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PSHUMAN: PHOTOREALISTIC SINGLE-VIEW HUMAN
RECONSTRUCTION USING CROSS-SCALE DIFFUSION
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Figure 1: We introduce PSHuman, a diffusion-based full-body human reconstruction model. Given
a single image of a clothed person, our method facilitates detailed geometry and realistic 3D human
appearance across various poses within one minute.

ABSTRACT

Detailed and photorealistic 3D human modeling is essential for various appli-
cations and has seen tremendous progress. However, full-body reconstruction
from a monocular RGB image remains challenging due to the ill-posed na-
ture of the problem and sophisticated clothing topology with self-occlusions.
In this paper, we propose PSHuman, a novel framework that explicitly recon-
structs human meshes utilizing priors from the multi-view diffusion model. It
is found that directly applying multiview diffusion on single-view human im-
ages leads to severe geometric distortions, especially on generated faces. To
address it, we propose a cross-scale diffusion that models the joint probability
distribution of global full-body shape and local facial characteristics, enabling
detailed and identity-preserved novel-view generation without any geometric dis-
tortion. Moreover, to enhance cross-view body shape consistency of varied hu-
man poses, we condition the generative model on parametric models like SMPL-
X, which provide body priors and prevent unnatural views inconsistent with hu-
man anatomy. Leveraging the generated multi-view normal and color images, we
present SMPLX-initialized explicit human carving to recover realistic textured
human meshes efficiently. Extensive experimental results and quantitative eval-
uations on CAPE and THuman2.1 datasets demonstrate PSHuman’s superiority
in geometry details, texture fidelity, and generalization capability. Project page:
https://anonymous.4open.science/w/pshuman anonymous-027F/ .

1 INTRODUCTION

Photorealistic 3D reconstruction of clothed humans is a promising and widely investigated research
domain with significant applications across several industries, including gaming, movies, fashion,
and AR/VR (Ma et al., 2021; Orts-Escolano et al., 2016). Traditional methods, which perform mul-
tiview stereo and non-rigid registration using multi-camera setups or incorporate additional depth
signals, have achieved accurate modeling. However, reconstruction from an in-the-wild RGB image
remains an open problem due to sophisticated body poses and complex clothing topology.

A plethora of studies have been developed to address these challenges. PIFu (Saito et al., 2019) and
related efforts (Saito et al., 2020; Zhang et al., 2024b; Ho et al., 2024; Zhang et al., 2024a; Xiu et al.,
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Figure 2: Geometry comparison between Implicit and Explicit methods.

2022) extract pixel-aligned features from the color or normal image and leverage implicit functions
to predict the occupancy field (Mescheder et al., 2019) of the 3D human body and ECON (Xiu
et al., 2023) utilizes bilateral normal integration (BiNI) to lift normal clues to 3D body to remain
predicted details explicitly. On the one hand, these efforts indeed lead to improvements in terms
of either monocular ambiguity or postural intricacy through the introduction of other geometric
clues or occluded-view information. On the other hand, the direct regression paradigm still falls
short in detail loss and artifacts. Similarly, recent progress in appearance reconstruction (Zhang
et al., 2024b; Ho et al., 2024) follows the implicit function to infer full-body texture, struggling with
texture unrealism due to poor generalization capability.

In this study, we aim to tackle these existing challenges by introducing a multiview diffusion model
and a normal-guided explicit human reconstruction framework. We build upon the recent progress
of diffusion-based multiview generation models to explore their hallucination capabilities for robust
human modeling. As depicted in Fig. 4, PSHuman takes a full-body human image as input, followed
by a carefully designed multiview diffusion model and an SMPLX-initialized mesh carving module,
outputting a textured 3D human mesh.

(a) (b)

Figure 3: Each triplet contains input (left) and
reconstructions of w/o (middle) and w/ (right)
SMPL-X condition. Compared with naive dif-
fusion, SMPL-X prior guides handling self-
occlusion and improving consistency.

Specifically, we fine-tune a pre-trained text-to-
image diffusion model (such as Stable Diffu-
sion (Rombach et al., 2022b)) to generate mul-
tiview color and normal maps conditioned on
the input reference. Despite impressive gener-
ative performance, this base framework faces
two major challenges: 1) Unnatural body
structures, where diffusion models struggle to
generate reasonable novel views of posed hu-
mans, often resulting in disproportionate body
proportions or missing body parts. This is-
sue arises from the severe self-occlusion in the
posed human image and lack of body prior for
generative models. To address this, we pro-
pose an SMPL-X conditioned diffusion model,
which concatenates renderings of estimated SMPL-X with the input image to provide pose guid-
ance for novel-view generation. This approach constrains the diffusion model to generate consistent
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views that adhere to human anatomy, even when fine-tuning with as few as 3, 000 human scans.
2) Face distortion, where pre-trained diffusion models often produce distorted and unnatural face
details, especially for full-body human input. This problem is attributed to the small size of the
face in full-body images, which provides limited information for detailed normal prediction after
VAE encoding. To accurately recover face geometry, we propose a body-face cross-scale diffusion
framework that simultaneously generates multiview full-body images and local face ones. We also
employ a simple yet efficient noise blending layer to enhance face details in global image, guaran-
teeing both cross-scale and cross-view consistency. Consequently, PSHuman generates high-quality
and detailed novel-view human images and corresponding normal maps.

To fully leverage the generated multiview images, we present an SMPLX-initialized explicit human
carving module for fast and high-fidelity textured human mesh modeling. Unlike implicit functions
that use Multilayer Perceptrons (MLPs) to map normal features to an implicit surface, or BiNI (Cao
et al., 2022) that utilizes variational normal integration to recover 2.5D surfaces, we directly re-
construct the 3D mesh supervised by generated multiview normal maps. In practice, we initialize
the human model with predicted SMPL-X, and deform and remesh it with differentiable rasteriza-
tion Palfinger (2022). As shown in Fig. 2, PSHuman can preserve fine-grained details, such as facial
features and fabric wrinkles, and generate natural and harmonious novel views. For texturing on the
generated meshes, we first fuse multiview color images using differentiable rendering to mitigate
generative inconsistencies, then project them onto the reconstructed 3D mesh.

The entire reconstruction process takes as few as one minute. It is noted that recent SDS-based
methods (Huang et al., 2024b;a) also achieve state-of-the-art performance in geometry details and
appearance fidelity. However, they can only handle simple poses and suffer from time-consuming
optimization (such as TeCH Huang et al. (2024b), which takes approximately six hours). Conversely,
PSHuman achieves a balance between precision, efficiency, and pose robustness.

In summary, our key contributions include:

• We introduce PSHuman, a novel diffusion-based explicit method for detailed and realistic
3D human modeling from a single image.

• We present a body-face cross-scale diffusion and an SMPL-X conditioned multi-view dif-
fusion for high-quality full-body human image generation with high-fidelity face details.

• We design an SMPLX-initialized explicit human carving module to fast recover textured
human mesh based on generated multi-view cross-domain images, achieving SOTA perfor-
mance on THuman2.1 and CAPE datasets.

2 RELATED WORK

Single-image human reconstruction has seen rapid advancements in recent years, primarily driven by
three key approaches: implicit function-based reconstruction, explicit shape-based reconstruction,
and the emerging 2D diffusion-based methods.

Implicit Human Reconstruction. Implicit functions have gained significant traction in human re-
construction (Chibane et al., 2020; Gropp et al., 2020; Yang et al., 2023) due to their flexibility in
handling complex topology and diverse clothing styles. Pioneering works such as PIFu Saito et al.
(2019) introduce pixel-aligned implicit functions, mapping 2D image features to 3D implicit surface
for continuous modeling. Building upon this, subsequent research incorporates parametric models
(e.g., SMPL) to enhance anatomical plausibility and robustness in challenging in-the-wild poses (He
et al., 2020; Xiu et al., 2022; Zheng et al., 2021; Zhang et al., 2024a) or for animation-ready mod-
eling (Huang et al., 2020; He et al., 2021). Other efforts enhance geometric details and dynamic
stability by introducing normal (Saito et al., 2020), depth clues (Yu et al., 2021b; Zheng et al.,
2023), or decoupling albedo (Alldieck et al., 2022) from natural inputs. However, these methods
struggle with unseen areas due to limited observed information. More recent approaches (Zhang
et al., 2024b; Ho et al., 2024) incorporate predicted side-view images to enhance visualization but
still face challenges in balancing quality, efficiency, and robustness.

Explicit Human Reconstruction. Early research focuses on explicit representation for human re-
construction. Voxel-based methods (Varol et al., 2018; Zheng et al., 2019) utilize 3D UNet to predict
volumetric confidence occupied by the human body, which demands high memory and often results
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Figure 4: Overall pipeline. Given a single full-body human image, PSHuman recovers the texture
human mesh by two stages: 1) Body-face enhanced and SMPL-X conditioned multi-view genera-
tion. The input image and predicted SMPL-X are fed into a multi-view image diffusion model to
generate six views of global full-body images and local face images. 2) SMPLX-initialized explicit
human carving. Utilizing generated normal and color maps to deform and remesh the SMPL-X with
differentiable rasterization.

in compromised spatial resolution, hindering the capture of fine details crucial for realistic represen-
tation. As a more efficient alternative, visual hulls (Natsume et al., 2019) approximate 3D shapes by
incorporating silhouettes and 3D joints. Another strategy involves using depth (Gabeur et al., 2019;
Smith et al., 2019; Han et al., 2023) or normal (Alldieck et al., 2019; Xiu et al., 2023) information
to explicitly infer the 3D human body, balancing detail preservation with computational efficiency.
Among these, ECON utilizes normal integration and shape completion, achieving extreme robust-
ness for challenging poses and loose clothing. The major limitations lie in sub-optimal geometry
and supporting appearance. To address this, we propose to simultaneously recover geometry and
appearance with differentiable rasterization under the supervision of multi-view normal and color
maps predicted by the diffusion model.

Diffusion-based Human Reconstruction. Most recently, Score Distillation Sampling (SDS) Poole
et al. (2022) based human generation methods (Liao et al., 2023; Huang et al., 2024b) have achieved
SOTA performance. However, these approaches often require time-consuming optimization. Draw
inspiration from the advancement of multi-view diffusion based 3D generation (Liu et al., 2023;
Long et al., 2024; Li et al., 2024; Voleti et al., 2024; Tang et al., 2024), our work reduces the
inference time by directly generating multiple human views for human reconstruction. We further
augment human generation capabilities through the introduction of a novel SMPL-X-conditioned
cross-scale attention framework. Most related to our work, Chupa Kim et al. (2023) also reconstructs
with multi-view normals. However, it still depends on optimization-based refinement and does not
support image condition and texture modeling.

3 OUR APPROACH

Overview. Given a single color image, we aim to reconstruct the textured 3D human mesh with
generated realistic invisible views. PSHuman is built upon recent multi-view generative models (Li
et al., 2024; Long et al., 2024), including two primary stages: 1) a body-face cross-scale diffusion
model conditioned on SMPL-X, which generates multi-view full-body cross-domain (color and nor-
mal) images and local facial ones (Sec. 3.1), 2) an SMPLX-initialized explicit human carving mod-
ule for modeling 3D textured meshes (Sec. 3.2). Since we generate normal maps and images, we
use x and z as the raw data and latents for both data modalities.

3.1 BODY-FACE MULTI-VIEW DIFFUSION

3.1.1 BODY-FACE DIFFUSION

Motivation. Simply adopting the multiview diffusion (Li et al., 2024; Long et al., 2024) for 3D
human reconstruction leads to distorted faces and changes of face identities in the reconstruction
results. Because the face only occupies a small region with a low resolution in the image and
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cannot be accurately generated by the multiview diffusion model. Since humans are very sensitive
to slight changes in faces, such generation inaccuracy of faces leads to obvious distortion and identity
changes. This motivates us to separately apply another multiview diffusion model to generate the
face at a high resolution with more accuracy.

Forward and reverse processes. We define our data distribution p(x) as the joint distribution of
the human face xF and the human body xB by

p(x) = p(xB , xF ) = p(xB |xF )p(xF ). (1)

Then, we follow the DDPM model to define our forward and reverse diffusion process by

q(xt|xt−1) = q(xB
t |xB

t−1, x
F
t−1)q(x

F
t |xF

t−1), (2)

p(xt−1|xt) = p(xB
t−1|xB

t , x
F
t−1)p(x

F
t−1|xF

t ), (3)

where q defines the forward process to add noises to the original data and p defines the reverse
process to generate data by denoising. For the forward process, we simply omit the condition on the
xF
t−1 and add noises to the face and body images separately by the approximated forward process

q(xt|xt−1) ≈ q(xB
t |xB

t−1)q(x
F
t |xF

t−1). (4)

Although explicitly defining forward process for q(xB
t |xB

t−1, x
F
t−1) is feasible for the vanilla diffu-

sion model, it is difficult for the latent diffusion model. We explain this difficulty and the feasibility
of this approximation in Sec. A.1. For the reverse process p(xt−1|xt), the face diffusion is just a
vanilla diffusion model p(xF

t−1|pFt ) while the body diffusion model will additionally use the face
denoising results as conditions by p(xB

t−1|pBt , pFt−1), as shown in Fig. 5, which is implemented by
the following joint denoising scheme.

Figure 5: Illustration of joint
denoising diffusion block.

Joint denoising. We utilize a simple but efficient noise blending
layer to jointly denoise in body-face diffusion. Specifically, in each
self-attention block of UNet, we extract the latent vector of the face
branch, resize it with scale s, and add it to the face region of the
global branch with a weighted sum. Specifically, let us take one of
the hidden layers as an example. We denote hBn

t and hF
t as hidden

vectors of the n-th body view and face view at the same attention
layer 1 and timestep t, the blending operation can be written as

hBn
t =

{
hB1
t + w ·RP (hF

t , s), n = 1

hBn
t , n = 2, 3, . . . , N

(5)

where, the RP is the resize and padding function, w is the mask
of the face region. The resulting latent vector can be represented
by zBn

t and zFt . We jointly optimize the body and face distribution
with the following loss,

ℓ = Et,zF
0 ,ϵ

[
∥ϵ− ϵθ(z

F
t , t)∥2

]
+ Et,zB

0 ,zF
0 ,n,ϵ

[
∥ϵ(n) − ϵ

(n)
θ (zBt , z

F
t , t)∥2

]
, (6)

where θ is shared weights between face and multiple body views. The noise blending allows the face
information to be transferred to novel body views with cross-view attention, improving the overall
consistency of generated human images.

3.1.2 SMPL-X GUIDED MULTI-VIEW DIFFUSION

The diffusion model excels in generating plausible novel views for simple, non-occluded body poses,
producing natural human geometry. However, it faces significant challenges with in-the-wild images
that often feature self-occlusions. These occlusions can lead to “hallucinations” that violate human
structural integrity or exhibit inconsistent limb poses. For example, Fig. 3 illustrates two common
issues: (a) the model generating upright side views for a bending posture input, and (b) inconsisten-
cies in arm regions of side views due to self-occlusion, resulting in failed reconstruction.

1Here, we omit the layer subscript for simplicity.
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To mitigate these impediments, we propose incorporating additional pose guidance into the diffusion
process. Our method first estimates the SMPL-X parameters of the input image and renders them
from six target viewpoints. We then utilize a pre-trained Variational Autoencoder (VAE) encoder
to convert these renderings into latent vectors, which are concatenated with noise samples and the
reference image to serve as input of the denoising UNet. The introduction of these conditional
signals constrains the multi-view distribution, leading to more accurate and consistent human image
generation. This approach significantly enhances the model’s generalization capability on complex
human poses with self-occlusion.

3.2 SMPLX-INITIALIZED EXPLICIT HUMAN CARVING

Figure 6: Illustration of our explicit human carv-
ing module.

Following the generation of multi-view color
and normal images, we elaborate on our pro-
posed SMPLX-initialized human carving mod-
ule (Fig. 6) to obtain the textured 3D mesh.

Numerous methodologies have been developed
to leverage normal cues for human reconstruc-
tion. However, a significant proportion of them
employ implicit functions (e.g. MLP) to map
the normal feature as implicit surfaces. This process, while effective in certain scenarios, often re-
sults in a lack of fine geometric details. Even with BiNI used in ECON, the overall geometry still
exhibits a notable degradation. Taking advantage of the multi-view consistent normal maps, we opt
to fuse it directly with the explicit triangle mesh. Our reconstruction module consists of three main
stages: SMPL-X initialization, differentiable remeshing, and appearance fusion.

SMPL-X initialization. The process commences with human mesh initialization, utilizing the
aforementioned SMPL-X estimation, which provides a strong body prior, effectively mitigating
unnecessary face pruning and densification during subsequent geometry optimization. However,
it is noteworthy that the generated multiple views may exhibit slight misalignment with the SMPL
model due to normalization and recentering procedures tailored for the diffusion model. Draw-
ing inspiration from ICON, we optimize SMPL-X’s translation, shape, and pose by minimizing the
pixie-aligned error of multi-view normal and silhouette. The alignment process is computationally
efficient, typically requiring only seconds to complete.

Remeshing with differentiable rasterization. Given the initial human prior, we utilize differ-
entiable rasterization to carve the details based on observational normal maps. While a common
approach involves adding per-vertex displacement to the coarse canonical mesh, this method en-
counters difficulties when modeling complex details, such as loose clothing. To address this lim-
itation, we directly optimize the SMPL topology, encompassing both vertex positions V and face
edges F . The optimization procedure iteratively applies vertex displacement and remeshing to the
triangle mesh, utilizing the optimizer proposed in (Palfinger, 2022). The optimization objective can
be written as

Ṽ , F̃ = argmin
V,F

N∑
i=1

wi(∥Ni − N̂i∥2 + ∥Si − Ŝi∥2) + λ
∑
j

(nj − nneig
j ) (7)

where nj and nneig
j denote the vertex normal and the average normal of neighboring vertices, The

regularization weight λ is set to 0.02. We execute 700 optimization steps to achieve optimal per-
formance. Following the mesh optimization, we employ Poisson reconstruction Kazhdan & Hoppe
(2013) to complete minor invisible areas, such as the chin. Additionally, we offer the option to
substitute the hands with the estimated SMPL-X results (Xiu et al., 2023).

Appearance fusion. Upon obtaining the 3D geometry, our objective is to derive the high-fidelity
texture matching the reference image. Despite the availability of multi-view images, direct projec-
tion onto the mesh results in conspicuous artifacts, arising from the cross-view inconsistency and
inaccurate foreground segmentation. To overcome this, we perform texture fusion and optimize the
per-vertex color by minimizing the view-dependent MSE loss between the rendered color images
and generated ones utilizing differentiable rendering. Finally, we compute a visibility mask and
perform topology-aware interpolation to complete the minor unobserved area.
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Figure 7: Appearance comparisons with methods which produce texture. Our method could recon-
struct realistic and reasonable appearance of side and back views.

4 EXPERIMENTS

Dataset. We conduct experiments on widely used 3D human datasets, including high-quality hu-
man scans (THuman2.1 Yu et al. (2021b) and CustomHumans Ho et al. (2023)) captured with a
dense DSLR rig and temporal sequence of scans (CAPE Ma et al. (2020)) captured with a body
scanner. Specifically, our training dataset comprises 2, 385 scans from THuman2.1 and 647 scans
from CustomHumans. These datasets are selected due to their provision of SMPL-X parameters.
For quantitative evaluation, we utilize the remaining 60 scans from THuman2.1 and 150 scans from
CAPE, with CAPE being subdivided into “CAPE-FP” and “CAPE-NFP” to assess generalization on
real-world scenarios. Additionally, we curate a selection of cases from the Internet and SHHQ Fu
et al. (2022) fashion data for qualitative comparison.

Metric. To assess reconstruction capability, we employ three primary metrics: 1-directional point-
to-surface (P2S), L1 Chamfer Distance (CD), and Normal Consistency (NC). CD and P2S quantify
the distance between predicted and ground-truth meshes, while NC measures the cosine distance
between surface normals. For appearance quality evaluation, we utilize peak signal-to-noise ratio
(PSNR), structural similarity index (SSIM), and learned perceptual image patch similarity (LPIPS).

4.1 COMPARISONS

Baselines. We conducted a comprehensive comparison of our method against state-of-the-art single-
view human reconstruction approaches, including PIFu Saito et al. (2019), PIFuHD Saito et al.
(2020), PaMIR Zheng et al. (2021), ICON Xiu et al. (2022), ECON Xiu et al. (2023), GTA Zhang
et al. (2024a), SiFU Zhang et al. (2024b), and SiTH Ho et al. (2024). For SMPL-based methods, we
utilize PIXIE Yu et al. (2021a) for estimation. We also report the results with ground-truth SMPL-X
to isolate the impact of pose estimation errors.

Comparison of geometry quality. Our method demonstrates superior geometric quality compared
to existing approaches, particularly without an SMPL-X body prior (Tab. 1). Unlike template-based
methods, which are susceptible to SMPL-X prediction errors, our method supports template-free
training, thereby offering enhanced generalization capability. When incorporating the body prior,
our method consistently outperforms previous works, demonstrating unprecedented accuracy on

7
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Table 1: Quantitative comparison of geometry quality. To avoid the impact of pose estimation errors
on the evaluation, ground-truth SMPL-X models are used during testing. The units for Chamfer and
P2S are in cm. The top two results are colored as first second .

CAPE-NFP CAPE-FP THuman2.1

Method Publication Cham. Dist ↓ P2S ↓ NC ↑ Cham. Dist ↓ P2S ↓ NC ↑ Cham. Dist ↓ P2S ↓ NC ↑

w/o SMPL-X body prior

PIFu ICCV 2019 3.2524 2.5469 0.7624 1.8367 1.7582 0.8573 1.2071 1.1299 0.7681

PIFuHD CVPR 2020 2.9749 2.3677 0.7658 1.5211 1.4834 0.8712 0.9935 0.9647 0.7890

PaMIR TPAMI 2021 7.1577 3.3832 0.6345 6.0114 3.2877 0.6737 1.0875 1.0144 0.7939

ICON CVPR 2022 2.6983 2.3911 0.7958 2.1331 2.0359 0.8364 1.1199 1.0925 0.7810

ECON CVPR 2023 3.1086 2.6044 0.7722 2.5394 2.4336 0.8128 1.2500 1.1469 0.7643

GTA NeurIPS 2023 2.7387 2.4722 0.7875 2.2543 2.1889 0.8247 1.0612 1.0389 0.7857

SIFU CVPR 2024 2.7884 2.4792 0.7877 2.1695 2.1107 0.8310 1.0774 1.0586 0.7871

SITH CVPR 2024 2.8735 2.1226 0.7804 2.1140 1.6754 0.8337 0.9661 0.9034 0.7832

Ours - 2.1625 1.6675 0.8226 1.3615 1.1308 0.8844 0.6609 0.5993 0.8310

w/ SMPL-X body prior

ICON CVPR 2022 1.5511 1.1967 0.8572 0.9951 0.8864 0.9190 0.6146 0.5934 0.8493

ECON CVPR 2023 1.8524 1.5706 0.8392 1.1761 1.1352 0.8969 0.6725 0.6331 0.8362

GTA NeurIPS 2023 1.8853 1.4902 0.8260 1.1484 0.9914 0.9011 0.5791 0.5587 0.8491

SIFU CVPR 2024 1.5742 1.2777 0.8529 1.0535 0.9674 0.9024 0.5754 0.5576 0.8500

SITH CVPR 2024 1.8118 1.5201 0.8345 1.1839 1.1573 0.8870 0.6474 0.5810 0.8264

Ours - 0.9688 0.8675 0.8799 0.7811 0.6984 0.9136 0.4399 0.4077 0.8504

complex posed humans. The qualitative comparison in Fig. 2 also showcases the superiority of
PSHuman, featuring with complete shape, detailed face and natural-looking clothing folds.

Table 2: Quantitative comparison of appearance
rendering on THuman2.1 subset.

Method PSNR ↑ SSIM ↑ LPIPS ↓
PIFu 19.3957 0.8327 0.1001

PaMIR 19.4130 0.8324 0.0988
GTA 19.6071 0.8338 0.0989
SIFU 19.4417 0.8307 0.0985
SITH 18.4580 0.8200 0.1004
Ours 20.8548 0.8636 0.0764

Table 3: Evaluation of robustness to SMPL-X es-
timation on THuman2.1 subset.

Method Cham. Dist ↓ P2S ↓ NC ↑
ICON 0.7827 0.6463 0.8401
ECON 0.8022 0.6742 0.8327
GTA 0.6631 0.6473 0.8368
SIFU 0.6672 0.6488 0.8302
SITH 0.6427 0.6393 0.8241
Ours 0.5574 0.5377 0.8417

Comparison of appearance quality. Quantitative evaluations in Tab. 2 reveal that PSHuman out-
performs existing methods across multiple metrics, achieving the highest PSNR (20.8548), SSIM
(0.8636) as well as the lowest LPIPS (0.0764), which correlates more closely with visual percep-
tion. Qualitatively, as illustrated in Fig. 7, PSHuman produces highly consistent appearances on
novel viewpoints, including natural and realistic reconstruction for posterior regions. In contrast,
existing methods exhibit various limitations such as blurred colors and inconsistent artifacts in un-
seen views.

Robustness to SMPL-X estimation. We assess the robustness of template-based approaches to
SMPL-X estimation errors in Tab. 3. Following SIFU, we introduce random noise with a variance
of 0.05 to both the pose and shape parameters of the ground-truth SMPL-X model. The results
demonstrate the robust reconstruction capabilities of our approach. Furthermore, the efficacy of our
method in real-world scenarios is evidenced by the additional results presented in Fig. 13 of A.4.

4.2 ABLATION STUDY

Effectiveness of SMPL-X condition. In Fig. 3, we show the geometry reconstructed by the models
trained without SMPL-X condition and with SMPL-X condition. In Fig. 3(a), it is observed that the
naive diffusion model struggles to ’imagen’ the pose of a bending human image. Conversely, the
SMPL-X provides a strong pose prior to guide the model to generate reasonable side views, leading
to better reconstruction. In Fig. 3(b), the diffusion model fails to generate consistent multiple views
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Input w/o CSD w/ CSD

Figure 8: Ablation study of the cross-scale diffusion (CSD). The CSD allows sharp face recovery
and keeps the identity consistent with the reference input.

due to self-occlusion, resulting in artifacts near the art regions. The SMPL-X guidance effectively
enhances consistency, facilitating the complete human body.

Effectiveness of cross-scale diffusion (CSD). In Fig. 8, we experiment with the removal of the
locally enhanced model, which means only usage of the global diffusion branch. The resulting ap-
pearance and geometry, as can be observed, are obviously distorted (e.g. the mouth region) or blurry
and fail to accurately recover the consistent geometry details with reference input image. However,
using the local enhanced diffusion model, our method manages to overcome these limitations. It
achieves more precise and intricate details, contributing to a significant enhancement for the appear-
ance and geometry of 3D humans.

Figure 9: Ablation of our reconstruction module.

Effectiveness of mesh carving module. We
assess the efficacy of our reconstruction module
by substituting the remeshing step with alterna-
tive methods, specifically NeuS and BiNI. As
illustrated in Fig. 9, the resulting geometries ex-
hibit notable deficiencies or failures to capture
fine geometric details. Note that we employ
the normal maps, generated by our diffusion
model, across all methods to mitigate potential
errors arising from normal prediction discrep-
ancies. Moreover, in the absence of SMPL-X
optimization, the reconstructed mesh displays
subtle artifacts due to misalignment between the initial SMPL-X and the multiple views. Our re-
construction module, which incorporates remeshing with SMPL-X refinement, effectively addresses
these issues. For a comprehensive evaluation, we direct the reader to Sec. A.4.

5 LIMITATIONS AND CONCLUSION

In this work, we present PSHuman, a single-view human reconstruction framework that significantly
enhances the quality of both geometry and appearance. By introducing a body-face cross-scale dif-
fusion model, we improve the capability of modeling high-fidelity 3D human faces. Additionally,
we use SMPL-X as guidance for robust multi-view generation. Finally, we devise the multi-view
guided explicit human carving module to preserve as many details from generated images as pos-
sible. We demonstrate that PSHuman can generate 3D humans with intricate geometric details and
realistic appearances, outperforming existing methods.

Limitations. We share a common problem with previous template-based works: the pose estima-
tion error has a cascading effect on subsequent view generation and reconstruction. It is promising to
mitigate it by unifying existing multi-view datasets and improving the generation robustness without
body template conditions.

9
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A APPENDIX

A.1 DISCUSSIONS ABOUT FACE-BODY CROSS-SCALE DIFFUSION

Difficulty in implementing dependent forward process. In the dependent forward process
q(xB

t |xB
t−1, x

F
t−1), we know that the face region of xB corresponds to xF . Since we have defined

p(xF
t |xF

t−1) by adding noises to xF
t−1, it is natural to get xB

t by replacing the pixel values in the
face region of xB

t with xF
t and just adding noises to the remaining image regions of xB

t−1. However,
since we adopt a latent diffusion model (Stable Diffusion) Rombach et al. (2022a) here, the pixels of
tensors in the latent spaces are not independent of each other so the replacing operation is not valid
here. This brings difficulty in separating the face regions in the latent space to explicitly implement
the dependent forward process for adding noises.

Rationale of approximated forward process. Our rationale for adding noises to the face and the
body separately is that the process is similar to multiview diffusion. We can regard the face image
and the body image as just two images captured by cameras with different camera positions and focal
lengths. In this case, the body-face cross-scale diffusion is a special case of multiview diffusion. In
a multiview diffusion, we add noises to multiview images separately so that we can also add noises
to the body image and face image separately but consider the dependence in the reverse process.

A.2 IMPLEMENTATION DETAILS

Preprocessing. Our training datasets include scans from THuman2.1 and CustomHumans. For
each human model, and the corresponding SMPL-X model, we render 8 color and normal images
with alpha channel around the yaw axis, with a 45◦ interval and a resolution of 768 × 768. Due
to the random face-forward direction, we employ insightface Deng et al. (2018) for face detection,
utilizing only viewpoints containing clear facial characteristics for training. As mentioned in the
main paper, PSHuman generates 6 color and normal images from front, front-right, right, back, left,
and front-left views. To guarantee the generation alignment, we horizontally flip the left and back
views during training.

Diffusion block. As shown in Fig. 5, our diffusion block consists of two branches, in which the local
diffusion inherits from stable diffusion, including self attention, cross attention and feed-forward
layers, while the global attention contains an additional multi-view attention layer introduced in
Era3D. Global attention is conditioned on the local branch via the alignment of hidden layers.

Training and evaluation details. PSHuman builds upon the open-source pre-trained text-to-image
generation model, SD2.1-unclip Rombach et al. (2022b). Our training is conducted on a cluster
of 16 NVIDIA H800 GPUs, with a batch size of 64 for a total of 30,000 iterations. We adopt
an adaptive learning rate schedule, initializing the learning rate at 1e-4 and decreasing it to 5e-5
after 2,000 steps. The entire training process spans approximately 3 days. To enable class-free
guidance (CFG) Ho & Salimans (2022) during inference, we randomly omit the clip condition at
a rate of 0.05 during training. During inference, we employ PyMAF-X Zhang et al. (2023) for
hand pose estimation and PIXIE Feng et al. (2021) for body pose prediction for robustness. For the
reconstruction module, we set the number of steps for SMPL-X alignment, geometry optimization,
and texture fusion to 700, 100, and 100, respectively, with corresponding learning rates of 0.3,
0.001, and 0.0005. Regarding appearance evaluation, we render color images from four viewpoints
at azimuths of 0◦, 90◦, 180◦, 270◦ relative to the input view.

Inference time. In Tab. 4, we report the detailed inference time of the whole pipeline, including pre-
processing (SMPL-X estimation and SMPL-X image rendering), diffusion, geometry reconstruction
(SMPL-X initialization and remeshing) and appearance fusion.

Table 4: Inference time of the reconstruction module.

Pipeline Pre-processing Diffusion Geo. Recon. Appearance Fusion

Time / s 7.2 17.6 23.3 6.0
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A.3 USER STUDY

Given the limitations of quantitative metrics in assessing the realism and consistency of side and
back views reconstructed from single-view input, we conducted a comprehensive user study to eval-
uate the geometry and appearance quality of five SOTA methods.

We collect 20 in-the-wild samples and 20 cases from SHHQ fashion dataset for evaluation. Fol-
lowing HumanNorm Huang et al. (2024a), we invite 20 volunteers to evaluate the color and normal
video rendered from the reconstructed 3D humans. Participants were instructed to score each model
on a 5-point scale (1 being the worst and 5 being the best) across four key dimensions:

• To what extent does the human model exhibit the best geometry quality?
• To what extent does the human model exhibit the best appearance quality?
• To what extent does the novel view’s geometry of the human body align with the reference

image?
• To what extent does the novel view’s appearance of the human body align with the reference

image?

Table 5: User study w.r.t reconstruction quality and novel-view consistency.

Method PIFuHD PaMIR ECON GTA SiTH Ours
Geometry Quality 1.55 1.96 3.72 2.11 2.72 4.71
Appearance Quality - 1.42 - 2.65 2.82 4.59
Geometry Consistency 1.69 1.76 2.48 2.33 2.79 4.61
Appearance Consistency - 1.77 - 2.16 2.73 4.68

For methods that do not produce texture (PIFuHD and ECON), we only compare the geometry
quality and consistency. The results in Tab. 5 indicate that our method represents a significant ad-
vancement against SOTA methods, offering superior performance in both geometry and appearance
reconstruction, as well as consistency across novel viewpoints.

A.4 MORE EXPERIMENTS

Comparison with optimization-based methods. To assess the efficacy of our approach relative
to optimization-based methods, we conducted a comparative analysis of PSHuman against several
SDS-based techniques, Magic123, Dreamgaussian, Chupa, and TeCH. Following SiTH, we adopt
the pose and text prompt generated by (Li et al., 2022) as condition inputs due to the lack of direct
image input support in Chupa. As illustrated in Fig. 10, Magic123 and Dreamgaussian exhibit signif-
icant limitations, primarily manifesting as incomplete human body reconstructions and implausible
free-view textures. The reliance on text descriptions for conditioning proves insufficient for fine-
grained control, resulting in geometries that deviate substantially from the reference inputs. TeCH,
a method specifically designed for human reconstruction from a single image, while capable of pro-
ducing complete human shapes, struggles with severe noise in geometric details and over-saturated
textures. These artifacts are characteristic challenges inherent to SDS-based methodologies. In con-
trast, PSHuman demonstrates superior performance by directly fusing multi-view 2D images in 3D
space, enabling the preservation of geometry details at the pixie level while circumventing unreal-
istic texture. Note that TeCH requires ∼6 hours for optimization, PSHuman generates high-quality
textured meshes within merely 1 minute.

Comprehensive quantitative ablation. In addition to the qualitative ablation in Fig. 3 and Fig. 8,
we further conducted comprehensive ablation studies on a subset of 20 samples from the ”CAPE-
NFP” dataset. Tab. 6 quantitatively illustrates the impact on Chamfer Distance performance when
individual components are removed or replaced. It is observed that the SMPL-X condition con-
tributes significantly to reconstruction accuracy. While CSD yields a modest reduction in geometric
error, it substantially improves visualization quality and identity fidelity, as evidenced in Fig .8.
Furthermore, our reconstruction method, which employs SMPLX-guided differentiable remeshing,
demonstrates superior reconstruction performance compared to the BiNI and inpainting pipeline
utilized in ECON. The overall results showcase the efficacy of each component in achieving high-
quality 3D human reconstruction.
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Figure 10: Qualitative comparison with optimization-based methods. We demonstrate the results of
(a) Magic123, (b) Dreamgaussian, (c) Chupa, (d) TeCH and (e) Ours.

Input view=2 view=4 view=6 (Ours)

Figure 11: Ablation of view number. Since normal maps lack depth information, optimizing geom-
etry by only two or four views leads to an incomplete or unnatural human structure.

Ablation of view number. In Fig. 11, we present the results reconstructed using only two-view
(front and back) or four-view (front, right, back, left) normal maps. Since there is a lack of depth in
information, optimizing geometry with fewer views leads to severe artifacts, such as incomplete or
unnatural human structures. In contrast, it is evident that the artifacts are reduced when using size
views, which demonstrates the effectiveness of our multi-view setting.
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Table 6: The ablation study of core designs.

Diffusion Reconstruction CD↓CSD SMPLX-Cond. Remeshing SMPLX-ECON SMPLX-Remeshing

✘ ✘ ✔ ✘ ✘ 1.4920
✔ ✘ ✔ ✘ ✘ 1.4370
✔ ✔ ✔ ✘ ✘ 1.0938
✔ ✔ ✘ ✔ ✘ 1.2630
✔ ✔ ✘ ✘ ✔ 0.9597 (Ours)

A.5 ETHICS STATEMENT

While PSHuman aims to provide users with an advanced tool for single-image full-body 3D human
model reconstruction, we acknowledge the potential for misuse, particularly in creating deceptive
content. This ethical concern extends beyond our specific method to the broader field of generative
modeling. As researchers and developers in 3D reconstruction and generative AI, we have a respon-
sibility to continually address these ethical implications. We encourage ongoing dialogue and the
development of safeguards to mitigate potential harm while advancing the technology responsibly.
Users of PSHuman and similar tools should be aware of these ethical considerations and use the
technology in accordance with applicable laws and ethical guidelines.
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Figure 12: More results on SHHQ dataset.
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Figure 13: More results on in-the-wild data.
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