We provide the proof details in Appendix B.2.

Lemma 4 q̂ → q∗ almost surely.
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The “only if" part. Suppose there exists a pair of items {i, j} that is not covered infinitely many
times. We wish to show that for some underlying parameter (π∗, q∗), (π̂, q̂) ̸→ (π∗, q∗) with positive
probability as the sample size T → ∞.

Through a relabeling argument, assume i = n− 1 and j = n without loss of generality. That is, the
items {n− 1, n} are only displayed together finitely many times. Suppose π∗ = e is the ground truth
ranking. We claim that it does not hold that π̂ → e almost surely as T → ∞.

The rest of proof consists of two steps. First, note that the items {n− 1, n} are only displayed finitely
many times. Therefore, with a positive probability, there exists T̄ > 0 such that wn−1,n ≤ wn,n−1

for all T ≥ T̄ . (In particular, if {n− 1, n} is not covered at all, we have wn−1,n = wn,n−1 = 0 for
all T ≥ 1.)

Second, for the sake of contradiction, suppose π̂ → e almost surely as T → ∞. Then with
probability one, there exists τ < +∞ so that for all T ≥ τ , π̂ = e. It further implies that
x̂ := {x̂ij = 1, for all i < j} is an optimal solution to (8). However, notice that ifwn−1,n ≤ wn,n−1,
the solution x̃ defined by

x̃ij =

{
1, if i < j and (i, j) ̸= (n− 1, n)

0, if i = n− 1 and j = n

weakly decreases the objective function value. It is also feasible because x̃ corresponds to the ranking
π̃ := (1, 2, . . . , n− 2, n, n− 1) (i.e., the ranking obtained by swapping the rankings of the bottom
two ranked items of e). Therefore, x̃ is also an optimal solution to (8). Invoking the first step, we
know that with positive probability, both e and π̃ are MLEs for all T ≥ max{τ, T̄}. Note that the
tie-breaking rule for MLE cannot be item-specific (for otherwise π̃ cannot be correctly identified if it
is the ground truth ranking). Therefore, with positive probability, no item-blind tie-breaking rule for
MLE can differentiate between items n− 1 and n and thus between rankings e and π̃. As a result, we
conclude that it cannot hold that π̂ → e almost surely as T → ∞. □

B.2 Proof of Auxiliary Results (Lemma 4)

Proof of Lemma 4. Let α∗ := − log q∗ ∈ (0,+∞) and recall that α̂ is solution to (9). It suffices to
show that α̂→ α∗ almost surely. We employ a pathwise analysis throughout the proof.

Given display set S and item x ∈ S, let NS :=
∑T
t=1 I

{
St = S

}
and Nx

S :=
∑T
t=1 I

{
St =

S and xt = x
}

be the number of times that S is displayed and x is chosen out of S, respectively. For
i ∈ {1, . . . , |S|}, let πS(i) be the ith most preferred item within display set under ranking π∗. In
other words, if πS(i) = y, then

∑
x∈S I{x ≻π∗ y} = i− 1. Finally, let us introduce

LST (α) :=
1

NS

(
α
∑
t:St=S

∑
x∈S

I{x ≻π∗ xt}+
∑
t:St=S

log
∑|S|−1

j=0
e−jα

)

=α

|S|∑
i=1

N
πS(i)
S

NS
(i− 1) + log

∑|S|−1

j=0
e−jα

to be the (scaled) partial log likelihood loss function when π̂ = π∗ and only display set S is considered.
Since the choices are generated independently conditional the display sets, we invoke the choice
probabilities in (4) as well as the law of large numbers and conclude that with probability one, for all
S ∈ S∞ and α ∈ (0,+∞),

LST (α) → LS∞(α) :=α

|S|∑
i=1

e−(i−1)α∗∑|S|−1
j=0 e−jα∗

(i− 1) + log
∑|S|−1

j=0
e−jα

=α

∑|S|−1
i=1 ie−iα

∗∑|S|−1
j=0 e−jα∗

+ log
∑|S|−1

j=0
e−jα.
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In fact, the convergence is also locally uniform: for all M > 0,

sup
α∈(0,M ]

|LST (α)− LS∞(α)| = sup
α∈(0,M ]

α

|S|∑
i=1

∣∣∣∣∣NπS(i)
S

NS
− e−(i−1)α∗∑|S|−1

j=0 e−jα∗

∣∣∣∣∣(i− 1)

≤M
|S|∑
i=1

∣∣∣∣∣NπS(i)
S

NS
− e−(i−1)α∗∑|S|−1

j=0 e−jα∗

∣∣∣∣∣(i− 1) → 0.

as sample size T → ∞. Therefore, with probability one, LST (·) → LS∞(·) uniformly on the set
(0,M ].

In addition, it is straightforward to verify that for every S, LS∞(·) is strictly convex and attains its
unique minimum at α∗. In fact, one can verify that the first order condition is

(LS∞)′(α) = 0 ⇒
∑|S|−1
i=1 ie−iα

∗∑|S|−1
j=0 e−jα∗

=

∑|S|−1
i=1 ie−iα∑|S|−1
j=0 e−jα

,

which implies that argminαL
S
∞(α) = α∗. Since LST (·) → LS∞(·) uniformly on the set (0,M ] for

every M > 0, we further conclude that with probability one and for an arbitrarily small ϵ > 0, there
exists τ2 such that for all T ≥ τ2,

LT (α) =
∑
S∈S∞

NSL
S
T (α) +O(1)

attains its minimum in [α∗ − ϵ, α∗ + ϵ]. In other words, α̂ ∈ [α∗ − ϵ, α∗ + ϵ]. □

C Inconsistency of the Mallows Smoothing Heuristic (Theorem 3)

C.1 Overview

The Mallows Smoothing heuristic ([4]) consists of a two-step process.

Step 1: (“Choice to Ranking") This step takes the empirical choice probabilities {P̂r(x|S)} as
input and produces a distribution over rankings λ̂ as output. The goal of this step is to find
λ̂, under which the aggregated choice probabilities match the empirical choice probabilities.
Formally, let Ŝ be the collection of display sets that have appeared in the data. This step
corresponds to finding a solution λ̂ to the following feasibility problem:5

min
λ̂

0∑
π̃∈Σ

λ̂(π̃) I(x, π̃, S) = P̂r(x|S), for all S ∈ Ŝ and x ∈ S∑
π̃∈Σ

λ̂(π̃) = 1

λ̂(π) ≥ 0, for all π ∈ Σ.

(10)

Step 2: (“Smoothing") This step takes a distribution over rankings λ̂ as input and produces the
Mallows distribution parameters (π̂, q̂) as output. The goal of this step is to find a Mallows
distribution that fits the λ̂ distribution produced by the previous step.
Formally, recall that the Kendall’s Tau distance between two rankings π, π̃ is given by
dK(π, π̃) =

∑
x<y I{

(
π−1(x)− π−1(y)

)
·
(
π̃−1(x)− π̃−1(y)

)
< 0}. The estimated cen-

tral ranking π̂ of the Mallows distribution is obtained from the following ranking aggregation
problem:

π̂ ∈ argminπ
∑
π̃

λ̂(π̃) · dK(π, π̃). (11)

5If the system above is not feasible, then solve a “soft" version of it by minimizing a loss function of residues;
see [7] for more details.
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The dispersion parameter is obtained from solving the following convex problem:

q̂ = argminq q ·
∑
π̃

λ̂(π̃) · dK(π̂, π̃) + T logψ(n, q).

Note that in system (10), the number of variables is on the order of Ω(n!) while the number of
constraints is on the order of O(n2n), which is much smaller. Therefore, whenever feasible, the
solution forms a high dimensional polytope.

Roughly speaking, we will show that even when all display sets with sizes at least three are displayed
infinite many times, the Mallows model parameters cannot be identified from the MS heuristic. That
is, we suppose that infinite choice data is generated from a Mallows model with the central ranking to
be e. However, we can construct a ranking distribution λ̃ that solves (10) so that when we use it as
input to problem (11), we find a solution π̃ that is different from e. That is, a wrong model parameter
can be the output of the MS heuristic.

C.2 Main Body of the Proof

Proof of Theorem 3. Pick q ∈ (0, 1). Let λe be the p.m.f. of the Mallows ranking model
with the central ranking to be the identity ranking e and the dispersion parameter to be q. Let
{Pre(x|S) : |S| ≥ 3, x ∈ S} be the collection of associated choice probabilities for display sets
with sizes at least three, formally defined as Pre(x|S) :=

∑
π̃∈Σ λ

e(π̃) I(x, π̃, S) for all S such that
|S| ≥ 3 and x ∈ S.

We claim that we can construct λ̃ ∈ ∆(Σ) that satisfies two properties simultaneously.

1. First, it solves (10) when taking {Pre(x|S) : |S| ≥ 3, x ∈ S} as input. That is, λ̃ ∈ ∆(Σ)
satisfies∑

π̃∈Σ
λ̃(π̃) I(x, π̃, S) = Pre(x|S), for all S such that |S| ≥ 3 and x ∈ S. (12)

2. Second, if we take λ̃ as input to (11), we obtain π̃ := (1, 2, . . . , n − 2, n, n − 1) ̸= e as
solution. That is,

(1, 2, . . . , n− 2, n, n− 1) ∈ argminπ
∑
π̃

λ̃(π̃) · dK(π, π̃). (13)

Our construction is based on two observations. First, we invoke Theorem 3.7 by [7] and know that
under the current display set setup, (10) can only identify a ranking up to its first n− 2 positions. As
a consequence, as long as λ̃ satisfies∑

π̃∈Σ

λ̃(π̃) I{πn−2 ⊆ π̃} =
∑
π̃∈Σ

λe(π̃) I{πn−2 ⊆ π̃}, for all πn−2 ∈ Σn−2, (14)

it also satisfies (12).

Second, we observe that problem (11) only depends on the pairwise choice probabilities associated
with its input ranking distribution. This observation is formalized as the result below, and we present
its proof in Appendix C.3.

Lemma 5 Pick λ̂ ∈ ∆(Σ) and let Px,{x,y} :=
∑
π̃ λ̂(π̃)I{π̃−1(x) < π̃−1(y)} be its associated

pairwise probability of choosing item x out of {x, y}. Then

argmin
π

∑
π̃

λ̂(π̃) · dK(π, π̃) = argmin
π

∑
x<y

I{π−1(x) < π−1(y)} · (1− 2Px,{x,y}).

Let P̃x,{x,y} :=
∑
π̃ λ̃(π̃)I{π̃−1(x) < π̃−1(y)} As a quick consequence of the result above, a

sufficient condition of (13) is

P̃x,{x,y} > 1/2 for all (x, y) ∈ {(x, y) : x < y, (x, y) ̸= (n− 1, n)} and P̃n−1,{n−1,n} < 1/2.
(15)

In order to construct λ̃ that satisfies both (14) and (15) (and therefore, fulfills out claim), let us classify
Σ into 3 groups based on its top-(n− 2) elements.
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Group 1: Under πn−2, item (n − 1) is preferred to item n . That is, either (i) {n − 1, n} ⊆
R(πn−2) and π−1

n−2(n− 1) < π−1
n−2(n), or (ii) (n− 1) ∈ R(πn−2) but n ∈ Rc(πn−2).

Group 2: Under πn−2, item n is preferred to item (n−1). That is, either (i) {n−1, n} ⊆ R(πn−2)
and π−1

n−2(n− 1) > π−1
n−2(n), or (ii) n ∈ R(πn−2) but (n− 1) ∈ Rc(πn−21).

Group 3: Under πn−2, items n and (n− 1) are incomparable. That is {n− 1, n} ⊆ Rc(πn−2).

We explicitly construct λ̃ as the following:

λ̃(π) =


λe(π) if π belongs to Group 1 or 2
0 if π ∈ Group 3 and (n− 1) ≻π n
λe(πn−2 ⊕ (n− 1, n)) + λe(πn−2 ⊕ (n, n− 1)) if π ∈ Group 3 and n ≻π (n− 1)

In other words, λ̃ is obtained from λe by “transporting" weights in favor of item n over item (n− 1)
when both of those items are ranked at the bottom two. Since the top-(n − 2) rankings are not
disturbed, (14) is satisfied by construction.

The rest of proof is devoted to verifying (15). Let us use λ = λe and its associated pairwise choice
probability Px,{x,y} for shorthand notation. Since only items (n− 1) and n are swapped when they
are at ranked at the bottom, we have P̃x,{x,y} = Px,{x,y} for all (x, y) ∈ {(x, y) : x < y, (x, y) ̸=
(n − 1, n)}. Therefore, P̃x,{x,y} > 1/2 for all (x, y) ∈ {(x, y) : x < y, (x, y) ̸= (n − 1, n)}.
Denote the sum of probabilities (under the Mallows model) of top-(n− 2) rankings in Group 1 as
λ(Group 1) :=

∑
π̃ λ(π̃)I{π̃ ∈ Group 1}. Given the construction rule, we have P̃n−1,{n−1,n} =

λ(Group 1). Therefore, to verify (15), it suffices to show

λ(Group 1) < 1
2 .

We can classify all top-(n− 2) rankings into four classes. Given a top-(n− 2) ranking, we call an
item a head item if it ranks in top-(n− 2) and a tail item otherwise. We use λn−2(·) to denote the
pmf of a top-(n− 2) ranking under Mallows in the following proof.

1. Class A: Item (n − 1) and item n are both tail items. Denote the sum of probabilities of
top-(n− 2) rankings in Class A as A, i.e., A := Pr(Class A). Denote the last two items in
a top−(n− 2) ranking as x1 and x2, and we can further partition Class A into 2 subclasses.

(a) Class A1: x1 < x2. A1 := Pr(Class A1).
(b) Class A2: x1 > x2. A2 := Pr(Class A2).

There is a bijection between Class A1 and Class A2. By the closed form of the pmf of a top-
(n−2) ranking in Lemma 1 of [10], for each bijection pair (a1, a2), λn−2(a2) = q·λn−2(a1).
As a result, A2 = q · A1. Further, we have A1 = A

1+q , A2 = qA
1+q .

2. Class B: Item (n− 1) is a head item and item n is a tail item. B := Pr(Class B).
We can further partition Class B into n-2 subclasses by the position of item n − 1. For
example, if the position is m, then the subclass is Class Bm and Bm := Pr(Class Bm).
There is a bijection between Class A and each subclass. For subclass Bm, for each bijection
pair (bm, a), λn−2(bm) = qm · λn−2(a), then Bm = qm · A. Hence, we have B =∑n−2
m=1 q

m ·A.

3. Class C: Item n is a head item and item (n− 1) is a tail item. C := Pr(Class C).
There is a bijection between Class B and Class C. We have C = q ·B

4. Class D: Item (n− 1) and item n are both head items. D := Pr(Class D).
This case is the most sophisticated. First, for a top-(n− 2) ranking πn−2, assume π−1

n−2(n−
1) = i and π−1

n−2(n) = j. We can partition Class D into two subclasses.

(a) Class D1: i < j. D1 := Pr(Class D1). and D1(i,j) := Pr(Class D1 : π−1
n−2(n− 1) =

i, π−1
n−2(n) = j}).

(b) Class D2: i > j. D2 := Pr(Class D2). and D2(i,j) := Pr(Class D2 : π−1
n−2(n− 1) =

i, π−1
n−2(n) = j}).
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There is a bijection between Class D1 and Class A1. D1(i,j) = q2n−1−i−j ·A1.
There is also a bijection between Class D1 and Class D2. D2(i,j) = q ·D1(i,j).

Finally, the probability of every class can be expressed by A and their sum is 1, so we get A =
(1−q)(1−q2)

(1−qn−1)(1−qn)

Class B and Class D1 make up group 1, Class C and Class D2 make up group 2, and group 3 only
contains Class A. Hence, Pr(Group 1) = 1−A

1+q and it is not larger than 1/2 when n and q satisfy(
1− (1− q)(1− q2)

(1− qn−1)(1− qn)

)
1

1 + q
<

1

2
,

which simplifies to

Fn(q) := 1 + qn−1 + qn − 2q2 − q2n−1 > 0.

Note that Fn(0) = 1 > 0,Fn(1) = 0, and F ′
n(1) = (n − 1) + n − 4 − (2n − 1) < 0. Therefore,

we conclude that for all n, Fn(q) > 0 either when q is sufficiently close to 0 or 1. That finishes the
proof.

□

C.3 Proof of Auxiliary Results (Lemma 5)

Proof of Lemma 5.

argminπ
∑
π̃

λ̂(π̃) · dK(π, π̃)

=argminπ
∑
π̃

λ̂(π̃)
∑
x<y

I{
(
π−1(x)− π−1(y)

)
·
(
π̃−1(x)− π̃−1(y)

)
< 0}

=argminπ
∑
π̃

λ̂(π̃)
∑
x<y

[I{π̃−1(x) < π̃−1(y)}+ I{π−1(x) < π−1(y)} · (1− 2I{π̃−1(x) < π̃−1(y)})]

=argminπ
∑
x<y

I{π−1(x) < π−1(y)} ·
∑
π̃

λ̂(π̃)(1− 2I{π̃−1(x) < π̃−1(y)})

=argminπ
∑
x<y

I{π−1(x) < π−1(y)} · (1− 2
∑
π̃

λ̂(π̃)I{π̃−1(x) < π̃−1(y)})

=argminπ
∑
x<y

I{π−1(x) < π−1(y)} · (1− 2Px,{x,y})

□

D On the Ranked Choice Probabilities and Model Estimation for k ≥ 1
(Theorems 4 and 5)

Proof of Theorem 4. Without loss of generality, suppose the display set is given by S =
{x1, . . . , xM} such that x1 < x2 < · · · < xM for some M ≥ 2. We prove this theorem by
forward induction on k (i.e., the length of the ranked list).

Base step. Suppose k = 1. Given π1 = (z) where z ∈ S, we have dS(π1) = 0, LS(π1) = |{x ∈
S \ {z} : x < z}| the relative ranking of z in display set S, and ψ(|S|−k,q)

ψ(|S|,q) = 1 + q + · · ·+ q|S|−1.

qdS(π1)+LS(π1) · ψ(|S|−1,q)
ψ(|S|,q) is exactly the choice probability in Theorem 1.

Inductive step. Pick an arbitrary K ∈ {2, . . . ,M}. Suppose our statement holds for every k =
1, . . . ,K − 1. We want to show that our statement holds for k = K.

Pick an arbitrary πk = (xk1 , x
k
2 , . . . , x

k
k−1, x

k
k) = πk−1 ⊕ xkk. We have

Pr(πk|S) = Pr(πk−1|S) · Pr({xkk|S\R(πk−1)}|πk−1 ranks the top-(k − 1) among S)
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Denote a subset Σ′
m−1, such that ∀πm−1 ∈ Σ′

m−1, πk−2 ranks top-(k − 2) among S in πm−1 and
x /∈ πm−1∀x ∈ S\R(πk−2). Denote c := Pr({xkk|S\R(πk−1)}|πm−1 ⊕ xkk−1).

The second part of the RHS can be further decomposed as follows,

Pr({xkk|S\R(πk−1)}|πk−1 ranks the top-(k − 1) among S)

=

n−M+k−1∑
m=k−1

∑
πm−1∈Σ′

m−1

Pr({xkk|S\R(πk−1)}|πm−1 ⊕ xkk−1)

· Pr(πm−1 ⊕ xkk−1|πk−1 ranks the top-(k − 1) among S)

=c ·
n−M+k−1∑

k=2

∑
πm−1∈Σ′

m−1

Pr(πm−1 ⊕ xkk−1|πk−1 ranks the top-(k − 1) among S)

=c

By Lemma 3 and induction hypothesis, we get Pr(πk|S) = qdS(πk)+LS(πk) · ψ(|S|−k,q)ψ(|S|,q) . Hence our
statement holds for k = K, too, thus finishing the proof. □

Proof of Theorem 5. In this proof, we use the σ notation for a ranking in order to simplify the
algebra. Denote the parameter as θ = (σ, q) and Prθ(·) is the choice probability under parameter θ.
The notations dσS and LσS are the original ones dσS and LσS under the ranking parameter σ, respectively.

For all voting history HT =
(
S1, π

1
k, . . . , ST , π

T
k

)
, define πtk as [xt1, . . . , x

t
k]. Denote the central

ranking as σ, then the log likelihood is
T∑
t=1

logPrθ(π
t
k | St) =

T∑
t=1

[
log

ψ(|St| − k, q)

ψ(|St|, q)
+ log q · (dσSt(π

t
k) + LσSt(π

t
k))

]

=

T∑
t=1

|St|∑
i=|St|−k+1

log
1− q

1− qi
+ log q ·

(
T∑
t=1

dσSt(π
t
k) + LσSt(π

t
k)

)
(*)

By definition, we can get

(∗) =
T∑
t=1

|St|∑
i=|St|−k+1

log
1− q

1− qi
+ log q ·

∑
(i,j):i̸=j

I{σ(j) < σ(i)} ·
( T∑
t=1

I{xtk = i} · I{i, j ∈ St\{xt1, . . . , xtk−1}}+

(|St| − 1) · I{xt1 = i, xt2 = j}+ (|St| − 2) · I{xt2 = i, xt3 = j}+ . . .+ (|St| − k + 1) · I{xtk−1 = i, xtk = j}
)

=

T∑
t=1

|St|∑
i=|St|−k+1

log
1− q

1− qi
+ log q ·

∑
(i,j):i̸=j

I{σ(j) < σ(i)} ·
( T∑
t=1

[
I{xtk = i} · I{i, j ∈ St\{xt1, . . . , xtk−1}}+

k−1∑
h=1

(|St| − h) · I{xth = i, xth+1 = j}
])

Hence, in the integer program (5), we define wij as follows.

wij :=

T∑
t=1

[
I{xtk = i} · I{i, j ∈ St\{xt1, . . . , xtk−1}}+

k−1∑
h=1

(|St| − h) · I{xth = i, xth+1 = j}
]
.

That finishes the proof. □

E The Expectation-Maximization (EM) for Mixture OAM

In this section, we describe the standard expectation maximization (EM) algorithm used to fit a
mixture of K OAMs to a given sample of choice data. This particular version is based on [4] and
adapted for the OAM setting.
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First, introduce the following notation.

• K: number of clusters.
• Zt : (ct1, ..., ctK), ctk ∈ {0, 1} indicates whether sample t comes from cluster k.
• Θ = ({pk}, {σk}, {αk}): pk: mixture probability of cluster k, σk : central ranking of

cluster k, αk: concentration parameter of cluster k.
• OAMk(x|S): choice probability of item x given display set S under cluster k.

To fit the mixture distribution, we would like to solve the following maximum likelihood problem:

max
p,σ,α

K∑
k=1

T∑
t=1

ctk log pk +

K∑
k=1

T∑
t=1

ctk log[OAMk(xt|St)]

The EM algorithm starts with an initial solution and iteratively obtains an improving solution until an
appropriate stopping criterion is met. Suppose {(pk, σk, αk) : 1 ≤ k ≤ K} is the current solution.
Then, an improving solution {(p̂k, σ̂k, α̂k) : 1 ≤ k ≤ K} is obtained as follows.

In the Expectation step, the algorithm computes "soft counts" ctk, denoting the (posterior) probability
that example t was generated from mixture component k. This probability is computed as

ĉtk =
p̂k ∗ ˆOAMk(xt|St)∑K
j=1 p̂j ∗ ˆOAM j(xt|St)

Then, in the Maximization step, we first set p̂k = 1
T

T∑
t=1

ĉtk, and then solve a separate optimization

problem for each segment 1 ≤ k ≤ K :

max
σk,αk

−αk
T∑
t=1

ctk(σSt(xt)− 1)−
T∑
t=1

ctk log

|St|−1∑
j=0

e−αkj .

We can obtain an optimal solution of the above problem by solving the following two problems:

d∗k = min
σk

T∑
t=1

ĉtk · (σSt(xt)− 1) (16)

α̂k = argmin
αk

αk · d∗k +
T∑
t=1

ĉtk log

|St|−1∑
j=0

e−αkj

 (17)

The problem in (16) can be solved by choice aggregation through the integer program (5) (with
properly defined w scores). Also, the optimization problem in (17) is convex.

Once we obtain the new solution, {(p̂k, σ̂k, α̂k) : 1 ≤ k ≤ K}, the above process is repeated until
the increase in the log-likelihood value falls below a certain threshold, or until a prespecified limit on
the number of iterations is reached.

F More Experiments

Experiment 1.1: More analysis on the results of experiment 1. In experiment 1 of section 4, We
randomly split the data into 4000 preference rankings in training and 1000 preference rankings in
testing. When we train mixed-MNL on the full set, the mixed-MNL with only one cluster can already
perfectly explain the choice data. That is, the predicted choice probabilities are exactly equal to the
empirical choice probabilities (aka the market shares). Hence, the learned parameters of mixed-MNL
with a smaller number of clusters are also optimal solutions to the mixed-MNL with a larger number
of clusters. Specifically, the optimal parameters of i-cluster MNL , i ∈ {1, 2, . . . , k} are all optimal
to k-cluster MNL. In other words, mixed-MNL with multiple clusters has many optimal solutions.
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These optimal parameters can predict the same choice probabilities on the full set but may predict
differently on other sets. Given the number of clusters, we record the best log likelihood value and
worst log likelihood value from the multiple optimal parameters. We repeat the random splitting 3
times and show these 3 results in the Figure 2.

Figure 2: Train on the full display set only (Each row is on a random data splitting.)
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In each panel, the x-axis represents the number of clusters in the mixture model, and the y-axis
represents the log-likelihood metric.

In these three figures, fix the number of clusters, the prediction power of mixed-MNL may span wide
ranges between the best record and the worst record.6 However, the prediction power of OAM are in
or beyond the range across different number of clusters under two test setups.

Experiment 1.2: Repeatedly shuffle the data. Now, we repeat the data splitting 80 times to obtain
multiple performance values.

We use l̄l to denote the mean of log-likelihood values from the 80 times data splitting and std(ll)
to denote the standard deviation of log-likelihood values. The confidence interval (CI) is defined as
[l̄l − 1.96 · std(ll)√

SS
, l̄l + 1.96 · std(ll)√

SS
], where the sample size SS = 80.

The result of training on the full set is in Figure 3. Given the collection of random sets in experiment 1
of section 4, the result is in Figure 4. From these two figures, the prediction power of OAM increases
with the number of clusters increases. Hence, OAM seems to suffer less from overfitting.

Experiment 2.1: Compare with Borda Count and Simple Count. Since classical Borda Count
could only be applied on the full set, we adapt it as follows: If a display set containsM items and there
is a top-k ranked choice, the ranked items in the ranked choice get (M − 1), (M − 2), . . . , (M − k)

6Since we only try out a limited number of optimal solutions, the actual range could be much wider.
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Figure 3: Train on full set cross shuffle
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Figure 4: Train on three random display sets cross shuffle

1 2 4 6 15
20100

20000

19900

19800

19700

19600

19500

Explaination Power  

OAM
MNL
CI of OAM
CI of MNL

1 2 4 6 15

1.42

1.41

1.40

1.39

1.38

1e6 Prediction Power on All Sets 
OAM
MNL
CI of OAM
CI of MNL

1 2 4 6 15

31500

31000

30500

30000

29500

29000

Prediction Power on Pairwise Sets

OAM
MNL
CI of OAM
CI of MNL

scores. We also consider an even simpler variation of the Borda count where the scores are unweighted.
Because of the simplicity of this variation, we refer to it as Simple Count.

First, we compare three methods on the setups used in experiment 2 of section 4, where all sets with
sizes larger or equal to k will be displayed when the feedback is top-k ranked choice. The learned
rankings under top-1, top-2, top-3 feedback structure are shown in Table 2.

OAM Borda Count Simple Count
Top-3 (8,5,6,3,2,1,4,9,7,10) (8,3,6,1,2,5,4,9,7,10) (8,3,1,6,2,5,4,9,7,10)
Top-2 (8,5,6,3,2,1,4,9,7,10) (8,3,5,6,1,2,4,9,7,10) (8,3,6,1,5,2,4,9,7,10)
Top-1 (8,5,6,3,2,1,4,9,7,10) (8,5,6,3,2,1,4,9,7,10) (8,5,3,6,2,1,4,9,7,10)

Table 2: Learned rankings under different feedback structure when display sets are balanced.

To measure the discrepancy among the estimated rankings from top-1, top-2, and top-3 feedback, we
use the average pairwise Kendall’s Tau distance among the estimated rankings. The results are 0, 4,
and 4, respectively, for OAM, Borda Count, and Simple Count, respectively. As a result, we can see
that OAM is the most stable one.

Furthermore, and perhaps more importantly, Borda Count and Simple Count become particularly
ineffective when the display sets are unbalanced because those simple metrics fail to incorporate the
display set information. For example, if the learner disproportionally displays the least preferred
items (items 7,9,10 in our data), those items will be ranked high under Borda/simple counts because
only the “counts" matter. In comparison, the RMJ-based method judiciously adjusts the count of an
item by the display set history.

In Table 3, we show the learned rankings under top-1, top-2, top-3 feedback structure when only the
full set [10] and {7, 9, 10} are displayed. The average pairwise Kendall’s Tau distance values of these
three methods are 2.67, 7.33 and 6. OAM is still the most stable one under this unbalanced setting.
In addition, from Table 3, OAM still ranks item 7, 9, 10 at the bottom, while Borda Count puts items
7, 9 at some high positions and Simple Count put items 7, 9, 10 at very top positions.

Let us summarize our findings in Experiment 2.1 and the advantage of OAM compared to different
variants of the Borda count. First, under both balanced and unbalanced settings, OAM is the most
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OAM Borda Count Simple Count
Top-3 (8,5,3,2,6,1,4,9,7,10) (8,3,5,6,9,2,1,7,4,10) (9,7,10,8,3,5,6,2,1,4)
Top-2 (8,5,6,3,2,1,4,9,7,10) (8,5,9,6,3,2,1,7,4,10) (9,7,8,10,5,6,3,2,1,4)
Top-1 (8,5,2,6,1,3,4,9,7,10) (8,5,9,7,2,6,1,3,4,10) (9,7,8,5,2,6,10,1,3,4)

Table 3: Learned rankings under different feedback structures when display sets are unbalanced.

stable method. Second, Borda Count and Simple Count will learn misleading ranking when the
display sets are unbalanced, i.e., some items are displayed much more times than other items, while
OAM won’t be affected by this unbalance. Finally, it is worth pointing out that Borda Count and
Simple Count are only about the central ranking, while OAM is also about making (probabilistic)
predictions on ranked choices.

Discussion: further comments on the numerical studies. We believe that our numerical exper-
iments have demonstrated promising evidence that the RMJ-based ranking model can be used to
capture people’s ranked choices from varied display sets. As such, it adds to the toolbox for our moti-
vating application in preference learning in contexts such as crowdsourcing, marketing research, and
survey designs. Since our model is a generalization of choice modeling (i.e., every participant makes
a single choice out of a subset of items), we believe it can find potential applications in other domains
such as online/brick-and-mortar retailing. Of course, more comprehensive numerical experiments
are called for to better evaluate its potential, which we leave for future research. For example, we
could use data sets that specialize in the retail setting. In addition, it would be interesting to see how
the current method handles the non-purchase option since it may well be the overwhelmingly most
frequent response in the data. Finally, it would be beneficial to explore how the current method can
be extended to incorporate customer covariates.

Experiment 4: Experiment on the YOOCHOOSE dataset for e-commerce. We wish to conclude
this section by showing some initial sign of success in the e-commerce context. We compare our
model with MNL on the YOOCHOOSE dataset of the RECSYS 2015 challenge, which contains six
months of user activities for a large European e-commerce business [23].

Here is a brief description of the data set and the data cleaning rule. In this data set, click and purchase
data are provided at the session level. In every session, we can observe the collection of products
that the customer clicks and the collection of products that the customer buys. We use the click data
to form the “display sets" and purchase data to form the “choices" in our paper.7 We conduct our
experiment on category 12. In particular, we focus on the top 111 items, which consist of over 95%
click data. If there are purchases of multiple products in one session, we randomly choose one item
as the customer’s choice. If the customer buys more than one same item in a single session, we also
treat it as a single choice. In the end, there are 76 items and 274 choice data points after data cleaning.

Here is a brief description of how to randomly shuffle and split the data into training and testing sets.
To ensure that all items appear in the training set, we keep 53 choice data in the training set and
randomly split the other 221 choice data into the training and testing set. Finally, there are 220 choice
data in the training set and 54 choice data in testing. We randomly repeat the data splitting 100 times.
On average, there are 124.75 unique display sets in each training set and 2.72 items in a display set.
Note that this is an extremely sparse collection, considering the power set of 76 items consists of
276 ≈ 7.56× 1022 elements.

In this experiment, we use one cluster OAM and MNL. The results are shown in Figure 5. From
this figure, MNL achieves better explanation power, but OAM performs better prediction power on
average. This is a sign that MNL tends to overfit in this data set where the coverage of the display set
is limited. In comparison, OAM demonstrates better generalization ability.

G Code and Data

Our code and data can be accessed by this link: https://drive.google.com/drive/folders/
1q-NUkX21IaqFVXvbLsgVByzXYIR3oq0H?usp=sharing.

7We find that the no-purchase option is overwhelmingly frequent in the data. To deal with this issue and
compare the customer preferences over the real items, we filter out the non-purchase and single-click sessions.
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Figure 5: Results of 100 times data splitting on the YOUCHOOSE dataset
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In each panel, the x-axis represents the log-likelihood metric and the y-axis represents the frequency.
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