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In this document, we provide more details, additional experimental results and discussions on our
approach. The supplementary material is organized as follows:

• §A: more details on the efficient implementation;
• §B: additional graphical illustration;
• §C: more performance comparisons;
• §D: additional visualization results;
• §E: discussions.

A More Details on the Efficient Implementation.

In this section, we first present the proofs of our claims about transmission cost and lazy propagation
in our proposed lazy update algorithm. Then, we provide the pseudo-code of the find function in
Algorithm 1 of the main paper. The symbols in this document follow the same definitions as the main
paper.

A.1 Proofs on Transmission Cost and Lazy Propagation

Lemma 1. Given edge E(k,l) in GT with edge weight wk,l, ∀a ∈ Uk, b ∈ Ul, the transmission cost
between vertex a and b is wk,l.

Proof. Since there are no loops in the tree, the shortest path between any two vertices is unique.
Therefore, there exists a path a−k in Uk that connects vertices a and k, and a path b−l that connects
b and l in Ul. When connecting unions Uk and Ul through edge E(k,l), there is exactly a single path
connecting a and b, denoted as a−k−l−b. As the weight w is sorted in ascending order, for any edge
Ei with wi between a−k in Uk, we have wi ≤ wk,l. The same conclusion applies to l−b. Hence,
the maximum weight in path a−k−l−b is wk,l. Consequently, once k and l are connected, wk,l is
equivalent to the transmission cost for all nodes within Uk and Ul.

Lemma 2. When connecting vertices k and l, lazy tags Z(δ)k∗ and Z(δ)l∗ can be updated as
follows:

Z(δ)k∗ = Z(δ)k∗ +

{
exp(−wk,l/ζg

2)S(δ)l Uk.rank > Ul.rank,
exp(−wk,l/ζg

2)S(δ)l −Z(δ)l∗ otherwise.
(1)

Proof. Given a ∈ Uk, for ∀b ∈ Ul, the transmission cost between a and b is wk,l. We have:
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∆LProp(δ)a =
∑
i∈Ul

(exp(−wk,l/ζg
2)δi) = exp(−wk,l/ζg

2)S(δ)l. (2)

First, let Uk.rank > Ul.rank. When merging unions Uk and Ul, we choose k∗ as the root node and let
l∗ be its descendant. There is:

∆LProp(δ)a = ∆Z(δ)k∗ , (3)

∴ ∆Z(δ)k∗ = exp(−wk,l/ζg
2)S(δ)l. (4)

Second, let Uk.rank ≤ Ul.rank. When merging unions Uk and Ul, we instead choose l∗ as the root
node and let k∗ be its descendant. Then we have:

∆LProp(δ)a = Z(δ)l∗ +∆Z(δ)k∗ = exp(−wk,l/ζg
2)S(δ)l, (5)

∴ ∆Z(δ)k∗ = exp(−wk,l/ζg
2)S(δ)l −Z(δ)l∗ . (6)

A.2 Pseudo Code

The pseudo-code of the find function is shown in Algorithm A1, which finds the root rode with Path
Compression.

Algorithm A1: Pseudo-code of the find function with Path Compression

/*
fa: the parent of the i-th node, shape: (N)
tag: the lazy tag of numbers
ptag: the lazy tag of predictions
*/

int find(int x){
/*
x: the node index to query
return: the root node of x
*/

int fx = fa[x];
if(fx == x)

return x;

fa[x] = find(fx); // Path Compression
if(fa[x] != fx){

tag[x] += tag[fx]; // Downlink lazy tag
ptag[x] += ptag[fx];

}

return fa[x];
}

B Additional Graphical Illustration

To facilitate a better comprehension, we provide a detailed graphical illustration in Fig. A1 to describe
our global affinity propagation process. Initially, an input image is represented as a 4-connected
planar graph. Subsequently, the Minimum Spanning Tree (MST) is constructed based on the edge
weights to obtain the tree-based graph GT . ψg(xi, xj) is calculated as exp(−d), where d is the
maximum value along the path Ei,j from node xi to node xj . This pairwise similarity ψg(xi, xj) is
then multiplied by the unary term to obtain soft pseudo predictions.
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Note that Fig. A1 serves purely as a visual illustration of our method. In the implementation, it is
unnecessary to compute as it explicitly. As detailed in Section 3.3 of main paper, we alternatively
design a lazy propagation scheme to efficiently update these values.
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Figure A1: The graphical illustration of the detailed process of global affinity propagation. In the
green dashed box, we present the calculation of ψg(x0, x3) as a simple example.

C More Performance Comparisons

For annotation-free semantic segmentation with pretrained CLIP model, Key Smoothing (KS) pro-
posed in MaskCLIP [1] also aims to realize the global affinity propagation. To better explore their
efforts, we conduct detailed comparisons between KS and our APro method based on training-free
MaskCLIP [1]. The experimental results are shown in Table A1.

Table A1: Quantitative results on Pascal Context [2]
val and COCO-Stuff [3] val with mean IoU (%).

Method CLIP Model Context COCO.
MaskCLIP [1] 18.46 10.17

+KS 21.0 12.42
+APro(Ours)

ResNet-50
21.67 12.70

MaskCLIP [1] 21.57 13.55
+KS 22.65 15.50

+APro(Ours)
ResNet-50×16

24.03 16.30
MaskCLIP [1] 21.68 12.51

+KS 23.87 13.79
+KS+PD 25.45 14.62

+APro(Ours) 28.91 16.69
+APro(Ours) +PD

ViT-B/16

29.42 16.71

Both KS and our APro method bring per-
formance gains. Compared with KS, APro
achieves better performance with different
CLIP-based models. Especially, for ViT-
B/16 model, our approach outperforms KS by
+5.04% mIoU on Pascal Context and +2.90%
mIoU on COCO, repectively. Equipped with
Prompt Denoising (PD), the models could
achieve further improvements.

We have the following further discussions: KS
relies on the calculation of key feature similar-
ities, which predominantly stems from high-
level features of CLIP and computes pairwise
terms within each pair of patches. Compared
with KS of MaskCLIP, our method is built on a tree-based graph derived from low-level images,
which is capable of capturing finer topological details.

D Additional Visualization Results

To further show the performance of our proposed APro approach, we provide more visualization
results. Fig. A2 shows the qualitative comparisons with the state-of-the-art methods upon box-
supervised instance segmentation task [4, 5, 6]. It can be seen that our proposed APro approach
is able to generate more accurate boundaries. For weakly-supervised semantic segmentation, we
compare our method with the prior art TEL [7] upon point-wise supervision in Fig. A3. APro captures
the fine-grained details of objects with the fitting boundaries. As for CLIP-guided annotation-free
semantic segmentation, Fig. A4 provides the comparison results with MaskCLIP+ [1]. It can
be observed that our approach eliminates the noisy predictions from the pretrained CLIP model
effectively, achieving high-quality mask predictions. In addition, Fig. A5 provides the qualitative
results of our method on general COCO dataset.
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E Discussions

Asset License and Consent. We use four image segmentation datasets, i.e., COCO [8],
Pascal VOC 2012 [9], COCO-Stuff [3] and Pascal Context [2], which are all pub-
licly and freely available for academic research. We implement all models with
MMDetection [10], MMSegmentation [11] and openseg.pytorch [12] codebases. COCO
(https://cocodataset.org/) is released under the CC BY 4.0. Pascal VOC 2012
(http://host.robots.ox.ac.uk/pascal/VOC/voc2012/) is released under the Flickr Terms
of use for images. COCO-Stuff v1.1 (https://github.com/nightrome/cocostuff) is
released under the Flickr Terms of use for images and the CC BY 4.0 for annota-
tions. MMDetection (https://github.com/open-mmlab/mmdetection) and MMSegmen-
tation (https://github.com/open-mmlab/mmsegmentation) codebases are released under
the Apache-2.0 license. Openseg.pytorch (https://github.com/openseg-group/openseg.
pytorch) codebase is released under the MIT license.

Limitations. The presented affinity propagation method is performed under the guidance of the
similarities of image intensity and color. Our proposed method may have difficulties in accurately
capturing the pairwise affinities under the challenging scenarios like motion blur, occlusions, and
cluttered scenes, etc. Actually, this is a common problem for many segmentation methods. In the
future work, we will explore how to integrate our method into the large-scale foundation models,
such as SAM [13], to take advantage of their strong features for more promising segmentation results.

Broader Impact. This work presents an effective component for weakly-supervised segmentation
with label-efficient annotations. We have demonstrated its effectiveness over three typical label-
efficient segmentation tasks. On the positive side, our approach has the potential to benefit a wide
variety of real-world applications, such as autonomous vehicles, medical imaging, remote sensing
and image editing, which can significantly reduce the labeling costs. On the other side, erroneous
predictions in real-world applications (i.e., medical imaging analysis and tasks involving autonomous
vehicles) raise the safety issues of human beings. In order to avoid the potentially negative effects,
we suggest to adopt a highly stringent security protocol in case that our approach fails to function
properly in real-world applications.
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APro(Ours) CRF Loss TreeEnergy Loss Pairwise Loss

Figure A2: Qualitative comparisons on Pascal VOC [9]. We compare our APro approach with CRF
loss [14], TreeEnergy loss [7] and Pairwise loss [4] under the SOLOv2 [15] framework. Our method
obtains more fine-grained predictions with detail preserved.
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Image Ground Truth APro(Ours) TEL

Figure A3: Qualitative comparisons on point-supervised semantic segmentation. Compared with the
state-of-the-art TEL [7], our method segments objects with more accurate boundaries.

MaskCLIP+ APro(Ours) MaskCLIP+ APro(Ours)

Figure A4: Visual comparison results on Pascal Context with ViT-B/16 image encoder. Com-
pared with the prior art MaskCLIP+ [1], our method obtains more accurate predictions with fitting
boundaries.
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Figure A5: Qualitative results of our APro on COCO with ResNet-101 under the SOLOv2 framework
upon box-supervised instance segmentation.
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