
QuaRot: Outlier-Free 4-Bit Inference in Rotated LLMs

Anonymous Author(s)
Affiliation
Address
email

Abstract

We introduce QuaRot, a new Quantization scheme based on Rotations, which is1

able to quantize LLMs end-to-end, including all weights, activations, and KV cache2

in 4 bits. QuaRot rotates LLMs in a way that removes outliers from the hidden3

state without changing the output, making quantization easier. This computational4

invariance is applied to the hidden state (residual) of the LLM, as well as to the ac-5

tivations of the feed-forward components, aspects of the attention mechanism, and6

to the KV cache. The result is a quantized model where all matrix multiplications7

are performed in 4 bits, without any channels identified for retention in higher8

precision. Our 4-bit quantized LLAMA2-70B model has losses of at most 0.479

WikiText-2 perplexity and retains 99% of the zero-shot performance. We also show10

that QuaRot can provide lossless 6 and 8 bit LLAMA-2 models without any cal-11

ibration data using round-to-nearest quantization. Anonymized code is available at:12

https://anonymous.4open.science/r/QuaRot_fork-D88F/README.md.13

1 Introduction14

Large language models (LLMs) have become increasingly important due to their countless applica-15

tions. However, using these models in practice, known as inference, requires a significant amount16

of computation, memory, and energy, specifically during the prefill phase, in which the model is17

supposed to process large prompts and cache them in each layer. Quantization is among the most18

important techniques to improve both memory and compute issues by keeping the data types at lower19

precision during the forward pass.20

As the prefill stage is known to be compute-bound [Ashkboos et al., 2023], joint quantization aims to21

reduce the precision of parameters and KV cache (which results in lower memory usage) as well as22

inputs (known as activations) and compute the forward pass in low precision. However, quantizing23

the activations is hard as they have large outlier elements (see Figure 1 for an illustrative example)24

with much larger values, making activation quantization more difficult than weight quantization,25

especially for the 4-bit case. Previous work relies on using a calibration set to characterize the outlier26

features and keeping them in higher precision for inference [Zhao et al., 2023, Ashkboos et al., 2023].27

In this work, we address the issue of outlier features by rotating the inputs of the model using random-28

ized Hadamard transformations. We do this using the computational invariance idea [Ashkboos et al.,29

2024] and fuse Hadamard transformations into the weight matrices, resulting in an equivalent network30

without outlier features. This enables the weights, activations, and KV caches to be quantized to 431

bits with minimal accuracy drop. Our main contributions are:32

• We show that randomized Hadamard transformations can be applied to the weight matrices33

without additional model modifications. In turn, this completely eliminates outlier features34

and makes the activations easy to quantize, without changing the output of the model. This35

can be seen as an extension of the computational invariance idea, proposed in SliceGPT36

[Ashkboos et al., 2024] in the context of structured pruning.37

Submitted to 38th Conference on Neural Information Processing Systems (NeurIPS 2024). Do not distribute.

https://anonymous.4open.science/r/QuaRot_fork-D88F/README.md


Figure 1: The distributions of activations at the input to the FFN block in LLAMA2-7B model, in the
tenth layer. Left: using the default configuration as downloaded from Hugging Face. Right: after
processing using QuaRot. The processed distribution has no outliers, leading to superior quantization.

• We extend this approach to apply online Hadamard transformations to the attention module38

to remove outlier features in keys and values, enabling the KV cache to be quantized.39

• Using the above modifications, QuaRot enables 4-bit LLM inference by quantizing all40

weights, activations, and KV caches using integer quantization. We provide efficient kernel41

support for QuaRot: on a LLAMA2-70B model, QuaRot achieves up to 3.33× prefill42

speedups (on a batch size 64 with 2048 sequence length), and 3.89× memory saving during43

the decoding stage, with at most 0.47 WikiText-2 perplexity loss. QuaRot preserves 99%44

of the accuracy of zero-shot tasks and we show that our 6 and 8-bit quantization is lossless45

with simple round-to-nearest quantization.46

2 Related Work47

The majority of quantization schemes focus on compressing LLMs by using weight-only quantization,48

[Frantar et al., 2022, Dettmers et al., 2023, Lin et al., 2023, Egiazarian et al., 2024, Tseng et al., 2024].49

These methods downcast each weight into a low-precision representation and upcast it before the50

actual computation. The main computation is still performed in high precision. Several works show51

that, unlike weights, quantizing the activations is hard due to the outlier features [Wei et al., 2022,52

Dettmers et al., 2022, Xiao et al., 2023]. For 8-bit case, LLM.int8() [Dettmers et al., 2022] identifies53

the outlier features during inference and keeps them in 16 bits which results in poor performance.54

SmoothQuant [Xiao et al., 2023] normalizes the features using some scaling factors from a calibration55

set, solving the issue for the 8-bit case at the cost of introducing extra hyper-parameters. For 4-bit56

quantization, recent studies identify the outlier features offline and keep them in high precision.57

Atom [Zhao et al., 2023] developed a complex kernel for mixed-precision MatMul in the presence of58

outliers while QUIK [Ashkboos et al., 2023] keeps the down-projection layer in 8 bits.59

Two weight-only quantization methods, QuIP [Chee et al., 2024] and QuIP# [Tseng et al., 2024] have60

previously considered improving quantization by applying rotations. Chee et al. [2024] introduced61

the idea of incoherence processing which applies rotation matrices to the left and right of each weight62

matrix, as well as the Hessian, which is used in minimizing the weight-quantization objective. [Xi63

et al., 2023] uses a similar idea during training. However, they use exact Hadamard transformations64

where they apply it online for every single linear layer in the forward pass.65

Finally, KV cache quantization is another line of research that aims to compress the cached keys66

and values during the generation phase. This is crucial for large batch size and long-context length67

generation as the KV cache will be the main memory bottleneck in such problems. Sheng et al. [2023]68

quantizes the KV cache using 4-bit group-wise quantization. KVQuant [Hooper et al., 2024] pushes69

this limit to 3-bit quantization and KIVI [Liu et al., 2024] shows promising results on 2-bit KV cache70

quantization. Such methods show that outliers also exist in the keys, and apply a set of complex ideas71

(like feature-wise quantization, non-uniform representation, and keeping high precision outliers) to72

recover the accuracy of a quantized KV cache.73

2



In this work we also adopt the Hadamard transform to improve quantization of weights through74

incoherence processing. Instead of undoing the Hadamard transform during the forward pass, we75

adopt the computational invariance theorem from SliceGPT [Ashkboos et al., 2024] to fuse the76

transformations into the weights where possible. Instead of requiring two Hadamard transforms per77

weight-matrix in the forward pass, QuaRot requires just 1 1
2 Hadamard transforms per transformer78

layer. Computational invariance also means that the activations are incoherence-processed, enabling79

them to be effectively quantized. We also apply a similar technique to the attention block and quantize80

the KV cache in 4 bits with minimal accuracy loss.81

3 Background82

Here we introduce some mathematical concepts and notation that are necessary for QuaRot.83

3.1 Orthogonal, Rotation and Hadamard Matrices84

An orthogonal matrix Q is a square matrix such that QQ> = I. In this work, we consider only real85

orthogonal matrices. A rotation matrix is an orthogonal matrix. A Hadamard matrix is an orthogonal86

matrix with entries drawing from {+1,−1}. A Walsh-Hadamard matrix is a square matrix of size87

d = 2n, with88

H2 = 1√
2

[
1 1
1 −1

]
and H2n = H2 ⊗H2n−1 . (1)

These identities give rise to the Walsh-Hadamard transform, which computes the matrix-vector89

product Hx in O(d log2(d)) operations.90

For matrix sizes that are not 2n, the existence of a Hadamard matrix is not guaranteed. A useful list of91

known Hadamard matrices is made available by Sloane [2024]. Where we require a Hadamard matrix92

of size d 6= 2n, we factorize d = 2nm, where m is the size of a known Hadamard matrix. Then we93

use a Kronecker construction Hd = H2n ⊗Hm. This allows computation of Hdx in O(d(m+ n))94

operations.95

Following Tseng et al. [2024] we make use of randomized Hadamard matrices where convenient.96

Let s be a vector containing random draws from {+1,−1}, and H̃ = H diag(s). It is straightforward97

to see that H̃ is also an orthogonal matrix.98

3.2 Incoherence Processing99

The idea of incoherence processing was introduced by [Chee et al., 2024] in the context of weight100

normalization for weight-only LLM quantization. We define a weight matrix W to be µ-incoherent if101

max
(
W

)
≤ µ‖W‖F /

√
mn (2)

where max is the element-wise max of the matrix, and mn is the number of elements. A weight matrix102

that has high incoherence is hard to quantize: the largest element is an outlier relative to the magnitude103

of the average element. Chee et al. [2024] showed that multiplying a weight matrix on the left and104

right by an orthogonal matrix can reduce the incoherence, making matrices easier to quantize. In this105

work we adopt a similar technique, multiplying weight matrices by orthogonal matrices to improve106

incoherence, though we add fewer operations to the forward pass. Importantly, we additionally apply107

incoherence processing to the activations, enabling improved weight and activation quantization.108

Figure 1 shows the effect of applying incoherence processing to the activations of LLAMA-2 .109

3.3 Transformer structures110

Large Language Models are neural networks with repeating attention and feed-forward layers.111

We introduce our notation through Figures 2 and 5, which show the construction of these blocks.112

We assume that the construction of the network is “pre-norm”, in that each block is preceded113

by a LayerNorm or RMSNorm operation. We also assume that the feed-forward network uses a114

gated architecture, as in LLAMA-2 , though our methodology is straightforwardly applied to MLP115

architectures also.116

3.4 Computational Invariance117

The computational invariance theorem [Ashkboos et al., 2024, Theorem 1] states that the weights and118

between-block activations in a transformer can be transformed using an orthogonal matrix with no119

3



X
x

‖x‖ diag(α)

Wgate

Wup

σ

× Wdown Y

RMSNorm

FFN

Figure 2: The gated feed-forward network used in most LMs, including the pre-positioned RMSNorm.
The input signal is divided by its norm, and re-scaled by parameters α. Two linear blocks, Wup
and Wgate are applied. The activation function σ is applied to the gated signal, and the two signals are
element-wise multiplied together. The final linear block Wdown produces the output signal Y. Before
quantization, different operations are performed either in single (32 bit) or half (16 bit) precision.

change to the model output. Here we sketch the main idea. If Win is a weight matrix that appears120

on the left of a transformer block (i.e., Wgate,Wup in Figure 2, or Wk,Wq,Wv in Figure 5) then121

we can multiply on the left by an orthogonal matrix Q, and cancel out this effect by multiplying the122

output matrix (Wdown,Wout) by Q>. This applies despite the fact that RMSNorm is applied between123

the two blocks, so long as no re-scaling happens in the RMSNorm block (and in practice, we absorb124

any re-scaling into adjacent weight matrices first). Conceptually, this is because RMSNorm divides125

the activations by their norm, and applying a rotation Q to the activations does not affect the norm.126

We have the commutation property127

RMSNorm(X) = RMSNorm(XQ>)Q, (3)

where we assume here that RMSNorm applied to each row of the activations X as xi ← xi/‖xi‖.128

This means that multiplying an output matrix by Q> makes the linear layer output XQ>, which is129

normalized and then passed into the next block whose input weight matrix is now QW, and so this130

linear layer outputs the original activations without modification.131

4 Method132

QuaRot consists of two stages. In the first stage, the model weights are manipulated (in full precision),133

and two additional Hadamard operations are inserted into the model’s forward pass. In the second134

stage, the weights are quantized using some existing method, and quantization operations are added135

to the forward pass to enable on-line quantization of the activations (and caches). By default, we use136

GPTQ [Frantar et al., 2022] for quantizing weights, whilst activations are quantized on-the-fly using137

a simple round-to-nearest scheme. Figures 3 and 6 show updated block diagrams for the forward pass138

with QuaRot modifications, including updated weight matrices, inserted blocks and the bit-width of139

weights and activations.140

Stage 1a: Weight Modification. We first make use of computational invariance to multiply each141

weight matrix by an orthogonal matrix. To enable this, the linear parts of LayerNorm or RMSNorm142

are fused into adjacent weight matrices. Figure 3 shows how the feed-forward block of a transformer143

is modified by removing the scaling operation from RMSNorm (diag(α)) and absorbing into the144

subsequent weight matrices. We select a randomized Hadamard matrix with size that matches the145

hidden dimension of the model and pre- or post-multiply each weight matrix. In Figures 3 and 6 this146

matrix is denoted Q. For example the key-projection weight matrix Wk is modified as147

Wk ← Q>diag(α)Wk , (4)

and similarly for other weight matrices. Matrices that appear on the output side of a block are148

post-multipled by Q.149

This weight modification does not affect the output of the model (assuming sufficient precision)150

as per the computational invariance theorem [Ashkboos et al., 2024]. We note that the modified151

weights resemble the modifications used in QuIP# [Tseng et al., 2024], reducing the incoherence152

of the weights, though our modification does not require any additional processing at run-time.153

4



XQ

FP16
x

‖x‖

qu
an

tiz
e

Q>(α)Wgate

INT4

Q>(α)Wup

INT4

σ

×

ha
da

m
ar

d

qu
an

tiz
e

HWdownQ

INT4

YQ

FP16

INT4

FP16

FP16

INT4

RMSNorm

FFN

Figure 3: QuaRot applied to a LLaMa-style FFN. The RMSNorm scaling (α) has been absorbed
into the weight matrices. The hidden state X has been rotated by Q, which is canceled out by
the absorption of Q> into the first two weight matrices. All weights are stored in INT4, and all
activations immediately before the weights are also quantized to INT4. The result of the matmul
between the INT4 weights and activations on a TensorCore is INT32, which we immediately cast
(and scale) to FP16 which is the default precision of the model. Whilst the signal is still in FP16,
we perform a single on-the-fly Hadamard transform before quantizing and computing a (modified)
down-proj, which results in a rotated output YQ. α is a diagonal matrix with RMSNorm parameters.

Additionally, the activation matrix passed between blocks of the transformer is also incoherence154

processed, becoming X ← XQ. Figure 1 shows the result of this processing: we see that the155

processed activations no longer contain any outliers.156

Stage 1b: Rotate FFN activations. With the above weight-modifications in place, we have157

multiplied many weight matrices on one side by a Hadamard matrix and the activations have been158

changed. It remains to improve the quantization of the activations within each block, which we159

achieve by inserting on-line Hadamard operations.160

We first insert a Hadamard operation into the feed-forward network, before the down-projection161

matrix. This operation is performed in full precision, and implemented using a fast kernel following162

Tseng et al. [2024]. This operation is implicitly reversed by fusing a Hadamard matrix into the163

down-projection matrix of the network: Wdown ← HWdown. Combined with the global matrix Q,164

this means that the down-projection matrix now becomes HWdownQ (see Figure 3).165

Stage 1c: Attention Value Projection. Next, we apply an additional Hadamard operation to each166

attention block. This modification is partially on-line, and partially fused into the weight matrices as167

we will now detail.168

First, note that in the computation of attention, the Wv and Wout matrices are implicitly multiplied169

together within each head. To see this, note that the attention computation consists of170

Y = concat[(P1V1) . . . (Pnh
Vnh

)]Wout (5)

=

H∑
h=1

PhXW(h)
v W

(h)
out (6)

where Ph is a sequence-length sized square matrix computed by softmaxing keys and values, and171

Vh = XW
(h)
v is the value matrix for one head. This presents an opportunity to perform additional172

processing on Wv and Wout using a Hadamard matrix Hdh
which matches the dimension of each173

head:174

W(h)
v ←W(h)

v Hdh
, W

(h)
out ← Hdh

W
(h)
out . (7)

Substituting these modifications into equation (6), we see that the computed result of attention remains175

unchanged. Since the weights for each head are concatenated in the weight representation, we can176

equivalently perform a single Kronecker structured multiplication:177

Wv ←Wv(I⊗Hdh
), Wout ← (I⊗Hdh

)Wout . (8)

This transformation has now been applied head-wise to the weight matrices, and results in computed178

activations (emitted by the block multi-head attention) rotated head-wise also. To complete a “full”179

5



Hadamard operation on the attention-activations, sharing the transform across heads, we make use of180

the identity181

Hnh×dh
= (I⊗Hdh

)(Hnh
⊗ I) (9)

which holds when the number of heads nh and the dimension of each head dh are both powers of 2.182

Since we have already applied (I⊗Hdh
) to both Wv and Wout, it remains to apply (Hdh

⊗ I) to183

Wout, which results in a complete transformation of Wout ← HWout, and to insert a block into the184

forward pass that computes Z ← Z(Hnh
⊗ I) where Z is the attention activation. This block is185

denoted Hadamard heads in Figure 6 and can be computed efficiently using a reshape to deal with186

the Kronecker structure, and a Walsh-Hadamard transform on the reshaped data.187

Stage 1d: Key Rotation. Using the method above, we can successfully quantize the value vectors.188

However, key vectors in the attention module are also known to suffer from outliers [Hooper et al.,189

2024, Liu et al., 2024]. Similar to above, we can use a Hadamard rotation to alleviate this issue,190

allowing us to have a fully quantized KV-cache. First note that the attention scores P1, . . . ,Ph are191

computed as:192

Q ← Pos(XWq) = concat[Pos(Q1), . . . ,Pos(Qnh
)] (10)

K ← Pos(XWk) = concat[Pos(K1), . . . ,Pos(Knh
)] (11)

Ph ← Softmax(αPos(Qh) Pos(K
>
h )�M) , (12)

where α is the Softmax scale usually set to 1√
dh

, M is the attention mask (e.g., causal), and Pos193

denotes the positional embedding. Previously, positional embedding was only added before the first194

layer to the input, in which case Pos is an identity function. However, recent methods such as RoPE195

[Su et al., 2021] add position information directly to the key and query vectors.196

We can now observe the same interaction between Q and K as we observed between Wv and Wout.197

However, the existence of Pos prevents us from directly fusing the Hadamard matrix into Wq and198

Wk. Therefore, we use online head-wise Hadamard rotation to rotate both the queries and keys. As a199

result, the computation of query and key matrices is altered as follows:200

Q ← Pos(XWq)(I⊗Hdh
) = concat[Pos(Q1)Hdh

, . . . ,Pos(Qnh
)Hdh

] (13)
K ← Pos(XWk)(I⊗Hdh

) = concat[Pos(K1)Hdh
, . . . ,Pos(Knh

)Hdh
] . (14)

Since both queries and keys are rotated, the final attention scores P1, . . . ,Ph remain unchanged.201

We note that an alternative to the above process is caching the keys before applying the positional202

encoding. This approach (called Pre-RoPE Caching [Hooper et al., 2024]) needs the inverse rotation203

to be applied online before applying the positional encoding but removes the need to rotate the query204

vector. It also adds the overhead of rotating the keys and values for every query. Given that at the205

time of decoding there is a single query vector and many cached key vectors, we use Post-RoPE206

caching. This helps us to apply a Hadamard transformation on a single token at each decoding step.207

Overall, our modifications to the forward pass, including the insertion of special Hadamard blocks208

and adjustments to the weights do not change the forward pass of the model. The effect is that the209

activations between blocks have been multiplied by a Hadamard matrix, and the activations within210

blocks are processed on-line using Hadamard transforms in a way that is undone by corresponding211

weight matrix modifications. We are now ready to quantize the weights and activations.212

Stage 2a: Weight Quantization. We apply GPTQ [Frantar et al., 2022] to quantize the weights of213

the network. We note that after the above forward-pass modifications, any quantization method could214

be applied. In subsequent sections, we show that a simple round-to-nearest (RTN) scheme can be215

applied instead of GPTQ, at the cost of some accuracy.216

Stage 2b: Online Quantization Operations. With the weights quantized, we are ready to apply217

operations to the forward pass that quantize the activations. Following PyTorch implementation, we218

leave the computation of RMSNorm (without scaling) in FP32. We quantize the input of the linear219

layers using symmetric per-token (rows of the input matrix). During symmetric quantization, the row220

scales are computed by dividing the maximum absolute value of each token by 7 (largest representable221

number in INT4). We then divide each row to its corresponding scale and round the result to its222

nearest integer. The dequantization is also done by casting the INT32 output of GEMM into FP16,223

multiply the corresponding scale for the row (from input scales) and column (from weight scales).224

6



Table 1: WikiText-2 perplexity results on 4-bit quantization of LLAMA-2 models with 2048 sequence
length. We extract the results for SmoothQuant and OmniQuant results of [Shao et al., 2023]. 128G
shows the group-wise quantization with group size 128. We quantize all weights, activations, and
caches in 4-bits in QuaRot.

Method Weight #Outlier LLAMA-2
Quantization Features 7B 13B 70B

Baseline - - 5.47 4.88 3.32

SmoothQuant RTN 0 83.12 35.88 -
OmniQuant RTN 0 14.26 12.30 -
QUIK-4B GPTQ 256 8.87 7.78 6.91
QuaRot GPTQ 0 6.10 5.40 3.79

Atom-128G GPTQ-128G 128 6.03 5.26 -
QuaRot-128G 0 5.93 5.26 3.61

Stage 2c: Quantized Attention. Attention is significantly memory bound for longer sequences225

and larger batch sizes. Having rotated both keys and values, we can successfully quantize the cache226

into low bit-width. This reduces the number of IO operations needed. We keep the queries in FP16227

and use online softmax calculation similar to Flash Attention [Dao et al., 2022]. After a segment of228

the KV vectors are loaded from the memory, we dequantize and compute the dot product in FP16.229

5 Experimental Validation230

Setup. We implement QuaRot using Hugging Face [Wolf et al., 2019] on top of the PyTorch231

framework [Paszke et al., 2019]. To quantize the inputs, we use per-token symmetric quantization (a232

single scale for every row) with a constant clipping ratio of 0.9 in all our experiments. We quantize233

the KV caches using asymmetric quantization with a group size 128 with a constant clipping ratio234

of 0.95. For weight quantization, we use round-to-nearest (RTN) and GPTQ [Frantar et al., 2022]235

with per-column (also known as per-channel) symmetric quantization, where we extract the clipping236

ratio using a linear search over the squared error. We use 128 samples from WikiText-2 [Merity et al.,237

2016] training set with 2048 sequence length as the calibration set during GPTQ quantization. On a238

single NVIDIA A100 GPU, modifying LLAMA2-70B with QuaRot takes 5 minutes and quantizing239

the model with GPTQ takes a further 2 hours. We present LLAMA-3 results in Appendix A.8.240

Models, Tasks, and GPUs. We evaluate QuaRot on the LLAMA-2 family [Touvron et al., 2023] on241

both language generation and zero-shot tasks. We implement our low-level CUDA kernel to perform242

4-bit matrix-multiplication using the CUTLASS [NVIDIA, 2023] library. We use the FlashInfer [Ye,243

2023] library for implementing our KV cache quantization. As we target consumer-type GPUs, we244

evaluate all the performance experiments on NVIDIA RTX 3090 GPUs.245

5.1 Accuracy Results246

Language Generation Tasks. First, we evaluate the accuracy of QuaRot on the language generation247

task. Table 1 shows the perplexity of LLAMA-2 models on WikiText-2 when we quantize the weights248

using GPTQ. We compare against 4-bit SmoothQuant [Xiao et al., 2023] and OmniQuant [Shao249

et al., 2023]. We also include the QUIK [Ashkboos et al., 2023] results when they keep all the layers250

(including down-projection) in 4 bits. QuaRot outperforms all previous work with at most 0.63251

perplexity loss (0.47 on LLAMA2-70B model) without any re-training (as in OmniQuant) nor higher252

precision outlier features and asymmetric quantization (as in QUIK). We also apply group-wise253

quantization to compare against Atom [Zhao et al., 2023] on the same number of groups for weight254

and activations. In this setting, QuaRot doesn’t need to keep any higher precision features and related255

operations (like re-ordering). QuaRot outperforms Atom with 0.1 perplexity points in the 7B model.256

On the 13B model, we get the same perplexity number as Atom.257

Zero-Shot Tasks. Next, we focus on evaluating QuaRot on six important zero-shot tasks: PIQA258

[Bisk et al., 2020], WinoGrande [Sakaguchi et al., 2021], HellaSwag [Zellers et al., 2019], LAMBADA259

(OpenAI) [Radford et al., 2019], and Arc (Easy and Challenge) [Clark et al., 2018]. We use the LM260

Evaluation Harness [Gao et al., 2021] with default parameters for our experiments. Table 2 shows261

7



Table 2: Zero-shot accuracy of LLAMA-2 models with 4-bit (A4W4KV4) QuaRot on PIQA (PQ),
WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method PQ WG HS A-e A-c LA Avg.

LLAMA2-7B
FP16 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot 76.77 63.77 72.16 69.87 40.87 70.39 65.64

LLAMA2-13B
FP16 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot 78.89 70.24 76.37 72.98 46.59 73.67 69.79

LLAMA2-70B
FP16 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot 82.43 76.24 81.82 80.43 56.23 78.73 75.98

1 4 16 64
Batch Size

0

1

2

3

4

Sp
ee

du
p

Ideal Improvement

1.97x 2.06x 2.11x 2.16x

3.16x 3.27x 3.32x 3.33x

Time-to-first-token (prefill) with 2048 Sequence Length

256 512 1024 2048 4096
Sequence Length

M
em

or
y 

Sa
vi

ng

3.63x 3.66x 3.70x 3.72x 3.75x3.89x 3.89x 3.89x 3.89x 3.89x

Peak Memory Saving Factor with Batch Size 167B 70B

Figure 4: Performance of QuaRot kernel on a single transformer block of LLAMA-2 models using
NVIDIA RTX 3090 GPU. Left: For the speedup results, we evaluate using sequence length 2048
with different batch sizes. Right: Peak memory saving during decoding of 50 tokens with different
prefill sequence lengths using batch size 16.

the accuracy of our scheme on the above tasks as well as the average score. On LLAMA-2 family,262

QuaRot preserves the accuracy with at most 4.18% average score loss (1.09% for 70B model).263

5.2 Performance Analysis264

We implement QuaRot using CUDA/12.1 on top of PyTorch and use CUTLASS for performing INT-4265

matrix multiplication on TensorCore (where the results will be saved in an INT32 accumulator).266

In this section, we evaluate the performance of our kernels for both prefill and decoding steps on267

NVIDIA RTX 3090 GPU. We provide all our experiments on a single transformer block as the whole268

model does not fit on our GPU cluster for large batch sizes. We provide more performance analysis269

of our kernels (as well as complete results) in Appendix A.10.270

Prefill Stage Performance Increases. For the compute-bound prefill stage, we present the speedups271

of using QuaRot on 2048 sequence length with different batch sizes in Figure 4 Left. On LLAMA2-7B272

model, we get 1.97x-2.16x speedup over FP16 implementation using QuaRot kernel. The speedup273

increases with batch sizes as the computation will become a bottleneck in larger batch sizes. on274

LLAMA2-70B model, we get up to 3.33x speedup. Note that our performance results could be275

improved by optimizing our kernels (e.g., fusing the quantization operations into the MatMul).276

Decoding Stages Memory Saving. Finally, we evaluate the memory improvement which is the277

main bottleneck of the decoding stage. Figure 4 Right shows the peak memory saving on LLAMA-2278

models. We provide results for LLAMA2-7B and LLAMA2-70B models. In both models, we get at279

least 3.63x peak memory saving compared to FP16 case during the decoding stage. Note that the280

KV cache is larger in LLAMA2-7B model as the LLAMA2-70B uses grouped-query attention [Ainslie281

et al., 2023]. In the LLAMA2-7B model, the memory saving increases with the sequence length,282

resulting in up to 3.75x memory saving. on LLAMA2-70B model, we get 3.89x savings in almost all283

the cases. We expect these values to be larger for the whole model (instead of just the single layer284

here) since as the number of layers increases the effect of constant size objects in memory becomes285

much less significant.286

5.3 Ablation Studies287

To evaluate different aspects of QuaRot, we evaluate the use of Round-to-Nearest Weight Quanti-288

zation, Group-wise Quantization (with different group sizes), and KV cache Quantization with289

different bit-width combinations (Appendix A.3). In addition, we investigate the role of applying290

8



Table 3: WikiText-2 Perplexity and zero-shot accuracy of QuaRot on the LLAMA-2 family using 4-
and 8-bits with Round-to-Nearest (RTN) weights and activation quantization. For zero-shot tasks, we
use PIQA (PQ), WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and
LAMBADA (LA). We quantize all weights, activations, and caches.

Model Method Precision PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑

7B
Baseline FP16 5.47 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot-RTN INT4 8.37 72.09 60.69 65.40 58.88 35.24 57.27 58.26
INT8 5.50 78.94 68.67 75.80 74.79 45.39 74.33 69.65

70B
Baseline FP16 3.32 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot-RTN INT4 4.14 80.69 75.14 79.63 77.57 51.71 77.02 73.63
INT8 3.33 82.97 77.98 83.67 80.77 58.11 79.53 77.17

Table 4: WikiText-2 perplexity of 4-bit QuaRot with various group-sizes on LLAMA-2 models. We
use GPTQ during the weight quantization. In all cases, we keep the KV cache group-size to 128
(same as the head dimension). 128G shows the group-wise quantization with 128 group size.

Method LLAMA-2
7B 13B 70B

Baseline 5.47 4.88 3.32

QuaRot 6.10 5.40 3.79
QuaRot-256G 5.98 5.28 3.63
QuaRot-128G 5.93 5.26 3.61
QuaRot-64G 5.88 5.25 3.58

Hadamard transformation on the Weight-only Quantization schemes (Appendix A.4) as well as291

using Random Orthogonal Matrices (Appendix A.5) instead of Hadamard matrices. Finally, we292

evaluate the accuracy of our quantized models when we apply FP16 Hadamard Transformation293

(Appendix A.7).294

Round-to-Nearest Weight Quantization. GPTQ is our default choice for weight quantization in295

QuaRot. Here, we study the role of quantizing the weights using Round-to-Nearest (RTN). Table 3296

shows that applying RTN weight quantization fully maintains the FP16 model accuracy in 8 bits.297

We note that RTN does not need any calibration set or hyper-parameter during the quantization.298

Comparing Table 3 and 2, we conclude that in 4 bits, the gap between QuaRot-RTN and QuaRot-299

GPTQ decreases when the model size is increased (2.27 on LLAMA2-7B and 0.34 on LLAMA2-70B )300

showing that GPTQ is a better option in smaller models. For more detailed results see Appendix A.6.301

Group-wise Quantization. Table 4 shows the accuracy of applying QuaRot with various302

group-sizes for the activations and weights. The results show a clear trade-off between the accuracy303

and the group-sizes: smaller group-sizes give better accuracy (but require more bits to store scales for304

each group and more complex matrix-multiplication kernels).305

306

6 Conclusion307

We introduce QuaRot: a method which uses Hadamard matrices to eliminate outliers in the activations308

and KV cache of pre-trained LLMs, enabling end-to-end 4-bit quantization for the first time (to309

the best of our knowledge). Quantizing LLAMA2-70B to 4 bits with QuaRot maintains 99% of the310

downstream task performance of the FP16 baseline, with a 2.16× speedup on RTX 3090 GPUs311

during the prefill stage (and up to 3.39× memory saving during the decoding stage). Quantizing all312

LLAMA-2 models to 6 and 8 bits is lossless.313

Opportunities to build on QuaRot include quantizing the residuals and extending the method to314

mixture-of-experts architectures. In terms of hardware, end-to-end INT4 inference with QuaRot315

could be exploited to give similar speedups as that of the recently announced NVIDIA B200 GPU316

architecture, while being much cheaper to implement compared to the floating point (FP4) format.317

9



References318

Marah Abdin, Sam Ade Jacobs, Ammar Ahmad Awan, Jyoti Aneja, Ahmed Awadallah, Hany319

Awadalla, Nguyen Bach, Amit Bahree, Arash Bakhtiari, Harkirat Behl, Alon Benhaim, Misha320

Bilenko, Johan Bjorck, Sébastien Bubeck, Martin Cai, Caio César Teodoro Mendes, Weizhu321

Chen, Vishrav Chaudhary, Parul Chopra, Allie Del Giorno, Gustavo de Rosa, Matthew Dixon,322

Ronen Eldan, Dan Iter, Amit Garg, Abhishek Goswami, Suriya Gunasekar, Emman Haider,323

Junheng Hao, Russell J. Hewett, Jamie Huynh, Mojan Javaheripi, Xin Jin, Piero Kauffmann, Nikos324

Karampatziakis, Dongwoo Kim, Mahoud Khademi, Lev Kurilenko, James R. Lee, Yin Tat Lee,325

Yuanzhi Li, Chen Liang, Weishung Liu, Eric Lin, Zeqi Lin, Piyush Madan, Arindam Mitra, Hardik326

Modi, Anh Nguyen, Brandon Norick, Barun Patra, Daniel Perez-Becker, Thomas Portet, Reid327

Pryzant, Heyang Qin, Marko Radmilac, Corby Rosset, Sambudha Roy, Olatunji Ruwase, Olli328

Saarikivi, Amin Saied, Adil Salim, Michael Santacroce, Shital Shah, Ning Shang, Hiteshi Sharma,329

Xia Song, Masahiro Tanaka, Xin Wang, Rachel Ward, Guanhua Wang, Philipp Witte, Michael330

Wyatt, Can Xu, Jiahang Xu, Sonali Yadav, Fan Yang, Ziyi Yang, Donghan Yu, Chengruidong331

Zhang, Cyril Zhang, Jianwen Zhang, Li Lyna Zhang, Yi Zhang, Yue Zhang, Yunan Zhang, and332

Xiren Zhou. Phi-3 technical report: A highly capable language model locally on your phone, 2024.333

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit334

Sanghai. Gqa: Training generalized multi-query transformer models from multi-head checkpoints.335

arXiv preprint arXiv:2305.13245, 2023.336

Saleh Ashkboos, Ilia Markov, Elias Frantar, Tingxuan Zhong, Xincheng Wang, Jie Ren, Torsten337

Hoefler, and Dan Alistarh. Towards end-to-end 4-bit inference on generative large language models.338

arXiv preprint arXiv:2310.09259, 2023.339

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James340

Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv341

preprint arXiv:2401.15024, 2024.342

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. Piqa: Reasoning343

about physical commonsense in natural language. In Thirty-Fourth AAAI Conference on Artificial344

Intelligence, 2020.345

Jerry Chee, Yaohui Cai, Volodymyr Kuleshov, and Christopher M De Sa. Quip: 2-bit quantization of346

large language models with guarantees. Advances in Neural Information Processing Systems, 36,347

2024.348

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and349

Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning chal-350

lenge. ArXiv, abs/1803.05457, 2018. URL https://api.semanticscholar.org/CorpusID:351

3922816.352

Tri Dao, Daniel Y. Fu, Stefano Ermon, Atri Rudra, and Christopher Ré. FlashAttention: Fast and353

memory-efficient exact attention with IO-awareness. In Advances in Neural Information Processing354

Systems, 2022.355

Tim Dettmers, Mike Lewis, Younes Belkada, and Luke Zettlemoyer. Gpt3. int8 (): 8-bit matrix356

multiplication for transformers at scale. Advances in Neural Information Processing Systems, 35:357

30318–30332, 2022.358

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-359

boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized represen-360

tation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.361

Vage Egiazarian, Andrei Panferov, Denis Kuznedelev, Elias Frantar, Artem Babenko, and Dan362

Alistarh. Extreme compression of large language models via additive quantization. arXiv preprint363

arXiv:2401.06118, 2024.364

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. GPTQ: Accurate post-training365

quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.366

10

https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816
https://api.semanticscholar.org/CorpusID:3922816


Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence367

Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot368

language model evaluation. Version v0. 0.1. Sept, 2021.369

Coleman Hooper, Sehoon Kim, Hiva Mohammadzadeh, Michael W Mahoney, Yakun Sophia Shao,370

Kurt Keutzer, and Amir Gholami. Kvquant: Towards 10 million context length llm inference with371

kv cache quantization. arXiv preprint arXiv:2401.18079, 2024.372

Ji Lin, Jiaming Tang, Haotian Tang, Shang Yang, Xingyu Dang, and Song Han. Awq: Activation-373

aware weight quantization for llm compression and acceleration. arXiv preprint arXiv:2306.00978,374

2023.375

Zirui Liu, Jiayi Yuan, Hongye Jin, Shaochen Zhong, Zhaozhuo Xu, Vladimir Braverman, Beidi376

Chen, and Xia Hu. Kivi: A tuning-free asymmetric 2bit quantization for kv cache. arXiv preprint377

arXiv:2402.02750, 2024.378

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture379

models, 2016.380

NVIDIA. Nvidia cutlass library, 2023. URL https://github.com/NVIDIA/cutlass/.381

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor382

Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. PyTorch: An imperative style,383

high-performance deep learning library. Advances in neural information processing systems, 32,384

2019.385

Alec Radford, Jeff Wu, Rewon Child, David Luan, Dario Amodei, and Ilya Sutskever. Language386

models are unsupervised multitask learners. 2019.387

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An388

adversarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106,389

2021.390

Wenqi Shao, Mengzhao Chen, Zhaoyang Zhang, Peng Xu, Lirui Zhao, Zhiqian Li, Kaipeng Zhang,391

Peng Gao, Yu Qiao, and Ping Luo. Omniquant: Omnidirectionally calibrated quantization for large392

language models. arXiv preprint arXiv:2308.13137, 2023.393

Ying Sheng, Lianmin Zheng, Binhang Yuan, Zhuohan Li, Max Ryabinin, Beidi Chen, Percy Liang,394

Christopher Ré, Ion Stoica, and Ce Zhang. Flexgen: High-throughput generative inference of large395

language models with a single gpu. In International Conference on Machine Learning, pages396

31094–31116. PMLR, 2023.397

Neil J A Sloane. A library of hadamard matrices, 2024. URL http://neilsloane.com/398

hadamard/.399

Jianlin Su, Yu Lu, Shengfeng Pan, Bo Wen, and Yunfeng Liu. Roformer: Enhanced transformer400

with rotary position embedding. CoRR, abs/2104.09864, 2021. URL https://arxiv.org/abs/401

2104.09864.402

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay403

Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-404

tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,405

Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,406

Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel407

Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,408

Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,409

Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,410

Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh411

Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen412

Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,413

Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,414

2023.415

11

https://github.com/NVIDIA/cutlass/
http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
http://neilsloane.com/hadamard/
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864
https://arxiv.org/abs/2104.09864


Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:416

Even better llm quantization with hadamard incoherence and lattice codebooks. arXiv preprint417

arXiv:2402.04396, 2024.418

Xiuying Wei, Yunchen Zhang, Xiangguo Zhang, Ruihao Gong, Shanghang Zhang, Qi Zhang, Fengwei419

Yu, and Xianglong Liu. Outlier suppression: Pushing the limit of low-bit transformer language420

models. Advances in Neural Information Processing Systems, 35:17402–17414, 2022.421

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,422

Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:423

State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.424

Haocheng Xi, Changhao Li, Jianfei Chen, and Jun Zhu. Training transformers with 4-bit integers.425

Advances in Neural Information Processing Systems, 36:49146–49168, 2023.426

Guangxuan Xiao, Ji Lin, Mickael Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:427

Accurate and efficient post-training quantization for large language models. In International428

Conference on Machine Learning, pages 38087–38099. PMLR, 2023.429

Zihao Ye. FlashInfer: Kernel Library for LLM Serving. https://github.com/flashinfer-ai/430

flashinfer, 2023.431

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a machine432

really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.433

Yilong Zhao, Chien-Yu Lin, Kan Zhu, Zihao Ye, Lequn Chen, Size Zheng, Luis Ceze, Arvind434

Krishnamurthy, Tianqi Chen, and Baris Kasikci. Atom: Low-bit quantization for efficient and435

accurate llm serving. arXiv preprint arXiv:2310.19102, 2023.436

12

https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer
https://github.com/flashinfer-ai/flashinfer


A Appendix437

A.1 QuaRot on Attention Module438

Figure 5 shows the original attention module in large language models with RoPE. The input of the439

attention module is already rotated using the randomized Hadamard matrix Q (see Section 4) and440

in the first step, we fuse the inverse of such matrices into the input linear layers of the attention. In441

the next step, we fuse the exact Hadamard matrices on each block of the columns (proportional to442

each head) on the V_projection layer to make sure that the Values will be rotated at the output of443

that layer. In the next step, we apply exact Hadamard transformations on the Keys and Queries and444

quantize the KV after RoPE operation (note that the Keys and Queries Hadmard transformations445

will be canceled during the attention operation). Finally, we apply another Hadamard transformation446

between heads before Out_projection layer and fuse the inverse into the weights. Figure 6 shows447

the result of applying QuaRot on the attention module.448

X
x

‖x‖ diag(α)

Wq

Wv

Wk

RoPE Multi-head
Attention

Wout Y

KV-cache

RMSNorm

Attention

Figure 5: Flow diagram of a self-attention block as used in most LMs, including the pre-positioned
RMSNorm. Solid arrows represent flow during training, prefill and inference of each token. Dashed
arrows show access to and from the KV cache, used at generation-time. The RoPE block computes
relative positional embeddings.

XQ

FP16
x

‖x‖

qu
an

tiz
e

Q>(α)Wq

INT4

Q>(α)WvHhead

INT4

Q>(α)Wk

INT4

RoPE Multi-head
Attention

ha
da

m
ar

d
he

ad
s

qu
an

tiz
e

HWoutQ

INT4

YQ

FP16

KV-cache

INT4

ha
da

m
ar

d

qu
an

tiz
e

dequantize

hadamardINT4

FP16

FP16

FP16
INT4

RMSNorm

Attention

Figure 6: QuaRot applied to an attention component. The RMSNorm scaling α is absorbed into the
input weight matrices, and the hidden state has been rotated by Q in the same way as for the FFN
block (see previous figure). Colored labels show the bit-width of each flow, and dashed lines show
the flow to/from the KV cache.

A.2 Clipping Ratio Ablation449

We use the clipping ratio for both weights and activations during the quantization. During the weight450

quantization, we apply a linear search over the MSE error to extract the best clipping ratio for each451

13



column of the weight matrix. However, this is not possible as we quantize the inputs on the fly during452

the inference and we need to use a constant clipping ratio for such quantization. We conclude that453

using 0.95 and 0.9 are suitable during asymmetric (KV cache) and symmetric (inputs) quantization454

which matches the finding from [Zhao et al., 2023].455

Table 5: WikiText perplexity of LLAMA2-7B with different clipping ratio. To study the effect of
various clipping ratios, we keep the rest of the model in full precision.

1.0 0.95 0.9 0.85
Input Quantization 5.938 5.910 5.828 5.850

KV Cache Quantization 5.513 5.510 5.517 5.532

A.3 KV Cache Quantization Ablation456

We keep the rest of the model (including weights and activations) in high precision and apply our457

group-wise asymmetric quantization (with group-size 128) with various precision to keys and values.458

Table 6 shows the results of using various precision during KV cache quantization. The results show a459

negligible (at most 0.21) perplexity degradation up to 3-bit KV cache (0.07 for LLAMA2-70B model).460

In addition, by comparing the 3 and 4-bit quantization, we can see that compared to the values, keys461

are more sensitive to quantization as keeping the keys in 4-bits and values in 3-bits has 0.03 perplexity462

loss (0.18 for 3-bit keys and 4-bit values) on the LLAMA2-7B model. This matches the previous463

study on KV cache quantization [Hooper et al., 2024, Liu et al., 2024]. The results show that using464

3-bit KV-caches results in a better accuracy (5.68 on LLAMA2-7B model) compared to keeping the465

keys in 4-bits and quantizing the values using 2-bits (with 5.75 perplexity on LLAMA2-7B model).466

Table 6: WikiText-2 perplexity with various KV cache precision using QuaRot.

K bits V bits LLAMA-2
7B 13B 70B

16 16 5.47 4.88 3.32

4 4 5.51 4.91 3.33
4 3 5.54 4.93 3.35
4 2 5.75 5.09 3.43
3 4 5.65 5.01 3.38
3 3 5.68 5.02 3.39
3 2 5.93 5.21 3.48
2 4 8.06 6.42 3.89
2 3 8.18 6.50 3.92
2 2 9.23 7.07 4.13

A.4 Weight-only Quantization Ablation467

QuaRot improves the quality of quantized models by removing the outlier features during the468

Hadamard transformations. As we fuse the Hadamard matrices into the weights, we study the role of469

these transformations for weight-only quantization (we keep the rest of the data-types in FP16). Table470

7 shows the WikiText-2 perplexity results with asymmetric quantization. Using GPTQ quantization,471

QuaRot improves the perplexity by up to 2.65 in 4 bits. In addition, applying QuaRot improves the472

quality more in lower precision (2-3 bits) in all models. QuaRot also improves the RTN quantization473

up to 0.24 perplexity points. GPTQ still has a lower perplexity in 2-3 bits. However, applying QuaRot474

improves the quality of GPTQ in 2 bits to a non-trivial value (5.6 on the LLAMA2-70B model).475

14



Table 7: Weight-only quantization results on WikiText-2 on LLAMA-2 models. We use asymmetric
per-column quantization and keep the inputs and KV cache in FP16. We show the perplexity results
>100 by Inf. We show the failed GPTQ experiments using NaN.

Method LLAMA-2
7B 13B 70B

Baseline 5.47 4.88 3.32

A16W4 A16W3 A16W2 A16W4 A16W3 A16W2 A16W4 A16W3 A16W2

RTN 6.99 Inf Inf 6.32 Inf Inf 4.45 42.11 Inf
GPTQ 8.25 NaN NaN 5.65 9.51 Inf 3.87 5.91 25.30

QuaRot-RTN 6.76 Inf Inf 5.48 48.89 Inf 3.66 5.25 Inf
QuaRot-GPTQ 5.60 6.09 22.07 5.00 5.37 10.41 3.41 3.72 5.60

A.5 Random Orthogonal Matrices Ablation476

QuaRot fuses Hadamard transformations into weight matrices to eliminate outliers. However, due to477

the computational invariance property in LLMs, any orthogonal matrix can be fused to the model and478

we only need to apply an online 1 1
2 Hadamard transformations in each layer (see Section 4). Here,479

we study the use of random orthogonal matrices in QuaRot. We start with a uniformly random matrix480

and apply QR decomposition to make it orthogonal before fusing it into the weights.481

Table 8: WikiText-2 perplexity of 4-bit QuaRot on LLAMA-2 models with different orthogonal
matrices.

Method LLAMA-2
7B 13B 70B

Baseline 5.47 4.88 3.32

QuaRot (Random) 7.45 5.84 4.07
QuaRot (Hadamard) 6.10 5.40 3.79

Table 8 shows the results of applying random orthogonal matrices on LLAMA-2 models. Random482

orthogonal matrices are not as good as random Hadamard transformations and we have up 1.35483

perplexity gap on LLAMA2-7B . However, as the model size increases, the gap decreases, resulting484

in a perplexity change of 0.28 in the LLAMA2-70B model. Note that using the above matrices does485

not change the computation as we still use a fast Hadamard kernel for the down-projection and486

out-projection layers.487

A.6 Round-to-Nearest Weight Quantization: Detailed Results488

Table 9 shows the detailed results of QuaRot with GPTQ and round-to-nearest (RTN) weight quanti-489

zation for both 6 and 8 bits on various tasks for LLAMA-2 models.490

A.7 FP16 Hadamard Transformation Ablation491

We use FP32 online Hadamard transformation across all our experiments. Table 10 shows the results492

of using FP16 Hadamard transformation during the inference (for down-projection and out-projection493

layers). On LLAMA2-7B model, the results show <0.1 perplexity change on WikiText-2 and <0.6%494

averaged accuracy change on the zero-shot tasks, which we consider as noise. On LLAMA2-13B495

model, different Hadamard precisions have the same perplexities with 0.07% difference in the496

averaged zero-shot results. We conclude that the model will not be changed using different Hadamard497

precision.498

15



Table 9: WikiText-2 Perplexity and zero-shot accuracy of QuaRot on the LLAMA-2 family using 4, 6
and 8-bits with GPTQ and RTN weight quantization and RTN activation quantization. For zero-shot
tasks, we use PIQA (PQ), WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge
(A-c), and LAMBADA (LA). The Precision column shows the bandwidth for all inputs, weights, and
KV-caches.

Model Method Precision PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑

7B

Baseline FP16 5.47 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot-RTN
INT4 8.37 72.09 60.69 65.40 58.88 35.24 57.27 58.26
INT6 5.56 78.73 67.80 75.92 74.16 46.08 73.86 69.42
INT8 5.50 78.94 68.67 75.80 74.79 45.39 74.33 69.65

QuaRot-GPTQ
INT4 6.10 76.77 63.77 72.16 69.87 40.87 70.39 65.64
INT6 5.52 78.45 69.46 75.60 74.45 46.50 74.19 69.77
INT8 5.50 78.94 68.90 75.79 74.66 46.16 74.44 69.81

13B

Baseline FP16 4.88 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot-RTN
INT4 6.09 77.37 67.32 73.11 70.83 43.69 70.66 67.16
INT6 4.95 79.65 72.22 79.10 77.27 50.34 76.75 72.56
INT8 4.90 80.52 71.59 79.38 77.31 49.32 76.63 72.46

QuaRot-GPTQ
INT4 5.40 78.89 70.24 76.37 72.98 46.59 73.67 69.79
INT6 4.92 79.98 72.69 79.17 77.78 49.74 76.27 72.60
INT8 4.90 80.36 71.98 79.38 77.31 49.15 76.79 72.49

70B

Baseline FP16 3.32 82.70 77.98 83.84 80.98 57.34 79.58 77.07

QuaRot-RTN
INT4 4.14 80.69 75.14 79.63 77.57 51.71 77.02 73.63
INT6 3.36 83.24 77.90 83.47 80.93 58.28 79.41 77.21
INT8 3.33 82.97 77.98 83.67 80.77 58.11 79.53 77.17

QuaRot-GPTQ
INT4 3.79 82.43 76.24 81.82 80.43 56.23 78.73 75.98
INT6 3.35 82.13 77.66 83.63 80.89 57.08 79.70 77.02
INT8 3.33 83.13 78.06 83.72 80.85 58.19 79.72 77.28

Table 10: Ablation on the precision of online Hadamard transformations for QuaRot. We use
WikiText-2 perplexity as well as zero-shot tasks, explained in Section 5.3.

Model Method Hadamard PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑Precision

7B

Baseline - 5.47 79.11 69.06 75.99 74.58 46.25 73.90 69.82

QuaRot FP32 6.10 76.77 63.77 72.16 69.87 40.87 70.39 65.64
FP16 6.08 76.99 66.46 72.59 69.07 41.21 70.59 66.21

13B

Baseline - 4.88 80.47 72.22 79.39 77.48 49.23 76.75 72.59

QuaRot FP32 5.40 78.89 70.24 76.37 72.98 46.59 73.67 69.79
FP16 5.40 77.69 70.09 75.75 73.95 47.61 73.22 69.72

A.8 LLAMA-3 Results499

In this section, we show the accuracy of applying QuaRot for quantizing the LLAMA3-8B and500

LLAMA3-70B models. Table 11 shows the WikiText-2 perplexity of quantizing the LLAMA-3 models501

with QuaRot using 4-bit quantization. Compared to Table 1, we conclude that LLAMA-3 is more502

sensitive to quantization as we can see a higher gap between the quantized and FP16 models. Table503

12 shows the accuracy results of those models on zero-shot tasks.504

16



Table 11: WikiText-2 perplexity results on 4-bit quantization of LLAMA-3 models with 2048 sequence
length. 128G shows the group-wise quantization with group size 128.

Method Weight #Outlier LLAMA-3
Quantization Features 8B 70B

Baseline - - 6.14 2.86

QuaRot GPTQ 0 8.16 6.66

QuaRot-128G GPTQ-128G 0 7.36 5.51

Table 12: Zero-shot accuracy of LLAMA-3 models with 4-bit QuaRot on PIQA (PQ), WinoGrande
(WG), HellaSwag (HS), Arc-Easy (A-e), Arc-Challenge (A-c), and LAMBADA (LA).

Model Method PQ WG HS A-e A-c LA Avg.

LLAMA3-8B
FP16 80.74 72.77 79.06 77.82 53.33 75.63 73.22

QuaRot 75.14 65.82 72.94 68.01 43.34 65.81 65.18

LLAMA3-70B
FP16 84.66 80.51 84.89 85.86 64.25 79.47 79.94

QuaRot 78.07 69.30 77.33 73.44 47.53 69.57 69.21

A.9 Phi-3-mini-4k-instruct Results505

In this section, we show the accuracy of applying QuaRot for quantizing the Phi-3-mini-4k-instruct506

model [Abdin et al., 2024]. Table 13 shows the accuracy results of the model in terms of perplexity507

and on zero-shot tasks.508

Table 13: WikiText-2 Perplexity and zero-shot accuracy of QuaRot on the Phi-3-mini-4k-instruct
model using 4, 6 and 8-bits with GPTQ and RTN weight quantization and RTN activation quantization.
For zero-shot tasks, we use PIQA (PQ), WinoGrande (WG), HellaSwag (HS), Arc-Easy (A-e), Arc-
Challenge (A-c), and LAMBADA (LA).

Model Method Precision PPL ↓ PQ ↑ WG ↑ HS ↑ A-e ↑ A-c ↑ LA ↑ Avg. ↑

Phi-3-mini

Baseline FP16 6.35 80.47 73.72 78.45 80.13 57.51 68.37 73.11

QuaRot-RTN
INT4 11.69 68.39 58.64 60.60 65.87 39.25 43.99 56.12
INT6 6.78 79.54 73.01 77.46 79.21 55.12 67.53 71.98
INT8 6.58 79.71 74.11 78.63 80.47 56.66 68.56 73.02

QuaRot-GPTQ
INT4 7.85 75.35 67.88 72.95 72.98 48.12 60.78 66.34
INT6 6.63 79.54 72.69 78.50 79.42 56.74 68.85 72.67
INT8 6.58 80.25 74.19 78.54 80.35 57.08 68.64 73.18

A.10 Performance Analysis509

We implement the attention mechanism using three routines: 1) Init: During the prefill stage, this510

routine initializes the cache from all the key and value vectors in the prefill. The attention output511

during prefill is computed directly using Flash Attention [Dao et al., 2022] since we already have512

access to dequantized keys and values. 2) Append: During decoding, this routine is called first to513

quantize the current keys and values and append them to the cache. 3) Decode: Finally, this routine514

is called during decoding with the current query vector. The routine computes the attention output515

using a quantized implementation of flash attention which can load the quantized cache and compute516

the final value vector.517

4-bit Linear and Attention Layers. We benchmark our 4-bit linear layer which involves 4-bit518

matrix multiplication. For a given input of FP16, the layer optionally computes the Hadamard519

operation, then calls the quantization kernel to quantize and save the input in a sub-byte format. In the520

next step, the quantized weights and input are passed to the CUTLASS 4-bit GEMM kernel. Finally,521

the output is dequantized and cast back to FP16. Figure 7 shows the speedup of our 4-bit layer for522

different layer sizes where the layer sizes match the FFN linear layer sizes in LLAMA-2 models.523

17



7B 13B 70B
0

5

10

2.57

3.98

12.45

0.75 1.06

2.88

0.8 1.14

2.91
R

un
tim

e
(m

s)

FP16
INT4

INT4 + Had.

Figure 7: Performance of 16-bit and 4-bit linear layer for 2048 sequence lengths with and without
online Hadamard transformation on a NVIDIA RTX 3090 GPU, averaged over 1000 runs. The matrix
sizes correspond to the linear layer sizes in LLAMA-2 FFN blocks (i.e. Wdown). Here the batch size
is 1, but the performance ratio holds for larger batches (see Table 14).

Our 4-bit linear layer gets 3.2x speedup relative to FP16 in the LLAMA2-7B model, and 4.3x on the524

LLAMA2-70B model. These numbers are for a batch size of 1, we find that scaling is approximately525

linear with batch size: more results in Table 14. We include the runtime with and without Hadamard526

operations, as Wup and Wgate do not require Hadamard transforms, whilst Wdown does. We see that527

the Hadamard transform adds very little overhead to the forward pass at most 7% overhead.528

We also compare the speed of performing append and decode routines for a single token given a529

cache of size 2047. This is equivalent to the cost of decoding the 2048-th token in a sequence. The530

comparison between the speed of FP16 and INT4 for different batch sizes and layer sizes is reported531

in Table 15. For the layer size used in LLAMA2-7B , our 4-bit implementation gets up to 1.72x532

improvement in speed for the larger batch sizes (e.g. from 16 onwards). The 4-bit cache is slower533

than FP16 for smaller batch sizes (e.g. up to 8). Note that this is intuitive as the main benefit of the534

4-bit cache is reducing the I/O cost. A speed up is only visible if this reduction is more significant535

than the quantization overhead which happens for either larger batch sizes or longer sequences.536

Table 14 shows the results of benchmarking our 4-bit linear layer. The layer sizes are extracted537

based on the linear layer sizes in LLAMA-2 models (for out-projection and down-projections). We538

apply both FP16 and FP32 Hadamard transformations and show the runtime on NVIDIA RTX GPU539

using 2048 sequence lengths. Table 15 shows the results of decoding a single token in the attention540

layer when we apply KV-cache quantization. We extract the size of the attention layer based on the541

LLAMA-2 models.542

18



Layer Size Batch Size FP16 INT4 INT4 + FP32 Had INT4 + FP16 Had

4096x4096

1 1.043 0.370 0.409 0.403
2 1.902 0.696 0.790 0.789
4 3.715 1.361 1.522 1.529
8 7.200 2.675 2.999 3.011

16 14.508 5.357 5.973 5.976
32 29.029 10.641 11.900 11.911

5120x5120

1 1.418 0.464 0.552 0.547
2 2.918 0.937 1.100 1.097
4 5.852 1.888 2.206 2.207
8 11.465 3.809 4.428 4.422

16 22.807 7.547 8.755 8.759
32 45.312 15.019 17.417 17.440

8192x8192

1 3.696 0.997 1.084 1.083
2 7.191 1.944 2.099 2.099
4 14.236 3.918 4.208 4.207
8 28.508 7.944 8.460 8.415

16 57.814 15.793 16.859 16.871
32 115.462 31.693 33.780 33.791

11008x4096

1 2.569 0.749 0.798 0.801
2 5.027 1.478 1.555 1.558
4 9.752 2.990 3.140 3.144
8 19.696 6.031 6.296 6.306

16 38.883 11.978 12.503 12.527
32 78.320 23.874 24.935 24.974

13824x5120

1 3.983 1.063 1.142 1.139
2 7.869 2.148 2.291 2.293
4 15.410 4.340 4.616 4.614
8 30.761 8.719 9.231 9.240

16 61.203 17.318 18.345 18.343
32 122.926 34.816 36.953 36.940

28672x8192

1 12.450 2.881 2.911 2.911
2 25.391 5.828 5.892 5.896
4 50.742 11.938 11.947 11.976
8 101.290 24.186 24.202 24.216

16 202.909 48.238 48.325 48.356
32 406.344 96.761 97.044 96.892

Table 14: Performance of 4-bit linear layer for 2048 sequence lengths with and without online
Hadamard transformation on a NVIDIA RTX 3090 GPU. The matrix sizes correspond to the linear
layer sizes in LLAMA-2 models. We averaged over 100 runs and report the numbers in milliseconds.

19



head_num x head_dim Batch Size FP16 INT4 INT4 + FP32 Had INT4 + FP16 Had

32x128

1 0.713 1.033 1.163 1.117
2 0.723 1.035 1.168 1.122
4 0.781 1.033 1.168 1.118
8 0.984 1.042 1.173 1.126

16 1.348 1.018 1.153 1.102
32 2.098 1.168 1.247 1.216

40x128

1 0.712 1.026 1.157 1.106
2 0.726 1.035 1.173 1.121
4 0.831 1.038 1.166 1.115
8 1.065 1.048 1.181 1.128

16 1.525 1.021 1.153 1.102
32 2.480 1.244 1.320 1.287

64x128

1 0.715 1.028 1.160 1.108
2 0.780 1.034 1.171 1.117
4 0.984 1.034 1.171 1.120
8 1.361 1.048 1.182 1.130

16 2.071 1.147 1.223 1.192
32 3.563 1.566 1.645 1.612

Table 15: Performance of decoding a single token with 4-bit KV cache for the attention layer for
2048 sequence lengths with and without online Hadamard transformation on an NVIDIA RTX 3090
GPU. We evaluate generating the last token when the 2047 tokens are already cached in the attention.
We extract the number of heads (head_num) and their dimensions (head_dim) based on different
LLAMA-2 models. We averaged over 100 runs to report the numbers in milliseconds.

Tables 16 and 17 show the detailed speedups and memory saving of a single transformer block for543

QuaRot on LLAMA2-7B model using NVIDIA RTX 3090 GPU.544

Model Batch Size Speedup

LLAMA2-7B

1 1.97×
4 2.06×
16 2.11×
32 2.14×
64 2.16×

LLAMA2-70B

1 3.16×
4 3.27×
16 3.32×
32 3.33×

Table 16: Time-to-first-token (prefill) speedup of each transformation block of LLAMA-2 models in
QuaRot (over the FP16 model) on NVIDIA RTX 3090 GPU. We use 2048 sequence lengths with
different batch sizes.

20



Model Batch Sequence Baseline QuaRot Saving
Size Length (GB) (GB) Factor

LLAMA2-7B

1

256 0.392GB 0.108GB 3.63×
512 0.396GB 0.108GB 3.66×

1024 0.404GB 0.110GB 3.66×
2048 0.419GB 0.114GB 3.67×
4096 0.451GB 0.125GB 3.60×

16

256 0.464GB 0.128GB 3.63×
512 0.528GB 0.144GB 3.66×

1024 0.655GB 0.177GB 3.70×
2048 0.908GB 0.244GB 3.72×
4096 1.416GB 0.378GB 3.75×

LLAMA2-70B

1

256 1.605GB 0.409GB 3.92×
512 1.606GB 0.409GB 3.92×

1024 1.608GB 0.410GB 3.92×
2048 1.612GB 0.411GB 3.92×
4096 1.620GB 0.413GB 3.92×

16

256 1.626GB 0.418GB 3.89×
512 1.642GB 0.422GB 3.89×

1024 1.674GB 0.430GB 3.89×
2048 1.738GB 0.447GB 3.89×
4096 1.865GB 0.480GB 3.89×

Table 17: Peak Memory usage (in GB) for decoding a single token on a single transformation block
of LLAMA-2 models with KV caches of different lengths and with different batch size.

21



NeurIPS Paper Checklist545

1. Claims546

Question: Do the main claims made in the abstract and introduction accurately reflect the547

paper’s contributions and scope?548

Answer: [Yes]549

Justification: We provide all the results for supporting our claims for both abstract and550

introduction section in the experiment section (see Section 5).551

Guidelines:552

• The answer NA means that the abstract and introduction do not include the claims553

made in the paper.554

• The abstract and/or introduction should clearly state the claims made, including the555

contributions made in the paper and important assumptions and limitations. A No or556

NA answer to this question will not be perceived well by the reviewers.557

• The claims made should match theoretical and experimental results, and reflect how558

much the results can be expected to generalize to other settings.559

• It is fine to include aspirational goals as motivation as long as it is clear that these goals560

are not attained by the paper.561

2. Limitations562

Question: Does the paper discuss the limitations of the work performed by the authors?563

Answer: [Yes]564

Justification: We provide the next steps of our work in the Conclusion section (see Section565

6).566

Guidelines:567

• The answer NA means that the paper has no limitation while the answer No means that568

the paper has limitations, but those are not discussed in the paper.569

• The authors are encouraged to create a separate "Limitations" section in their paper.570

• The paper should point out any strong assumptions and how robust the results are to571

violations of these assumptions (e.g., independence assumptions, noiseless settings,572

model well-specification, asymptotic approximations only holding locally). The authors573

should reflect on how these assumptions might be violated in practice and what the574

implications would be.575

• The authors should reflect on the scope of the claims made, e.g., if the approach was576

only tested on a few datasets or with a few runs. In general, empirical results often577

depend on implicit assumptions, which should be articulated.578

• The authors should reflect on the factors that influence the performance of the approach.579

For example, a facial recognition algorithm may perform poorly when image resolution580

is low or images are taken in low lighting. Or a speech-to-text system might not be581

used reliably to provide closed captions for online lectures because it fails to handle582

technical jargon.583

• The authors should discuss the computational efficiency of the proposed algorithms584

and how they scale with dataset size.585

• If applicable, the authors should discuss possible limitations of their approach to586

address problems of privacy and fairness.587

• While the authors might fear that complete honesty about limitations might be used by588

reviewers as grounds for rejection, a worse outcome might be that reviewers discover589

limitations that aren’t acknowledged in the paper. The authors should use their best590

judgment and recognize that individual actions in favor of transparency play an impor-591

tant role in developing norms that preserve the integrity of the community. Reviewers592

will be specifically instructed to not penalize honesty concerning limitations.593

3. Theory Assumptions and Proofs594

Question: For each theoretical result, does the paper provide the full set of assumptions and595

a complete (and correct) proof?596

22



Answer: [NA]597

Justification: We do not provide any theoretical results and we cited all related works (like598

SliceGPT Ashkboos et al. [2024]) in the main text.599

Guidelines:600

• The answer NA means that the paper does not include theoretical results.601

• All the theorems, formulas, and proofs in the paper should be numbered and cross-602

referenced.603

• All assumptions should be clearly stated or referenced in the statement of any theorems.604

• The proofs can either appear in the main paper or the supplemental material, but if605

they appear in the supplemental material, the authors are encouraged to provide a short606

proof sketch to provide intuition.607

• Inversely, any informal proof provided in the core of the paper should be complemented608

by formal proofs provided in appendix or supplemental material.609

• Theorems and Lemmas that the proof relies upon should be properly referenced.610

4. Experimental Result Reproducibility611

Question: Does the paper fully disclose all the information needed to reproduce the main ex-612

perimental results of the paper to the extent that it affects the main claims and/or conclusions613

of the paper (regardless of whether the code and data are provided or not)?614

Answer: [Yes]615

Justification: We provide all the codes and experimental settings for our results (see Section616

5).617

Guidelines:618

• The answer NA means that the paper does not include experiments.619

• If the paper includes experiments, a No answer to this question will not be perceived620

well by the reviewers: Making the paper reproducible is important, regardless of621

whether the code and data are provided or not.622

• If the contribution is a dataset and/or model, the authors should describe the steps taken623

to make their results reproducible or verifiable.624

• Depending on the contribution, reproducibility can be accomplished in various ways.625

For example, if the contribution is a novel architecture, describing the architecture fully626

might suffice, or if the contribution is a specific model and empirical evaluation, it may627

be necessary to either make it possible for others to replicate the model with the same628

dataset, or provide access to the model. In general. releasing code and data is often629

one good way to accomplish this, but reproducibility can also be provided via detailed630

instructions for how to replicate the results, access to a hosted model (e.g., in the case631

of a large language model), releasing of a model checkpoint, or other means that are632

appropriate to the research performed.633

• While NeurIPS does not require releasing code, the conference does require all submis-634

sions to provide some reasonable avenue for reproducibility, which may depend on the635

nature of the contribution. For example636

(a) If the contribution is primarily a new algorithm, the paper should make it clear how637

to reproduce that algorithm.638

(b) If the contribution is primarily a new model architecture, the paper should describe639

the architecture clearly and fully.640

(c) If the contribution is a new model (e.g., a large language model), then there should641

either be a way to access this model for reproducing the results or a way to reproduce642

the model (e.g., with an open-source dataset or instructions for how to construct643

the dataset).644

(d) We recognize that reproducibility may be tricky in some cases, in which case645

authors are welcome to describe the particular way they provide for reproducibility.646

In the case of closed-source models, it may be that access to the model is limited in647

some way (e.g., to registered users), but it should be possible for other researchers648

to have some path to reproducing or verifying the results.649

5. Open access to data and code650

23



Question: Does the paper provide open access to the data and code, with sufficient instruc-651

tions to faithfully reproduce the main experimental results, as described in supplemental652

material?653

Answer: [Yes]654

Justification: We use public models and datasets in our experiments with clear instructions655

to reproduce the main results of the paper.656

Guidelines:657

• The answer NA means that paper does not include experiments requiring code.658

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/659

public/guides/CodeSubmissionPolicy) for more details.660

• While we encourage the release of code and data, we understand that this might not661

be possible, so No is an acceptable answer. Papers cannot be rejected simply for not662

including code, unless this is central to the contribution (e.g., for a new open-source663

benchmark).664

• The instructions should contain the exact command and environment needed to run to665

reproduce the results. See the NeurIPS code and data submission guidelines (https:666

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.667

• The authors should provide instructions on data access and preparation, including how668

to access the raw data, preprocessed data, intermediate data, and generated data, etc.669

• The authors should provide scripts to reproduce all experimental results for the new670

proposed method and baselines. If only a subset of experiments are reproducible, they671

should state which ones are omitted from the script and why.672

• At submission time, to preserve anonymity, the authors should release anonymized673

versions (if applicable).674

• Providing as much information as possible in supplemental material (appended to the675

paper) is recommended, but including URLs to data and code is permitted.676

6. Experimental Setting/Details677

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-678

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the679

results?680

Answer: [Yes]681

Justification: All parameters are presented in Section 5.682

Guidelines:683

• The answer NA means that the paper does not include experiments.684

• The experimental setting should be presented in the core of the paper to a level of detail685

that is necessary to appreciate the results and make sense of them.686

• The full details can be provided either with the code, in appendix, or as supplemental687

material.688

7. Experiment Statistical Significance689

Question: Does the paper report error bars suitably and correctly defined or other appropriate690

information about the statistical significance of the experiments?691

Answer: [No]692

Justification: As we use large models (with at least 7B parameters), different experiments do693

not have too different outputs. We do not repeat the experiments as they are costly as well.694

Guidelines:695

• The answer NA means that the paper does not include experiments.696

• The authors should answer "Yes" if the results are accompanied by error bars, confi-697

dence intervals, or statistical significance tests, at least for the experiments that support698

the main claims of the paper.699

• The factors of variability that the error bars are capturing should be clearly stated (for700

example, train/test split, initialization, random drawing of some parameter, or overall701

run with given experimental conditions).702

24

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy


• The method for calculating the error bars should be explained (closed form formula,703

call to a library function, bootstrap, etc.)704

• The assumptions made should be given (e.g., Normally distributed errors).705

• It should be clear whether the error bar is the standard deviation or the standard error706

of the mean.707

• It is OK to report 1-sigma error bars, but one should state it. The authors should708

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis709

of Normality of errors is not verified.710

• For asymmetric distributions, the authors should be careful not to show in tables or711

figures symmetric error bars that would yield results that are out of range (e.g. negative712

error rates).713

• If error bars are reported in tables or plots, The authors should explain in the text how714

they were calculated and reference the corresponding figures or tables in the text.715

8. Experiments Compute Resources716

Question: For each experiment, does the paper provide sufficient information on the com-717

puter resources (type of compute workers, memory, time of execution) needed to reproduce718

the experiments?719

Answer: [Yes]720

Justification: All details are presented in Section 5.721

Guidelines:722

• The answer NA means that the paper does not include experiments.723

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,724

or cloud provider, including relevant memory and storage.725

• The paper should provide the amount of compute required for each of the individual726

experimental runs as well as estimate the total compute.727

• The paper should disclose whether the full research project required more compute728

than the experiments reported in the paper (e.g., preliminary or failed experiments that729

didn’t make it into the paper).730

9. Code Of Ethics731

Question: Does the research conducted in the paper conform, in every respect, with the732

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?733

Answer: [Yes]734

Justification: The paper conforms the Neurips CoE.735

Guidelines:736

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.737

• If the authors answer No, they should explain the special circumstances that require a738

deviation from the Code of Ethics.739

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-740

eration due to laws or regulations in their jurisdiction).741

10. Broader Impacts742

Question: Does the paper discuss both potential positive societal impacts and negative743

societal impacts of the work performed?744

Answer: [NA]745

Justification: Our work is about LLM inference acceleration and it does not directly have746

any specific societal impact.747

Guidelines:748

• The answer NA means that there is no societal impact of the work performed.749

• If the authors answer NA or No, they should explain why their work has no societal750

impact or why the paper does not address societal impact.751

25

https://neurips.cc/public/EthicsGuidelines


• Examples of negative societal impacts include potential malicious or unintended uses752

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations753

(e.g., deployment of technologies that could make decisions that unfairly impact specific754

groups), privacy considerations, and security considerations.755

• The conference expects that many papers will be foundational research and not tied756

to particular applications, let alone deployments. However, if there is a direct path to757

any negative applications, the authors should point it out. For example, it is legitimate758

to point out that an improvement in the quality of generative models could be used to759

generate deepfakes for disinformation. On the other hand, it is not needed to point out760

that a generic algorithm for optimizing neural networks could enable people to train761

models that generate Deepfakes faster.762

• The authors should consider possible harms that could arise when the technology is763

being used as intended and functioning correctly, harms that could arise when the764

technology is being used as intended but gives incorrect results, and harms following765

from (intentional or unintentional) misuse of the technology.766

• If there are negative societal impacts, the authors could also discuss possible mitigation767

strategies (e.g., gated release of models, providing defenses in addition to attacks,768

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from769

feedback over time, improving the efficiency and accessibility of ML).770

11. Safeguards771

Question: Does the paper describe safeguards that have been put in place for responsible772

release of data or models that have a high risk for misuse (e.g., pretrained language models,773

image generators, or scraped datasets)?774

Answer: [NA]775

Justification: Our work does not provide any new model or changing the models to behave776

in a new way and it does not add a new ability to the already existing models so it does not777

have any risk for misuse.778

Guidelines:779

• The answer NA means that the paper poses no such risks.780

• Released models that have a high risk for misuse or dual-use should be released with781

necessary safeguards to allow for controlled use of the model, for example by requiring782

that users adhere to usage guidelines or restrictions to access the model or implementing783

safety filters.784

• Datasets that have been scraped from the Internet could pose safety risks. The authors785

should describe how they avoided releasing unsafe images.786

• We recognize that providing effective safeguards is challenging, and many papers do787

not require this, but we encourage authors to take this into account and make a best788

faith effort.789

12. Licenses for existing assets790

Question: Are the creators or original owners of assets (e.g., code, data, models), used in791

the paper, properly credited and are the license and terms of use explicitly mentioned and792

properly respected?793

Answer: [Yes]794

Justification: We develop our code using publicly available libraries, models, and datasets.795

We submit our assets using CC-BY 4.0 license.796

Guidelines:797

• The answer NA means that the paper does not use existing assets.798

• The authors should cite the original paper that produced the code package or dataset.799

• The authors should state which version of the asset is used and, if possible, include a800

URL.801

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.802

• For scraped data from a particular source (e.g., website), the copyright and terms of803

service of that source should be provided.804

26



• If assets are released, the license, copyright information, and terms of use in the805

package should be provided. For popular datasets, paperswithcode.com/datasets806

has curated licenses for some datasets. Their licensing guide can help determine the807

license of a dataset.808

• For existing datasets that are re-packaged, both the original license and the license of809

the derived asset (if it has changed) should be provided.810

• If this information is not available online, the authors are encouraged to reach out to811

the asset’s creators.812

13. New Assets813

Question: Are new assets introduced in the paper well documented and is the documentation814

provided alongside the assets?815

Answer: [Yes]816

Justification: All the assets are documented.817

Guidelines:818

• The answer NA means that the paper does not release new assets.819

• Researchers should communicate the details of the dataset/code/model as part of their820

submissions via structured templates. This includes details about training, license,821

limitations, etc.822

• The paper should discuss whether and how consent was obtained from people whose823

asset is used.824

• At submission time, remember to anonymize your assets (if applicable). You can either825

create an anonymized URL or include an anonymized zip file.826

14. Crowdsourcing and Research with Human Subjects827

Question: For crowdsourcing experiments and research with human subjects, does the paper828

include the full text of instructions given to participants and screenshots, if applicable, as829

well as details about compensation (if any)?830

Answer: [NA]831

Justification: We do not provide any crowdsourcing experiments and research with human832

subjects.833

Guidelines:834

• The answer NA means that the paper does not involve crowdsourcing nor research with835

human subjects.836

• Including this information in the supplemental material is fine, but if the main contribu-837

tion of the paper involves human subjects, then as much detail as possible should be838

included in the main paper.839

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,840

or other labor should be paid at least the minimum wage in the country of the data841

collector.842

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human843

Subjects844

Question: Does the paper describe potential risks incurred by study participants, whether845

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)846

approvals (or an equivalent approval/review based on the requirements of your country or847

institution) were obtained?848

Answer: [NA]849

Justification: Our work does not involve crowdsourcing nor research with human subjects.850

Guidelines:851

• The answer NA means that the paper does not involve crowdsourcing nor research with852

human subjects.853

• Depending on the country in which research is conducted, IRB approval (or equivalent)854

may be required for any human subjects research. If you obtained IRB approval, you855

should clearly state this in the paper.856

27

paperswithcode.com/datasets


• We recognize that the procedures for this may vary significantly between institutions857

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the858

guidelines for their institution.859

• For initial submissions, do not include any information that would break anonymity (if860

applicable), such as the institution conducting the review.861

28


	Introduction
	Related Work
	Background
	Orthogonal, Rotation and Hadamard Matrices
	Incoherence Processing
	Transformer structures
	Computational Invariance

	Method
	Experimental Validation
	Accuracy Results
	Performance Analysis
	Ablation Studies

	Conclusion
	Appendix
	QuaRot on Attention Module
	Clipping Ratio Ablation
	KV Cache Quantization Ablation
	Weight-only Quantization Ablation
	Random Orthogonal Matrices Ablation
	Round-to-Nearest Weight Quantization: Detailed Results
	FP16 Hadamard Transformation Ablation
	Llama-0.953 Results
	Phi-3-mini-4k-instruct Results
	Performance Analysis


