
Published as a conference paper at ICLR 2025

MODEGPT: MODULAR DECOMPOSITION FOR LARGE
LANGUAGE MODEL COMPRESSION

Chi-Heng Lin∗

Samsung Research America
Shangqian Gao
Florida State University

James Seale Smith
Samsung Research America

Abhishek Patel
Samsung Research America

Shikhar Tuli
Samsung Research America

Yilin Shen
Samsung Research America

Hongxia Jin
Samsung Research America

Yen-Chang Hsu
Samsung Research America

ABSTRACT

Large Language Models (LLMs) have significantly advanced AI with their ex-
ceptional performance across a wide range of tasks. However, their extensive
computational requirements restrict their use on devices with limited resources.
While recent compression methods based on low-rank matrices show potential
solutions, they often suffer from significant loss of accuracy or introduce sub-
stantial overhead in parameters and inference time. In this paper, we introduce
Modular Decomposition (MoDeGPT), a new, efficient, and structured compres-
sion framework that overcomes these limitations. MoDeGPT jointly decomposes
pairs of consecutive subcomponents within Transformer blocks, reduces hidden
dimensions through output reconstruction on a larger structural scale than con-
ventional low-rank methods, and repurposes three classical matrix decomposition
algorithms—Nyström approximation, CR decomposition, and SVD—to ensure
bounded errors in our novel decomposition approach. Our experiments show that
MoDeGPT, without relying on backward propagation, consistently matches or
surpasses the performance of prior techniques that depend on gradient informa-
tion, while achieving a 98% reduction in compute costs when compressing a 13B-
parameter model. On LLaMA-2/3 and OPT models, MoDeGPT retains 90-95%
of zero-shot performance with compression rates of 25-30%. The compression
process can be completed on a single GPU in a few hours, boosting inference
throughput by up to 46%.

1 INTRODUCTION

Recent advancements in Large Language Models (LLMs) (Thoppilan et al., 2022; OpenAI, 2023;
Touvron et al., 2023; Zhang et al., 2022; AI@Meta, 2024) have led to remarkable breakthroughs in
the understanding and generation of natural language. Despite their significant capabilities, these
models are computationally and memory-intensive, posing deployment challenges on resource-
limited devices. To mitigate these challenges, model compression (Gupta & Agrawal, 2022; Zhu
et al., 2023) has emerged as a popular post-training solution, reducing model size and complexity.

Predominant compression techniques encompass model distillation (Sun et al., 2019; 2020; Pan
et al., 2020), pruning (LeCun et al., 1989; Hassibi et al., 1993; Suzuki et al., 2018; Wang et al.,
2019b; Zafrir et al., 2021; Xia et al., 2022; Kurtic et al., 2022; Ma et al., 2023; van der Ouderaa
et al., 2023), matrix decomposition (Hsu et al., 2022; Noach & Goldberg, 2020; Golub & Reinsch,
1971), and quantization (Gholami et al., 2022; Bai et al., 2020; Frantar et al., 2022; Wang et al.,
2023). This study focuses on matrix decomposition techniques that require minimal computing re-
sources and do not involve backward propagation as seen in recovery fine-tuning (RFT) or Fisher
matrix calculations from Taylor expansion (Ma et al., 2023; van der Ouderaa et al., 2023). Conven-

∗chiheng.lin@samsung.com

1

Published as a conference paper at ICLR 2025

tional matrix decomposition such as SVD typically splits each matrix W ∈ Rd×d into two low-rank
matrices W = AB, requiring the rank less than d/2 to achieve true compression, as shown in
Figure 1(b). This stringent requirement often results in a significant drop in accuracy, necessitating
the use of RFT (Hsu et al., 2022). A novel decomposition approach, SliceGPT (Ashkboos et al.,
2024), multiplies the original matrix by an orthogonal matrix, effectively projecting inputs into a
lower-dimensional subspace and reducing the matrix’s overall dimensionality. However, this ap-
proach requires additional adapters to manage the reduced dimensions; as illustrated in Figure 1(c),
adapters Q⊤

i Qj are added to the residual paths to facilitate this reduction. For a target sparsity s, this
introduces additional 2(1−s)2d2 parameters per layer, which can add up to 10% of additional param-
eters, significantly offsetting the parameter savings. In summary, matrix decomposition approaches
either (i) discard a large portion of ranks, or (ii) introduce substantial parameter overheads.
These challenges significantly hinder the effective reduction of parameters without compromising
accuracy.

In response to these challenges, we introduce MoDeGPT, which applies matrix decomposition to
multiple matrices jointly, avoiding the dual-matrix structure and extra adapters used in prior meth-
ods. As depicted in Figure 1(d), MoDeGPT elevates the matrix decomposition approach to a modu-
lar level by grouping weight matrices into modules and then applying matrix decomposition jointly
within each module. Unlike SliceGPT, MoDeGPT reduces the intermediate dimensions within each
module rather than between blocks, as illustrated by the matrix shapes in Figure 1(c) and (d). This
crucial difference eliminates the need for adapters while still enabling dimension reduction in the
compressed matrix. Importantly, MoDeGPT establishes a comprehensive mathematical framework
that maps each module’s compression task to one of the three matrix approximation techniques:
CR decomposition (Drineas et al., 2006), singular value decomposition (SVD) (Golub & Reinsch,
1971), and Nyström approximation (Gittens & Mahoney, 2013; Musco & Musco, 2017). These
methods enable MoDeGPT to efficiently compress matrices. In summary, we make the following
contributions:

• We introduce MoDeGPT, a training-free compression method that jointly decomposes mul-
tiple matrices within a module using closed-form expressions. To our knowledge, this is
the first method to apply matrix decomposition at the module level for model compression.

• We extend the theoretical foundations of language model weight decomposition beyond
SVD, introducing a systematic framework for categorizing approximation challenges in
Transformer compression, complete with error guarantees.

• To our knowledge, this is the first demonstration in large language models where a purely
matrix decomposition-based approach achieves state-of-the-art structured compression ef-
ficiency, rivaling the compression rates of semi-structured pruning methods—all without
the need for recovery fine-tuning

• We present a thorough evaluation of MoDeGPT, comparing it against existing methods
across key metrics, including perplexity, downstream accuracy, and real-world speed im-
provements. MoDeGPT preserves up to 90% of zero-shot performance with compression
rates of up to 30% on LLaMA 2 and 3, significantly outperforming prior approache. More-
over, MoDeGPT delivers a 46% increase in inference throughput, further enhancing its
practical value.

2 BACKGROUND AND RELATED WORK

In this section, we begin by reviewing the existing body of literature related to LLM compres-
sion, highlighting key contributions and methodologies in the field. Subsequently, we examine the
standard components of a transformer decoder layer. Lastly, we delve into the three matrix ap-
proximations employed for our proposed compression across various components in a transformer
layer.

2.1 RELATED WORKS

Pruning In early pruning methods like magnitude-based tuning, scalability is achieved but of-
ten at the cost of reduced effectiveness in large language models (LLMs) (Hagiwara, 1994; Han
et al., 2015; Li et al., 2017; Frantar & Alistarh, 2023; van der Ouderaa et al., 2023). To improve

2

Published as a conference paper at ICLR 2025

(a) Dense Transformer Layer (c) SliceGPT (d) MoDeGPT(ours)

A
ctivation

Decomposition ScopeWeight Matrix Residual Adapter

A
ctivation

Multi-Head Attention

𝐖𝐐𝐖𝐊𝐖𝐕

𝐖𝐎

𝐖𝐔 𝐖𝐃

(b) SVD

MLP

MHA

Multi-Head Attention

𝐖𝐕

A
ctivation

𝐖𝐎

Multi-Head Attention

𝐖𝐕 𝐖𝐊 𝐖𝐐

𝐖𝐔 𝐖𝐃

A
ctivation

Multi-Head Attention

𝐖𝐕Q1
 T 𝐖𝐊Q1

 T 𝐖𝐐Q1
 T

𝐖𝐔Q2
 T 𝐖𝐃Q3

Q1Q2
T

Q2Q3
T

𝐖𝐊 𝐖𝐐

𝐖𝐎

𝐖𝐔 𝐖𝐃

𝐖𝐎Q2

Figure 1: Comparison of Matrix Decomposition-Based Methods for Transformer Compression. (a) Orig-
inal transformer layer. (b) SVD applied to each weight matrix separately, resulting in dual matrices. (c)
SliceGPT multiplies each weight matrix by an orthogonal matrix Q, reducing dimensions and introducing ad-
ditional adapters. (d) MoDeGPT organizes matrices into modules (highlighted by green boxes) and jointly
decomposes them, producing reduced-size matrices without extra adapters.

performance while managing computational demands, frameworks such as Optimal Brain Damage
(LeCun et al., 1989) and Surgeon (Hassibi et al., 1993; Yu et al., 2022; van der Ouderaa et al., 2023)
incorporate second-order loss information, necessitating substantial resources for Hessian calcula-
tions. Recent adaptations like WoodFisher (Singh & Alistarh, 2020), Kronecker factorization (Wang
et al., 2019a; van der Ouderaa et al., 2023), and layer-wise compression (Dong et al., 2017; Frantar
& Alistarh, 2022) aim to streamline these intensive methods. Concurrently, learnable parameters
for pruning in vision and language models have been investigated (Liu et al., 2017; Huang & Wang,
2018; Xia et al., 2022), although these techniques generally demand significant computational re-
sources for intensive backward propagation. Other approaches, such as feature-mimic-based meth-
ods (An et al., 2024; Ji et al., 2024), have not matched the performance of gradient-based methods
like LLM Surgeon (van der Ouderaa et al., 2023). Alternatives like SparseGPT (Frantar & Alistarh,
2023), Wanda (Sun et al., 2024), and ZeroPruner (Dong et al., 2024), exploring unstructured and
semi-structured pruning, offer scalability but often compromise runtime speed. Additional research
has utilized layer importance scores for layer pruning and sparsity distribution, as demonstrated
by ShortGPT (Men et al., 2024), OWL (Yin et al., 2023), LaCo (Yang et al., 2024), and others
(Chen et al., 2024). Recent advances in LLM compression have introduced innovative methods
such as LLM-Pruner (Ma et al., 2023), LLM Surgeon (van der Ouderaa et al., 2023), and SliceGPT
(Ashkboos et al., 2024), marking significant progress in the field by providing effective compression
techniques for LLMs.

Table 1: LLM Compression Comparisons.

Method No Backward
Propagation

No Additional
Parameters

Fully-
Structured

LLM Pruner ✗ ✓ ✓

LLM Surgeon ✗ ✓ ✓

SliceGPT ✓ ✗ ✓

SparseGPT ✓ ✓ semi-
MoDeGPT (ours) ✓ ✓ ✓

Low-Rank Matrix Approximation In related low-
rank matrix techniques for compression, the traditional
decomposition approach substitutes matrices with two
low-rank matrices but retains the original dimensions,
which can limit effectiveness (Noach & Goldberg, 2020;
Hsu et al., 2022; Golub & Reinsch, 1971; Povey et al.,
2018; Xu et al., 2023; Yuan et al., 2023; Wang et al., 2024;
Yu & Wu, 2023; Chen et al., 2021). MoDeGPT improves
upon this by applying low-rank approximation to matrix
pairs, reducing the size of individual matrices and merging the additional matrices from the decom-
positions. SliceGPT introduces a technique involving matrix multiplication with orthogonal matrices
derived from PCA to compress weights, which reduces matrix sizes but adds additional parameters
(Ashkboos et al., 2024). In contrast, MoDeGPT compresses without adding parameters by folding
the decomposed matrices back to the original weights. A summary of MoDeGPT’s comparison to
other leading LLM compression methods is provided in Table 1.

2.2 TRANSFORMER ARCHITECTURE

The transformer architecture (Vaswani et al., 2017) consists of multiple decoder layers. A typical
layer such as in LLAMA (Touvron et al., 2023; AI@Meta, 2024) includes two blocks: the Multi-Head
Attention (MHA) and Multi-Layer Perceptron (MLP). Let T , dh, dint, and H denote the sequence
length, hidden dimension, intermediate dimension, and the number of attention heads, respectively,

3

Published as a conference paper at ICLR 2025

the formulation of these blocks is as follows:

(MLP block) fMLP(X) =
Type-I

σs(XWU)WD, (1)

(MHA block) fMHA(X) =

H∑
i=1

Softmax

(
Type-II

σr(XWQ,i)σ
⊤
r (XWK,i)

)
Type-III

XWV,iWO,i, (2)

where X ∈ RT×dh is the input matrix, WQ,i,WK,i,WV,i ∈ Rdh×
dh
H ,WO,i ∈ R

dh
H ×dh are the

head-specific query, key, value, and output matrices. The matrices WU ∈ Rdh×dint and WD ∈
Rdint×dh denote up and down matrices, respectively, with σr and σs denoting positional embedding
and nonlinear activation functions. Note that our MLP formulation encompasses the gated MLP: the
up matrix is defined by the concatenations of the gated and up matrix WU = [W⊤

u ,W⊤
g]⊤, and the

nonlinear function is defined by σs(XWU) := XWu ⊙ σg(XWg), where σg is the gate function.

In the expressions of equation 1 and equation 2, the blocks can be divided into three types of func-
tional modules, each associated with a pair of matrices:
fType-I(X;WU ,WD) = σs(XWU)WD, fType-II(X;W i

K ,W i
Q) = σr(XWQ,i)σ

⊤
r (XWK,i),

fType-III(X;W i
V ,W

i
O) = XWV,iWO,i,

where X denotes the input and the variables after “;” denote the associated matrices. These three
types are distinguished by varying levels of nonlinearity. We will employ different matrix decom-
position methods for compression based on the optimization tractability of each type.

2.3 LOW-RANK MATRIX APPROXIMATION

The goal of a low-rank approximation method is to approximate a matrix W ∈ Rd1×d2 with two
low-rank matrices A ∈ Rd1×k and B ∈ Rk×d2 . For formalism, we make the following definition:
Definition 1. For a low-rank approximation method M that decomposes a matrix W into A and B,
the approximation matrix is WM = AB and the error relative to W is EM(W) = ∥W −WM∥F .

We review three approximation methods that facilitate our algorithms in the next section.

I. Nyström approximation (Gittens & Mahoney, 2013) If W is a positive semidefinite matrix,
let Sk be a k-column selection matrix where each column has a single non-zero element indicating
the selected index, then the corresponding Nyström approximation of W is,

WNys = AB, where A = WSk and B = (S⊤
k WSk)

†S⊤
k W . (3)

II. CR decomposition (Drineas et al., 2006) Assuming W can be factored as W1W2, let Sk be
a k-column selection matrix, the corresponding CR approximation of W is

WCR = AB, where A = W1Sk and B = S⊤
k W2. (4)

III. Singular value decomposition (Golub & Reinsch, 1971) SVD is renowned for yielding the
minimum approximation error when measured in the Frobenius norm. It decomposes W into:

WSVD = AB, where A = Uk and B = ΣkV
⊤
k . (5)

Here, Uk and Vk are matrices containing the top-k left and right singular vectors, respectively, and
Σk is the diagonal matrix consisting of the top-k singular values of W .

3 MODEGPT

MoDeGPT introduces a module-level optimization that jointly compresses two matrices within each
of our three defined functional modules, rather than compressing each matrix independently as in
traditional low-rank approximation methods.

An illustration of MoDeGPT is presented in Figure 2, where different colors distinguish the various
modules. For each module, we apply a tailored low-rank approximation to compress the matrix pair
within it. The twill hatch pattern represents dimension reductions.

In the rest of this section, we first present the mathematical objective for our approach. Then, we
detail our application of low-rank approximations for effective compression within each module.
Finally, we introduce a method for assigning sparsity levels across different layers that requires only
one forward pass of the model on the calibration data.

4

Published as a conference paper at ICLR 2025

3.1 MODULAR RECONSTRUCTION OBJECTIVE

The objective of MoDeGPT is to jointly optimize two matrices within the module types described in
Sec. 2.2, a process we term modular decomposition, to minimize the modular reconstruction error:

V ∗ ≜ min
Ŵ1,Ŵ2

N∑
i=1

∥f(Xi;W1,W2)− f(Xi; Ŵ1, Ŵ2)∥2F such that (Ŵ1, Ŵ2) ∈ C, (6)

Multi-Head Attention

Layernorm

𝐖𝐊 𝐒
Key matrix

𝐒
Query matrix

𝐖𝐐

Value matrix
𝐂-1⁄2 𝐔

Output matrix

𝐕𝐓𝚺

A
ctivation

Up, Gate matrix

𝐒𝐖𝐔

Down matrix
(𝐒𝐓𝐂1⁄2𝐒)+𝐒𝐓𝐂1⁄2 𝐖𝐃

MHA

Type I: Nyström Type II: CR Type III: SVD

Layernorm

Figure 2: The MoDeGPT Framework. MoDeGPT
divides a transformer layer into three distinct colored
modules, each optimizing two matrices using a specific
low-rank approximation method. A twill hatch pattern
represents the dimension reduction.

where Xi ∈ RT×d are samples in the calibra-
tion set, and C represents the constrained search
space for compressed matrices that mandates
specific structures or dimensions.

A key motivation of our objective is that it ex-
pands the search space to include dimension-
reduced matrices, thereby increasing opti-
mization flexibility and enhancing inference
speedup in the compressed model. This con-
trasts with independent optimization, where
each matrix must adhere to the original dimen-
sions.

3.2 ALGORITHMS

From LLM compression to matrix decompo-
sition The core technical contribution of this
work is the establishment of a one-to-one map-
ping between a specific type of modular com-
pression problem and a corresponding matrix
decomposition problem. As outlined in Section
2.2, the modules in the transformer architecture can be categorized based on the number of nonlinear
functions they contain: Type I, II, and III modules contain 1, 2, and 0 nonlinearties, respectively. For
a weight matrix W within a nonlinear function, we compress it into a structured form Ŵ = WSk,
where Sk is a k-column selection matrix to be optimized. This restrictive structural form is a cor-
nerstone of our framework, as it ensures the tractable optimization of equation 6.

Module Type I II III

Weight Matrices up,down,gate key,query value,output

Associated Decomp. Nyström CR SVD

Nonlinearities 1 2 0

Compression Alg. Alg. 1 Alg. 2 Alg. 3

Table 2: Module characteristics and their associated
matrix decompositions.

After characterizing the modules and the struc-
ture of the compressed matrices, our framework
solves the modular decomposition problem in
equation 6 for each module. Since each module
contains a different number of nonlinear func-
tions, the corresponding solutions vary. As we
demonstrate in the subsequent sections, the so-
lutions correspond to Nyström, CR, and SVD
for Type I, II, and III modules, respectively. A
summary of this roadmap is provided in Table
2. The detailed connections are formalized in the following subsections, with detailed proofs in-
cluded in Appendix A.

TYPE-I COMPRESSION First, we focus on the MLP module. As detailed in Section 2.2, the ma-
trices W1 and W2 that require compression are WU and WD. Since WU resides within a nonlinear
function σs, we constrain its approximation to the form WUSk for tractable optimization of equa-
tion 6, where Sk is the k-column selection matrix. For WD, we simply ensure that its dimensions
are compatible with WUSk. Our first theorem suggests that when a single column selection ma-
trix is used, the optimization in equation 6 is closely related to the Nyström approximation of the
activation correlation matrix.
Theorem 1 (MLP compression by Nyström approximation). Let ŴU be searched over the matrix
multiplication form WUSk, where Sk is a k-column selection matrix, and let ŴD be searched over
Rk×dh . The optimal Ŵ ∗

D is then given by: (S⊤
k CσSk)

†S⊤
k CσWD. Using WUSk and Ŵ ∗

D as the

5

Published as a conference paper at ICLR 2025

Algorithm 1 Type-I compression for MLP by Nyström approximation.
1: Input: concatenated up and gated matrices WU ∈ Rdh×dint , down matrix WD ∈ Rdint×dh , activation

correlation Cσ =
∑N

i=1 σ(XiWU)
⊤σ(XiWU), rank k = ⌈(1− sparsity)dint⌉, and ridge intensity λ

2: si← [Cσ(Cσ + λI)−1]ii, for i = 1, . . . , dint ▷ Calculate the ridge leverage score
3: Let Sk ∈ Rdint×k be the matrix that selects the top k columns based on si scores
4: return (WU ,WD)← (WUSk, (S⊤

k CσSk)
†S⊤

k CσWD)

compressed matrices, the Type-I reconstruction error in equation 6 satisfies:

VI ≤ ∥WD∥22 ∥C
−1
σ ∥2E2

Nys(Cσ), (7)

where ENys(Cσ) denotes the Nyström approximation error, defined in Def. 1, relative to the acti-
vation correlation Cσ ≜

∑N
i=1 σ(XiWU)

⊤σ(XiWU), using the same Sk in the compression of
WU .

Theorem 1 shows that effective Type-I compression can be achieved through a well-designed Nys-
tröm approximation of Cσ . Thus, we propose Algorithm 1 to control the error as shown below.
Proposition 1 (MLP compression error). Suppose that the rank k and the scores si in Algorithm 1
are chosen such that there exists an error ε > 0 satisfying ε ≥

∑dint

i=k+1 si, then the Type-I modular

reconstruction error in equation 6 is bounded by VI ≤ ∥WD∥22∥C−1
σ ∥2 ε2d2

int

k2(1−ε)2

∑dint

i=k+1 σ
2
i (Cσ),

where dint and σi denote the intermediate dimension (i.e., the input dimension of WD) and singular
values, respectively.

TYPE-II COMPRESSION Next, we turn our attention to the Type-II module, which includes the
key-query interactions within the multi-head attention mechanisms. We will apply compression to
each head independently 1. Given that both WQ and WK are embedded with nonlinear functions,
for tractability in the optimization of equation 6, the matrices are compressed using a column selec-
tion matrix: ŴQ = WQSk and ŴK = WKSk, where Sk is a shared k-column selection matrix.
When both two compressed matrices are multiplied by the column selection matrix, the modular
reconstruction problem naturally connects to the CR decomposition of the product of key-query
correlations, as elaborated in the following theorem.

Theorem 2 (Key-Query compression by CR approximation). Let the compressed ŴQ, ŴK to
be the form of WQSk,WKSk, then Type-II reconstruction error in equation 6 has

VII ≤ E2
CR(C

1
2

KC
1
2

Q), (8)

where ECR denotes the CR approximation error, defined in Def. 1, relative to C
1/2
Q C

1/2
K , utilizing

the same Sk in the compression. Here, the matrices CQ ≜
∑N

i=1 σ(XiWQ)
⊤σ(XiWQ) and

CK ≜
∑N

i=1 σ(XiWK)⊤σ(XiWK) denote the correlations of query and key states, respectively.

The preceding theorem indicates that effective compression for the Type-II module can be achieved
using a thoughtfully constructed CR approximation. In response, we present Algorithm 2, which
offers the following guarantees for reconstruction:
Proposition 2 (Key-Query compression error). If we adopt Algorithm 2 then Type-II modular

reconstruction error is bounded by VII ≤
(

dh−k
dh

)2 (∑dh

i=1 σi(CK)
)(∑dh

i=1 σi(CQ)
)

, where σi

denotes the singular values.

TYPE-III COMPRESSION Finally, we focus on the Type-III module, which involves the value-
output matrices. For clarity and simplicity, we omit the head dependency. The module has no
nonlinar function involved f(X) = XŴV ŴO, so we seek general low-rank matrices for com-
pressions: ŴV ∈ Rdh×k, ŴO ∈ Rk×dh such that ŴV ŴO ≈ WV WO. The subsequent theorem

1Dependency on the head is omitted in the equations for ease of notation.

6

Published as a conference paper at ICLR 2025

Algorithm 2 Type-II compression for key-query matrices by CR decomposition.
1: Input: head-specific query matrices WQ,j ∈ Rdh×dh/H , key matrices WK,j ∈ Rdh×dh/H ,

query state correlations CQ,j =
∑N

i=1 σr(XiWQ,j)
⊤σr(XiWQ,j), key state correlations CK,j =∑N

i=1 σ(XiWK,j)
⊤σ(XiWK,j), for head j = 1, . . . , H , and rank k = ⌈(1− sparsity)dh/H⌉

2: for j = 1, . . . , H do ▷ Apply compression to each head independently
3: si ← ∥C1/2

Q,j [:, i]∥∥C
1/2
K,j [:, i]∥ ▷ Calculate the norm score

4: Let Sk ∈ Rdh×k be the matrix that selects the top k columns based on si scores
5: (WQ,j ,WK,j)← (WQ,jSk,WK,jSk)

6: return (WQ,WK)← ([WQ,1, . . . ,WQ,H], [WK,1, . . . ,WK,H]) ▷ Concatenate the heads

Algorithm 3 Type-III compression for value-output matrices by SVD.
1: Input: head-specific value matrices WV,j ∈ Rdh×dh/H , output matrices WO,j ∈ Rdh/H×dh for head

j = 1, . . . , H , input correlation C =
∑N

i=1 X
⊤
i Xi, and rank k = ⌈(1− sparsity)dh/H⌉

2: for j = 1, . . . , H do ▷ Apply compression to each head independently
3:

(
U ,Σ,V ⊤)← SV D(C1/2WV,j) ▷ Efficient SVD of C1/2WV,jWO,j (1/2)

4:
(
U ′,Σ′,V ′⊤)← SV D(ΣV ⊤WO,j) ▷ Efficient SVD of C1/2WV,jWO,j (2/2)

5: (WV,j ,WO,j)← (C−1/2UU ′[:, : k], Σ′[: k, : k]V ′[:, : k]⊤)

6: return (WV ,WO)← ([WV,1, . . . ,WV,H], [WO,1, . . . ,WO,H]) ▷ Concatenate the heads

reveals that the reconstruction can be solved optimally by applying the well-known Singular Value
Decomposition.

Theorem 3 (Value-Output compression by SVD). If we search ŴV and ŴO over Rdh×k and
Rk×dh , respectively, the optimum in equation 6 is ŴV = C−1/2Uk and ŴO = ΣV ⊤. Here,
UΣV ⊤ and C ≜

∑N
i=1 X

⊤
i Xi are the SVD of C1/2WV WO and input correlation, respectively.

The corresponding Type-III reconstruction error in equation 6 is exactly the SVD approximation
error, defined in Def. 1, relative to C

1
2WV WO:

VIII = E2
SVD(C

1
2WV WO). (9)

Building on the established equivalence to SVD via Theorem 3, we introduce Algorithm 3. This
algorithm guarantees the following:
Proposition 3 (Value-Output compression error). Denote σi as the singular values, Algorithm 3
yields the optimal Type-III modular reconstruction error VIII =

∑d
i=k+1 σ

2
i (C

1
2WV WO).

3.3 GLOBAL SPARSITY ALLOCATION

While MoDeGPT modules are optimized locally, we propose a global optimization strategy that
translates layer importance scores into sparsity allocations across layers. This strategy seeks to
maximize the sum of importance scores, weighted by the parameters retained in each layer. To avoid
the negative effects of excessive sparsity (Yin et al., 2023), we incorporate entropic regularization
for smoothing. The formulation of this constrained optimization problem is as follows:

max
ϕ1:L

L∑
i=1

si(1− ϕi) + εH(ϕi) such that
1

L

L∑
i=1

ϕi = ϕavg, 0 ≤ ϕi ≤ 1, (10)

where ϕi and si represent the sparsity and importance score of layer i, respectively, and ϕavg denotes
the overall target sparsity. For sufficiently large ε, the following theorem demonstrates that the
optimal layer sparsity distribution can be easily computed as:

ϕ = Lϕavg × Softmax(−s/ε). (11)
Theorem 4. For sufficient large ε, (11) is the optimal sparsity allocation in the equation 10.

In our implementations, we adopt the Block Influence (BI) score in Men et al. (2024), which is the
negative correlation between a layer’s input and output defined by: s = 1−Ex⊤

inxout/∥xin∥2∥xout∥2.

7

Published as a conference paper at ICLR 2025

4 EXPERIMENTS

4.1 SETUPS

Models We evaluated MoDeGPT on several models that employ a sequential transformer block
structure: OPT (Zhang et al., 2022) across multiple scales (125M, 1.3B, 2.7B, 6.7B), LLAMA-1 at
7B, LLAMA-2 (Touvron et al., 2023) at 7B, 13B, 70B, and LLAMA-3 (AI@Meta, 2024) at 8B.
Implementations and environments We implemented our models using Hugging Face Trans-
formers (Wolf et al., 2019), with correlation computations in FP64. Model compression and perfor-
mance testing were conducted on a single NVIDIA A100 80GB GPU, except for the 70B model,
which we used 8 A100 GPUs. Additional details are in Appendix B.2.
Datasets Following calibration setups similar to prior studies (Frantar et al., 2022; Ashkboos et al.,
2024; Dettmers et al., 2023), we employed the WikiText-2 (Merity et al., 2016) and Alpaca datasets
(Taori et al., 2023), each comprising 128 samples of 2048 characters. Zero-shot performance was
evaluated using the LM Evaluation Harness (Gao et al., 2021), with task details provided in Ap-
pendix B.2.
Baseline comparisons We benchmarked our approach against several baselines. For non-
gradient-based large language model pruning, we compared it with Uniform Pruning, Magnitude
Pruning, SVD, SliceGPT (Ashkboos et al., 2024), ShortGPT (Men et al., 2024), SLEB (Song et al.,
2024) and Optimal Brain Damage (LeCun et al., 1989). For methods involving backward propaga-
tion, our comparisons included LLM-Pruner (Ma et al., 2023) and LLM Surgeon (van der Ouderaa
et al., 2023). Additionally, in Appendices B.4 and B.5, we evaluated our methods against feature-
mimic compression techniques and SVD-based methods, respectively.

4.2 GENERATION PERFORMANCE

Table 3: Perplexity comparisons of structured pruning methods for LLAMA-2 7B and 13B on WikiText-2,
calibrated with 128 sequences of 2048 tokens.

Method No 7B (ppl: 5.12 ↓) LLAMA-2 13B (ppl: 4.57 ↓)
Gradient 10% 20% 30% 40% 50% 10% 20% 30% 40% 50%

K-OBD (LeCun et al., 1989) ✗ 5.48 9.14 15.43 28.03 46.64 4.91 6.29 10.08 13.06 16.06
LLM-Pruner (Ma et al., 2023) ✗ 7.11 9.29 13.56 17.90 31.05 5.57 6.67 12.19 19.56 32.20
LLM surgeon (van der Ouderaa et al., 2023) ✗ 5.25 6.18 7.83 10.39 15.38 4.69 5.29 6.21 7.25 9.43

Uniform ✓ 19.09 27.13 46.25 176.24 327.99 13.78 18.18 29.05 45.44 82.60
Magnitude ✓ 861.76 821.34 9623 Overflow Overflow 22.41 320.39 723.60 2105 3004
SVD ✓ Overflow Overflow 52719 51229 Overflow 7655 9919 21248 53672 39521
ShortGPT (Men et al., 2024) ✓ 6.98 14.31 33.21 71.04 268.11 5.40 7.69 30.48 48.83 187.23
SLEB (Song et al., 2024) ✓ 6.05 7.64 11.23 29.10 103.38 5.23 6.31 8.24 11.76 27.67
SliceGPT (Ashkboos et al., 2024) ✓ 6.46 7.68 10.47 15.19 24.82 5.67 6.68 8.68 12.56 20.57
MoDeGPT (ours) ✓ 5.48 6.16 7.51 8.41 11.88 4.83 5.29 6.10 6.95 8.95

We evaluated the generation performance of compressed LLAMA-2 models (7B and 13B) using the
WikiText-2 test split in Table 3, 19 and B.3. Results for OPT and LLAMA-3 8B are included in Ap-
pendices B.1 and B.3. The table distinguishes between compression methods using gradients (top
rows) and those without (bottom rows). Among non-gradient methods, the traditional matrix de-
composition approach using SVD performed the worst. In sharp contrast, MoDeGPT outperformed
all other baselines at various compression rates by jointly applying decomposition to multiple matri-
ces within a module; it only increased the perplexity by 20% for 20% compression of the 7B model,
which is substantially better than the next best alternative that saw a 50% increase. In comparison to
gradient-based methods, MoDeGPT surpassed other structured compression techniques except for
a low compression rate (20%). This demonstrates that using local reconstruction as a proxy for true
loss can achieve state-of-the-art compression.

4.3 ZERO-SHOT PERFORMANCE

We evaluated our method on zero-shot tasks, comparing it to leading baselines in Table 4. Our
method showed superior performance at higher compression rates. The bottom rows indicate that
calibrating with the Alpaca dataset (instead of WikiText-2) significantly improved performance,
with a 30% compression resulting in only a 10% accuracy drop. This effect was more pronounced
for LLAMA-13B, as shown in Table 13 in Appendix B.3. We also tested the newer LLAMA-3 8B
model, adapting our algorithm for grouped query attention head dependency as detailed in Appendix

8

Published as a conference paper at ICLR 2025

Table 4: Zero-shot task performance of compressed LLAMA-2 7B and LLAMA-3 8B.

Model Compress. Method ARC-e ARC-c PIQA WinoG. HellaS. Average

LLAMA-2
7B

0% Dense 74.58 46.25 79.11 69.06 75.99 69.00

30%

ShortGPT (Men et al., 2024) 48.65 32.85 64.31 64.33 56.13 53.25
SliceGPT (Ashkboos et al., 2024) 58.88 33.36 68.55 58.01 49.86 53.73
LLM surgeon (van der Ouderaa et al., 2023) 63.09 36.69 73.56 61.09 60.72 59.03
MoDeGPT (ours) 63.26 38.73 70.40 67.32 63.26 60.78
MoDeGPT-Alpaca (ours) 65.49 39.16 73.34 66.22 65.90 62.02

40%

ShortGPT (Men et al., 2024) 41.16 29.94 60.12 60.46 43.67 47.07
SliceGPT (Ashkboos et al., 2024) 36.49 24.57 54.90 53.43 34.80 40.84
LLM surgeon (van der Ouderaa et al., 2023) 52.31 30.29 69.26 54.38 48.04 50.86
MoDeGPT (ours) 49.45 30.03 64.96 61.96 53.01 51.88
MoDeGPT-Alpaca (ours) 59.76 34.73 70.35 64.40 58.63 57.58

LLAMA-3
8B

0% Dense 77.69 53.58 80.63 72.69 79.16 72.75

25%
ShortGPT-Alpaca (Men et al., 2024) 38.13 31.40 60.94 54.22 31.52 43.24
SliceGPT-Alpaca (Ashkboos et al., 2024) 44.44 29.27 57.56 58.48 41.08 46.17
MoDeGPT-Alpaca (ours) 67.05 41.13 75.52 69.61 66.49 63.96

Table 5: Comparisons of 30% compression on LLAMA-2 70B using 128 wikitext-2 samples for calibration.

Method ↓WikitText-2 ↑ARC-e ARC-c PIQA WinoG. HellaS. BoolQ OBQA MathQA MMLU-ml COPA Lamb. ↑Average.

Dense LLAMA-2 70B 3.12 80.98 57.25 82.75 77.90 83.83 83.79 48.80 38.42 42.86 94.00 79.60 70.02

SliceGPT (Ashkboos et al., 2024) 5.76 67.05 42.06 67.52 71.11 55.57 41.56 40.20 27.87 32.14 82.00 52.03 52.65

ShortGPT (Men et al., 2024) 66.33 60.65 34.47 72.74 64.01 63.80 66.88 34.40 23.05 31.25 75.00 27.01 48.06

SLEB (Song et al., 2024) 5.54 71.97 44.20 77.74 69.38 73.54 67.25 41.80 27.47 32.15 88.00 64.22 59.79

MoDeGPT + OWL sparsity 4.67 76.01 50.34 74.70 72.85 72.43 69.88 44.20 32.26 44.64 87.00 69.61 63.08

MoDeGPT + our sparsity 4.89 77.69 50.94 77.53 76.87 78.16 74.71 45.60 35.04 42.86 89.00 72.17 65.51

MoDeGPT + our sparsity + Alpaca 5.73 78.57 51.54 80.85 77.19 79.60 82.81 46.40 32.83 40.18 94.00 70.72 66.79

B.1. The performance gap between our method and baselines was notably larger with this model,
aligning with quantization challenges observed in (Huang et al., 2024).

Table 6: Compute time.

Model
MoDeGPT (ours) LLM surgeon

Time GPUs Time GPUs

LLAMA-2 7B 4h09m 1xA100 17h08m 4xH100

LLAMA-2 13B 8h26m 1xA100 1d9h26m 8xH100

50% remaining
params

1.0 0.9

0.7

0.8

0.6

0.9

0.6

0.7

0.8

0.9

0.5

0.6

0.7
0.8

0.9

0.5

0.6
0.7

0.8

Throughtput (tokens/sec)

PP
L

(W
ik

iT
ex

t-2
)

Figure 3: PPL vs. throughput.

Finally, we compared our method against decomposition and
layer-pruning baselines in a large-scale experiment on the
LLAMA-2 70B, as shown in Table 5. Our method demon-
strates improved performance in larger models, with mini-
mal drops of 4.51% and 3.23% in zero-shot task performance
at 30% compression. This is achieved using only 128 sam-
ples from WikiText-2 and Alpaca, respectively, for calibration,
without requiring recovery fine-tuning. This result highlights
the scalability and effectiveness of our approach in large mod-
els. On the middle two rows, we compared our sparsity al-
location strategy with the recent state-of-the-art OWL method
(Yin et al., 2023). While our method shows a slightly higher
perplexity, it consistently achieves superior zero-shot perfor-
mances. Appendix B.10 provides additional analysis on the
comparisons with OWL.

4.4 COMPUTATION AND THROUGHPUT

Table 6 compares the compression costs of MoDeGPT with LLM surgeon, the best-performing prior
work. Given that the hourly rate for H100 is about twice that of A100 (Lambda, 2024), MoDeGPT
offers significant cost savings—97% for the 7B model and 98.5% for the 13B model. Next, we
analyze the trade-off between model performance, measured in perplexity (on WikiText-2), and
throughput (tokens/sec), as illustrated in Figure 3. For this experiment, we set the sequence length
to 256 and measured the average generation time of LLAMA-2 7B on a single A100 GPU with a
batch size of 256. As illustrated, MoDeGPT consistently outperforms other models in both speedup
and accuracy across various compression sizes, with size ratios annotated alongside each point.
Remarkably, at 50% compression, MoDeGPT increases throughput by 58% while maintaining per-

9

Published as a conference paper at ICLR 2025

Compression Rate

Pe
rp

le
xi

ty

Figure 4: Module-wise compression.

Type I II III

Parameters MLP K-Q V-O

Method Nyström CR SVD

Size Ratio 66.84% 16.58% 16.58%

Complexity O(d3int) O(d3h/H
2) O(Hd3h)

Effective r 0.094 0.121 0.095

Time 1h13m 0h36m 2h26m

Table 7: Module breakdown statistics.

Block

LLAMA-7B
(model size: 13.81 GiB)

Peak Memory GPU
(GiB) hours

MHA
15.54

2h52m
(+11.5%)

MLP
23.33

1h13m
(+68.9%)

Table 8: Memory utilizations.

plexity on par with the top competitor at 30% compression. Further details on speedup, including
different batch sizes and hardware setups, are in Appendix B.16."

4.5 ABLATION STUDY

Figure 5: Impact of calibration size.

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Sparsity x0.96

x1.29

x1.46
x1.50

x1.58

x1.10
x1.03 x1.07 x1.09

x0.99

x0.72 x0.79 x0.79

x0.91
x1.00

Transform (eq.11)

82%

Score

Figure 6: Score-to-sparsity conversion.

Table 9: Sparsity allocation.

Perplexity↓ Zero-Shot Acc.↑
Dense 5.12 69.00%
Uniform 9.06 53.47%
Sparsity Alloc. 7.51 60.78%

We first analyzed the impact of compression on each mod-
ule type within the LLAMA-2 7B model using a single A100
GPU. As shown in Figure 4 , the majority of perplexity degra-
dation occurs when the MLP module is compressed. How-
ever, after normalizing by parameter size, i.e., the effective ra-
tio r in Table 7, it becomes evident that the Type-II module
is the most sensitive to compression. This observation aligns
with our theoretical analysis, which demonstrates that Type-
II has the weakest error bounds, as it is constrained by the
complete spectrum rather than just the residuals (see Proposi-
tions 1, 2, 3). In the middle, Table 7 provides a detailed break-
down of the module-wise compression statistics. Notably, the
SVD method dominates the compression time for the value-
output components, suggesting that techniques such as SVD
approximation (Yuan et al., 2023) have the potential to reduce
overall compression time. Meanwhile, Table 8 reports mem-
ory usage, showing that MLP compression requires the most
memory, as it has the largest correlation dimension among the
modules. Despite this, all compression tasks only consumed
up to 23 GiB of memory, which is approximately double the
model size. A similar memory consumption pattern for the
13B model is discussed in Appendix B.9.

Second, we explored the effects of calibration size on a 30% compressed LLAMA-2 7B model. As
shown in Figure 5, increasing the calibration size initially boosts performance; however, the gains
in zero-shot performance diminish for sizes larger than 128.

Lastly, we evaluated sparsity allocation effects on the same model. Figure 6 shows the score-to-
sparsity mapping from Section 3.3 with ε = 0.1, highlighting areas of higher sparsity in darker
shades. Our findings indicate that certain layers, such as layer 26, can forgo up to 82% of parameters
with minimal accuracy loss. Table 9 demonstrates that our global sparsity allocation significantly
surpasses a uniform approach, affirming the efficacy of our decomposition method with a simple
scoring function for sparsity distribution.

5 CONCLUSION

In this work, we introduced MoDeGPT, a novel structured compression method that generalizes
matrix decomposition to the modular level, achieving state-of-the-art results for structured model
compression via low-rank decomposition. Our approach has a strong theoretical grounding, of-
fering bounds on the reconstruction errors for the components in the Transformers. Furthermore,
MoDeGPT stands out by relying solely on forward propagation to achieve comparable or better
compression performance to methods that use the gradients from backward propagation. We be-
lieve our novel methods and findings will inspire more theoretical and algorithmic innovations for
training-free model compression.

10

Published as a conference paper at ICLR 2025

REFERENCES

AI@Meta. Llama 3 model card. https://github.com/meta-llama/llama3/blob/main, 2024.

Joshua Ainslie, James Lee-Thorp, Michiel de Jong, Yury Zemlyanskiy, Federico Lebrón, and Sumit
Sanghai. Gqa: Training generalized multi-query transformer models from multi-head check-
points. arXiv preprint arXiv:2305.13245, 2023.

Aida Amini, Saadia Gabriel, Peter Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh Ha-
jishirzi. Mathqa: Towards interpretable math word problem solving with operation-based for-
malisms. arXiv preprint arXiv:1905.13319, 2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive struc-
tured pruning for large language models. In Proceedings of the AAAI Conference on Artificial
Intelligence, volume 38, pp. 10865–10873, 2024.

Saleh Ashkboos, Maximilian L Croci, Marcelo Gennari do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. arXiv
preprint arXiv:2401.15024, 2024.

Haoli Bai, Wei Zhang, Lu Hou, Lifeng Shang, Jing Jin, Xin Jiang, Qun Liu, Michael Lyu, and Irwin
King. Binarybert: Pushing the limit of bert quantization. arXiv preprint arXiv:2012.15701, 2020.

Yonatan Bisk, Rowan Zellers, Jianfeng Gao, Yejin Choi, et al. Piqa: Reasoning about physical com-
monsense in natural language. In Proceedings of the AAAI conference on artificial intelligence,
volume 34, pp. 7432–7439, 2020.

Patrick Chen, Hsiang-Fu Yu, Inderjit Dhillon, and Cho-Jui Hsieh. Drone: Data-aware low-rank
compression for large nlp models. Advances in neural information processing systems, 34:29321–
29334, 2021.

Xiaodong Chen, Yuxuan Hu, and Jing Zhang. Compressing large language models by streamlining
the unimportant layer. arXiv preprint arXiv:2403.19135, 2024.

Christopher Clark, Kenton Lee, Ming-Wei Chang, Tom Kwiatkowski, Michael Collins, and Kristina
Toutanova. Boolq: Exploring the surprising difficulty of natural yes/no questions. arXiv preprint
arXiv:1905.10044, 2019.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the ai2 reasoning challenge.
arXiv preprint arXiv:1803.05457, 2018.

Tim Dettmers, Ruslan Svirschevski, Vage Egiazarian, Denis Kuznedelev, Elias Frantar, Saleh Ashk-
boos, Alexander Borzunov, Torsten Hoefler, and Dan Alistarh. Spqr: A sparse-quantized repre-
sentation for near-lossless llm weight compression. arXiv preprint arXiv:2306.03078, 2023.

Peijie Dong, Lujun Li, Zhenheng Tang, Xiang Liu, Xinglin Pan, Qiang Wang, and Xiaowen Chu.
Pruner-zero: Evolving symbolic pruning metric from scratch for large language models. arXiv
preprint arXiv:2406.02924, 2024.

Xin Dong, Shangyu Chen, and Sinno Pan. Learning to prune deep neural networks via layer-wise
optimal brain surgeon. In Advances in Neural Information Processing Systems, pp. 4857–4867,
2017.

Petros Drineas, Ravi Kannan, and Michael W Mahoney. Fast monte carlo algorithms for matrices i:
Approximating matrix multiplication. SIAM Journal on Computing, 36(1):132–157, 2006.

Elias Frantar and Dan Alistarh. Optimal brain compression: A framework for accurate post-training
quantization and pruning. Advances in Neural Information Processing Systems, 35:4475–4488,
2022.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in
one-shot. In International Conference on Machine Learning, pp. 10323–10337. PMLR, 2023.

11

Published as a conference paper at ICLR 2025

Elias Frantar, Saleh Ashkboos, Torsten Hoefler, and Dan Alistarh. Gptq: Accurate post-training
quantization for generative pre-trained transformers. arXiv preprint arXiv:2210.17323, 2022.

Leo Gao, Jonathan Tow, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster, Laurence
Golding, Jeffrey Hsu, Kyle McDonell, Niklas Muennighoff, et al. A framework for few-shot
language model evaluation. Version v0. 0.1. Sept, pp. 8, 2021.

Amir Gholami, Sehoon Kim, Zhen Dong, Zhewei Yao, Michael W Mahoney, and Kurt Keutzer. A
survey of quantization methods for efficient neural network inference. In Low-Power Computer
Vision, pp. 291–326. Chapman and Hall/CRC, 2022.

Alex Gittens and Michael Mahoney. Revisiting the nystrom method for improved large-scale ma-
chine learning. In International Conference on Machine Learning, pp. 567–575. PMLR, 2013.

Gene H Golub and Christian Reinsch. Singular value decomposition and least squares solutions. In
Handbook for Automatic Computation: Volume II: Linear Algebra, pp. 134–151. Springer, 1971.

Manish Gupta and Puneet Agrawal. Compression of deep learning models for text: A survey. ACM
Transactions on Knowledge Discovery from Data (TKDD), 16(4):1–55, 2022.

Masafumi Hagiwara. A simple and effective method for removal of hidden units and weights.
Neurocomputing, 6(2):207–218, 1994.

Song Han, Jeff Pool, John Tran, and William Dally. Learning both weights and connections for
efficient neural network. In Advances in neural information processing systems, pp. 1135–1143,
2015.

Babak Hassibi, David G Stork, and Gregory J Wolff. Optimal brain surgeon and general network
pruning. In IEEE international conference on neural networks, pp. 293–299. IEEE, 1993.

Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Emma Tang, Dawn
Song, Jacob Steinhardt, and Andy Holzinger. Measuring massive multitask language understand-
ing. arXiv preprint arXiv:2009.03300, 2020.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. arXiv preprint arXiv:2207.00112, 2022.

Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. Lora: Low-rank adaptation of large language models. arXiv preprint
arXiv:2106.09685, 2021.

Wei Huang, Xingyu Zheng, Xudong Ma, Haotong Qin, Chengtao Lv, Hong Chen, Jie Luo, Xiaojuan
Qi, Xianglong Liu, and Michele Magno. An empirical study of llama3 quantization: From llms
to mllms. arXiv preprint arXiv:2404.14047, 2024.

Zehao Huang and Naiyan Wang. Data-driven sparse structure selection for deep neural networks. In
Proceedings of the European conference on computer vision (ECCV), pp. 304–320, 2018.

Yixin Ji, Yang Xiang, Juntao Li, Wei Chen, Zhongyi Liu, Kehai Chen, and Min Zhang. Feature-
based low-rank compression of large language models via bayesian optimization. arXiv preprint
arXiv:2405.10616, 2024.

Eldar Kurtic, Daniel Campos, Tuan Nguyen, Elias Frantar, Mark Kurtz, Benjamin Fineran, Michael
Goin, and Dan Alistarh. The optimal bert surgeon: Scalable and accurate second-order pruning
for large language models. arXiv preprint arXiv:2203.07259, 2022.

Lambda. Lambda cloud. https://lambdalabs.com/, 2024.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. Advances in neural information
processing systems, 2, 1989.

Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and Hans Peter Graf. Pruning filters for
efficient convnets. ICLR, 2017.

12

Published as a conference paper at ICLR 2025

Zhuang Liu, Jianguo Li, Zhiqiang Shen, Gao Huang, Shoumeng Yan, and Changshui Zhang. Learn-
ing efficient convolutional networks through network slimming. In ICCV, 2017.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. Advances in neural information processing systems, 36:21702–21720, 2023.

Mitch Marcus, Beatrice Santorini, and Mary Ann Marcinkiewicz. Building a large annotated corpus
of english: The penn treebank. Computational linguistics, 19(2):313–330, 1993.

Shannon McCurdy. Ridge regression and provable deterministic ridge leverage score sampling.
Advances in Neural Information Processing Systems, 31, 2018.

Xin Men, Mingyu Xu, Qingyu Zhang, Bingning Wang, Hongyu Lin, Yaojie Lu, Xianpei Han, and
Weipeng Chen. Shortgpt: Layers in large language models are more redundant than you expect.
arXiv preprint arXiv:2403.03853, 2024.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. arXiv preprint arXiv:1609.07843, 2016.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? a new dataset for open book question answering. arXiv preprint arXiv:1809.02789,
2018.

Cameron Musco and Christopher Musco. Recursive sampling for the nystrom method. Advances in
neural information processing systems, 30, 2017.

Matan Ben Noach and Yoav Goldberg. Compressing pre-trained language models by matrix de-
composition. In Proceedings of the 1st Conference of the Asia-Pacific Chapter of the Association
for Computational Linguistics and the 10th International Joint Conference on Natural Language
Processing, pp. 884–889, 2020.

R OpenAI. Gpt-4 technical report. arxiv 2303.08774. View in Article, 2(5), 2023.

Haojie Pan, Chengyu Wang, Minghui Qiu, Yichang Zhang, Yaliang Li, and Jun Huang. Meta-kd: A
meta knowledge distillation framework for language model compression across domains. arXiv
preprint arXiv:2012.01266, 2020.

Denis Paperno, Germán Kruszewski, Angeliki Lazaridou, Ngoc Quan Pham, Raffaella Bernardi,
Sandro Pezzelle, Marco Baroni, Gemma Boleda, and Raquel Fernandez. The lambada dataset:
Word prediction requiring a broad discourse context. In Proceedings of the 54th Annual Meeting
of the Association for Computational Linguistics (Volume 1: Long Papers), pp. 1525–1534, 2016.

Daniel Povey, Gaofeng Cheng, Yiming Wang, Ke Li, Hainan Xu, Mahsa Yarmohammadi, and San-
jeev Khudanpur. Semi-orthogonal low-rank matrix factorization for deep neural networks. In
Interspeech, pp. 3743–3747, 2018.

Melissa Roemmele, Cosmin Adrian Bejan, and Andrew S Gordon. Choice of plausible alternatives:
An evaluation of commonsense causal reasoning. In 2011 AAAI spring symposium series, 2011.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An adver-
sarial winograd schema challenge at scale. Communications of the ACM, 64(9):99–106, 2021.

Sidak Pal Singh and Dan Alistarh. Woodfisher: Efficient second-order approximation for neural
network compression. Advances in Neural Information Processing Systems, 33:18098–18109,
2020.

Jiwon Song, Kyungseok Oh, Taesu Kim, Hyungjun Kim, Yulhwa Kim, and Jae-Joon Kim. Sleb:
Streamlining llms through redundancy verification and elimination of transformer blocks. arXiv
preprint arXiv:2402.09025, 2024.

Jianlin Su, Murtadha Ahmed, Yu Lu, Shengfeng Pan, Wen Bo, and Yunfeng Liu. Roformer: En-
hanced transformer with rotary position embedding. Neurocomputing, 568:127063, 2024.

13

Published as a conference paper at ICLR 2025

Mingjie Sun, Zhuang Liu, Anna Bair, and J Zico Kolter. A simple and effective pruning approach
for large language models. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=PxoFut3dWW.

Siqi Sun, Yu Cheng, Zhe Gan, and Jingjing Liu. Patient knowledge distillation for bert model
compression. arXiv preprint arXiv:1908.09355, 2019.

Siqi Sun, Zhe Gan, Yu Cheng, Yuwei Fang, Shuohang Wang, and Jingjing Liu. Contrastive
distillation on intermediate representations for language model compression. arXiv preprint
arXiv:2009.14167, 2020.

Taiji Suzuki, Hiroshi Abe, Tomoya Murata, Shingo Horiuchi, Kotaro Ito, Tokuma Wachi, So Hirai,
Masatoshi Yukishima, and Tomoaki Nishimura. Spectral pruning: Compressing deep neural net-
works via spectral analysis and its generalization error. arXiv preprint arXiv:1808.08558, 2018.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B Hashimoto. Stanford alpaca: An instruction-following llama model, 2023.

Gemma Team, Thomas Mesnard, Cassidy Hardin, Robert Dadashi, Surya Bhupatiraju, Shreya
Pathak, Laurent Sifre, Morgane Rivière, Mihir Sanjay Kale, Juliette Love, et al. Gemma: Open
models based on gemini research and technology. arXiv preprint arXiv:2403.08295, 2024.

Romal Thoppilan, Daniel De Freitas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha, Heng-Tze
Cheng, Alicia Jin, Taylor Bos, Leslie Baker, Yu Du, et al. Lamda: Language models for dialog
applications. arXiv preprint arXiv:2201.08239, 2022.

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and
efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

Tycho FA van der Ouderaa, Markus Nagel, Mart Van Baalen, Yuki M Asano, and Tijmen
Blankevoort. The llm surgeon. arXiv preprint arXiv:2312.17244, 2023.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017.

Chaoqi Wang, Roger Grosse, Sanja Fidler, and Guodong Zhang. Eigendamage: Structured pruning
in the kronecker-factored eigenbasis. ICML, 2019a.

Hongyu Wang, Shuming Ma, Li Dong, Shaohan Huang, Huaijie Wang, Lingxiao Ma, Fan Yang,
Ruiping Wang, Yi Wu, and Furu Wei. Bitnet: Scaling 1-bit transformers for large language
models. arXiv preprint arXiv:2310.11453, 2023.

Xin Wang, Yu Zheng, Zhongwei Wan, and Mi Zhang. Svd-llm: Truncation-aware singular value
decomposition for large language model compression. arXiv preprint arXiv:2403.07378, 2024.

Ziheng Wang, Jeremy Wohlwend, and Tao Lei. Structured pruning of large language models. arXiv
preprint arXiv:1910.04732, 2019b.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien Chaumond, Clement Delangue, Anthony Moi,
Pierric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz, et al. Huggingface’s transformers:
State-of-the-art natural language processing. arXiv preprint arXiv:1910.03771, 2019.

Mengzhou Xia, Zexuan Zhong, and Danqi Chen. Structured pruning learns compact and accurate
models. arXiv preprint arXiv:2204.00408, 2022.

Mingxue Xu, Yao Lei Xu, and Danilo P Mandic. Tensorgpt: Efficient compression of the embedding
layer in llms based on the tensor-train decomposition. arXiv preprint arXiv:2307.00526, 2023.

Yifei Yang, Zouying Cao, and Hai Zhao. Laco: Large language model pruning via layer collapse.
arXiv preprint arXiv:2402.11187, 2024.

14

https://openreview.net/forum?id=PxoFut3dWW

Published as a conference paper at ICLR 2025

Lu Yin, You Wu, Zhenyu Zhang, Cheng-Yu Hsieh, Yaqing Wang, Yiling Jia, Mykola Pechenizkiy,
Yi Liang, Zhangyang Wang, and Shiwei Liu. Outlier weighed layerwise sparsity (owl): A missing
secret sauce for pruning llms to high sparsity. arXiv preprint arXiv:2310.05175, 2023.

Hao Yu and Jianxin Wu. Compressing transformers: features are low-rank, but weights are not!
In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp. 11007–11015,
2023.

Xin Yu, Thiago Serra, Srikumar Ramalingam, and Shandian Zhe. The combinatorial brain surgeon:
pruning weights that cancel one another in neural networks. In International Conference on
Machine Learning, pp. 25668–25683. PMLR, 2022.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. Asvd:
Activation-aware singular value decomposition for compressing large language models. arXiv
preprint arXiv:2312.05821, 2023.

Ofir Zafrir, Ariel Larey, Guy Boudoukh, Haihao Shen, and Moshe Wasserblat. Prune once for all:
Sparse pre-trained language models. arXiv preprint arXiv:2111.05754, 2021.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a ma-
chine really finish your sentence? arXiv preprint arXiv:1905.07830, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christo-
pher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained transformer
language models. arXiv preprint arXiv:2205.01068, 2022.

Yang Zhang, Yawei Li, Xinpeng Wang, Qianli Shen, Barbara Plank, Bernd Bischl, Mina Rezaei, and
Kenji Kawaguchi. Finercut: Finer-grained interpretable layer pruning for large language models.
arXiv preprint arXiv:2405.18218, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. arXiv preprint arXiv:2308.07633, 2023.

15

Published as a conference paper at ICLR 2025

SUPPLEMENTARY MATERIAL

CONTENTS

A PROOFS 17

A.1 Proof of Theorem 1 and Proposition 1: MLP Compression with Nyström Approxi-
mation . 17

A.2 Proof of Theorem 2 and Proposition 2: Key-Query Compression with CR Approxi-
mation . 19

A.3 Proof of Theorem 3 and Proposition 3: Value-Output Compression with SVD . . . 20

A.4 Proof of Theorem 4: Global Sparsity Allocation 20

B ADDITIONAL EXPERIMENTS 22

B.1 Modified Algorithms for Grouped Query Attention 22

B.2 Implementation Details . 22

B.3 Additional Generation and Zero-Shot Experiments 23

B.4 Additional Baseline Comparisons: Feature-Mimic and SVD Approaches 26

B.5 Additional Baseline Comparisons: Unstructured/Sem-Structured Compression . . . 26

B.6 Recovery Fine-tuning . 27

B.7 Experiments with Equal Computational Budgets 28

B.8 Combination of MoDeGPT and SliceGPT . 28

B.9 Compression Time and Memory Consumption . 29

B.10 Global Sparsity Allocation . 30

B.11 Refined Sparsity Allocation: Differentiating MLP and MHA Blocks with Finer-
Grained Scores . 31

B.12 Ablation Study on Compression in Each Module 32

B.13 Scalability to Larger Models . 33

B.14 High Compression Rate Experiments . 34

B.15 Sensitivity Analysis of Dfferent Calibration Sets 34

B.16 Additional Speedup Experiments . 34

C Limitations and Broader Impacts 35

16

Published as a conference paper at ICLR 2025

A PROOFS

This section provides proofs for the theorems and propositions in the main text, along with defini-
tions and assumptions for formalism.

First, we define the following notation.
Definition 2 (Column Selection Matrix). A k-column selection matrix Sk is a matrix with k columns
where each column has a single non-zero element indicating the selected index. For example, S3 =
[[0, 0, 1, 0]⊤, [0, 1, 0, 0]⊤, [0, 0, 0, 1]⊤] is a 3-column selection matrix selecting the third, second,
and fourth columns. An important property is that any matrix right-multiplied by a column selection
matrix will result in a matrix consisting of the selected columns.

Next, we make an assumption regarding the nonlinear functions used in all modules, which is crucial
for validating our algorithms.
Assumption 1. Any column selection matrix S is commutative with the nonlinear functions under
consideration. Specifically, the function σ satisfies the property that σ(X)S = σ(XS) for any X
and any column selection matrix S.

Importantly, Assumption 1 is met by any activation function that operates element-wise on the in-
puts, as well as by widely used embedding functions, such as the rotary positional embedding (Su
et al., 2024).

A.1 PROOF OF THEOREM 1 AND PROPOSITION 1: MLP COMPRESSION WITH NYSTRÖM
APPROXIMATION

Theorem 1 (MLP compression can be solved by Nyström approximation). Let ŴU be searched
over the matrix multiplication form WUSk, where Sk is a k-column selection matrix, and let ŴD

be searched over Rk×dh . The optimal Ŵ ∗
D can then be expressed as: (S⊤

k CσSk)
†S⊤

k CσWD.
Using WUSk and Ŵ ∗

D as the compressed matrices, the Type-I reconstruction error in equation 6
satisfies:

VI ≤ ∥WD∥22 E
2
Nys(C

1
2
σ), (12)

where ENys(C
1
2
σ) denotes the Nyström approximation error, defined in Def. 1, relative to the activa-

tion correlation matrix Cσ ≜
∑N

i=1 σ(XiWU)
⊤σ(XiWU), using the same Sk in the compression

of WU .

Proof. Ideally, we want to seek low-rank matrices WU , WD without any constraint; however, the
nonlinearity between the two matrices makes the optimal solution intractable. To overcome the
nonlinearity between the two matrices, we instead restrict the compressed up matrix ŴU to be of
the form WUSk, Sk ∈ Rd×k is a k-column selection matrix and ŴD is a general Rk×d matrix.
Plug in this form, we can simplify equation 6 as

min
Sk,ŴD

N∑
i=1

∥f(Xi)− σ(XiWUSk)ŴD∥2F

(a)
= min

Sk,ŴD

N∑
i=1

∥σ(XiWU)WD − σ(XiWU)SkŴD∥2F

= min
Sk,ŴD

Tr

(
N∑
i=1

σ(XiWU)
⊤σ(XiWU)

(
WD − SkŴD

)(
WD − SkŴD

)⊤)
= min

Sk,ŴD

∥C
1
2
σ

(
WD − SkŴD

)
∥2F , (13)

where Cσ is the empirical correlation matrix of latent features Cσ =
∑N

i=1 σ(XiWU)
⊤σ(XiWU),

and (a) follows from Assumption 1. Setting the gradient of the last expression with respect to ŴD

17

Published as a conference paper at ICLR 2025

to zero, we obtain the optimal down matrix Ŵ ∗
D =

(
S⊤
k CσSk

)†
S⊤
k CσWD. After Plugging this

back to the objective, we can further simplify the objective into,

min
Sk

∥∥∥(C 1
2
σ −C

1
2
σ Sk

(
S⊤
k CσSk

)†
S⊤
k Cσ

)
WD

∥∥∥2
F

≤ ∥WD∥22 ∥C
− 1

2
σ ∥22 min

Sk

∥∥∥Cσ −CσSk

(
S⊤
k CσSk

)†
S⊤
k Cσ

∥∥∥2
F
= ∥WD∥22 ∥C

−1
σ ∥2E2

Nys(Cσ).

(14)

Now, observe that the error on the right side of equation 14 is proportional to the Nyström matrix
approximation to the matrix Cσ in Definition 1. Hence, the variable Sk can be optimized with
any Nyström approximation algorithm (Gittens & Mahoney, 2013). In this work, we adapt a de-
terministic Nyström algorithm, Algorithm 1, that has the theoretical guarantee proved in the next
proposition.

Proposition 1. Suppose that the rank k and the scores si in Algorithm 1 are chosen such that there
exists an error ε > 0 satisfying ε ≥

∑dint

i=k+1 si, then the Type-I modular reconstruction error in

equation 6 is bounded by VI ≤ ∥WD∥22∥C−1
σ ∥2 ε2d2

int

k2(1−ε)2

∑dint

i=k+1 σ
2
i (Cσ), where dint and σi denote

the intermediate dimension (i.e., the input dimension of WD) and singular values, respectively.

Proof. Since our column selection is equivalent to applying the deterministic ridge leverage score
sampling (DRLS) to C

1
2
σ (McCurdy, 2018) , Theorem 1 in McCurdy (2018) implies that

(1− ε)Cσ − ϵ

k

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I ⪯ C

1
2
σ SkS

⊤
k C

1
2
σ ⪯ Cσ (15)

⇒ Cσ ⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I+

1

1− ε
C

1
2
σ SkS

⊤
k C

1
2
σ . (16)

Next, we define P = C
1
2
σ Sk(S

⊤
k CσSk)

†S⊤
k C

1
2
σ . We note that P is the projection matrix of the

column space of C
1
2
σ S. Now, we multiply I − P to both sides in the previous inequality to get

(I − P)Cσ(I − P) (17)

⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
(I − P) +

1

1− ε
(I − P)C

1
2
σ SkS

⊤
k C

1
2
σ (I − P) (18)

⪯ ϵ

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
I, (19)

where in the last inequality we use the fact that I − P ⪯ I and that I − P is the orthogonal
projection to the orthogonal complement of the column space C

1
2
σ S so that S⊤C

1
2
σ (I − P) = 0.

Now, we have

∥(I − P)C
1
2
σ C

1
2
σ (I − P)∥2 ≤ ε

k(1− ε)

∥∥∥(C 1
2
σ)\k

∥∥∥2
F
=

ε

k(1− ε)

dint∑
i=k+1

σi(Cσ) (20)

⇒ ∥C
1
2
σ (I − P)2C

1
2
σ ∥2 = ∥C

1
2
σ (I − P)C

1
2
σ ∥2 ≤ ε

k(1− ε)

dint∑
i=k+1

σi(Cσ). (21)

Since C
1
2
σ PC

1
2
σ = CσSk

(
S⊤
k CσSk

)†
S⊤
k Cσ , the inequality is equivalent to

∥Cσ −CσS
(
S⊤CσS

)†
S⊤Cσ∥2 ≤ ε

k(1− ε)

dint∑
i=k+1

σi(Cσ). (22)

18

Published as a conference paper at ICLR 2025

Finally, we complete the proof by,

E2
Nys(Cσ)

(a)

≤ dint∥Cσ −CσS
(
S⊤CσS

)†
S⊤Cσ∥22

(b)

≤ ε2dint
k2(1− ε)2

(
dint∑

i=k+1

σi(Cσ)

)2

(c)

≤ ε2d2int
k2(1− ε)2

dint∑
i=k+1

σ2
i (Cσ), (23)

where (a) follows from that∥A∥F ≤
√
d∥A∥2 for any matrix A ∈ Rd×d, (b) from equation 22, and

(c) from Cauchy inequality that (
∑n

i=1 xi)
2 ≤ n

∑n
i=1 x

2
i for any sequence {xi}i.

A.2 PROOF OF THEOREM 2 AND PROPOSITION 2: KEY-QUERY COMPRESSION WITH CR
APPROXIMATION

Theorem 2 (Key-Query compression can be solved by CR approximation). Let the compressed
ŴQ, ŴK to be the form of WQSk,WKSk, then Type-II reconstruction error in equation 6 has

VII ≤ E2
CR(C

1
2

KC
1
2

Q), (24)

where ECR denotes the CR approximation error, defined in Def. 1, relative to C
1/2
Q C

1/2
K , utilizing the

same Sk in the compression. Here, the matrices CQ ≜
∑N

i=1 σ(XiWQ)
⊤σ(XiWQ) and CK ≜∑N

i=1 σ(XiWK)⊤σ(XiWK) denote the correlation matrices of query and key states, respectively.

Proof. Regarding two nonlinear functions satisfying Assumption 1, we propose to optimize the
reconstruction error with compressed key query matrices of the form WKSk,WQSk, where Sk is
some column selection matrix. Now the reconstruction error of this module is

N∑
i=1

∥f(Xi)− σr(XiWQSk)σ
⊤
r (XiWKSk)∥2F

(a)
=

N∑
i=1

∥σr(XiWQ)
(
I − SkS

⊤
k

)
σ⊤
r (XiWK)∥2F

=

N∑
i=1

Tr
((
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

)
σr(XiWK)⊤σr(XiWK)

)
(b)

≤ Tr

 N∑
i=1

(
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

) N∑
j=1

σr(XjWK)⊤σr(XjWK)

(c)

≤ Tr
(
CK

(
I − SkS

⊤
k

)
CQ

)
= ∥C

1
2

KC
1
2

Q −C
1
2

KSkS
⊤
k C

1
2

Q∥
2
F = E2

CR(C
1
2

KC
1
2

Q), (25)

where CK =
∑N

i=1 σ(XiWQSk)
⊤σ(XiWQSk), CQ =

∑N
i=1 σ(XiWKSk)

⊤σ(XiWKSk) are
the correlation matrices associated with the outputs of WQ and WK , respectively. Here, (a) follows
from Assumption 1, (b) follows from that

(
I − SkS

⊤
k

)
σr(XiWQ)

⊤σr(XiWQ)
(
I − SkS

⊤
k

)
and

σr(XjWK)⊤σr(XjWK) are positive semidefinite, and (c) follows from that I−SkS
⊤
k ⪯ I. From

the last expression, we observe that the reconstruction is bounded by the CR approximation (Drineas
et al., 2006) to the matrix-product C

1
2

KC
1
2

Q.

Proposition 2. If we adopt Algorithm 2 then Type-II modular reconstruction error is bounded by

VII ≤
(

dh−k
dh

)2 (∑dh

i=1 σi(CK)
)(∑dh

i=1 σi(CQ)
)

, where σi denotes the singular values.

19

Published as a conference paper at ICLR 2025

Proof. Our Algorithm 2 is a deterministic variant of Drineas et al. (2006). Recall that

ECR(C
1
2

KC
1
2

Q) = ∥C
1
2

k C
1
2

Q −C
1
2

KSkS
⊤
k C

1
2

Q∥F = ∥
d∑

i=k+1

kiq
⊤
i ∥F , (26)

where ki and qi are the i-th column and i-th row of C
1
2

k and C
1
2
q , respectively. Then,

∥
d∑

i=k+1

kiq
⊤
i ∥F ≤

d∑
i=k+1

∥ki∥2∥qi∥2
(a)

≤

√√√√(d∑
i=k+1

∥ki∥22

)(
d∑

i=k+1

∥qi∥22

)
(27)

(b)

≤ d− k

d

√√√√(d∑
i=1

∥ki∥22

)(
d∑

i=1

∥qi∥22

)
=

d− k

d
∥C

1
2

K∥F ∥C
1
2

Q∥F (28)

=
d− k

d

√√√√(d∑
i=1

σi(CK)

)(
d∑

i=1

σi(CQ)

)
, (29)

where in (a) we use Cauchy-Schwartz inequality and in (b) we use the fact that the column selection
is based on the norm product in Algorithm 2.

A.3 PROOF OF THEOREM 3 AND PROPOSITION 3: VALUE-OUTPUT COMPRESSION WITH
SVD

Theorem 3 (Value-Output compression can be solved by SVD). If we search ŴV and ŴO

over Rdh×k and Rk×dh , respectively, the optimum in equation 6 is ŴV = C− 1
2Uk and ŴO =

ΣV ⊤. Here, UΣV ⊤ and C ≜
∑N

i=1 X
⊤
i Xi are the SVD of C

1
2WV WO and input correlation

matrix, respectively. The corresponding Type-III reconstruction error in equation 6 is the SVD
approximation error, defined in Def. 1, relative to C

1
2WV WO:

VIII = E2
SVD(C

1
2WV WO). (30)

Proof. ŴV ∈ Rd×k and ŴO ∈ Rk×d. Plug in f̂(X) = XŴV ŴO into equation 6 and simplify
yields the objective

min
ŴV ,ŴO

N∑
i=1

Tr
(
X⊤

i Xi(WV WO − ŴV ŴO)(WV WO − ŴV ŴO)
⊤
)

= min
ŴV ,ŴO

∥C 1
2WV WO −C

1
2 ŴV ŴO∥2F = E2

SVD(C
1
2WV WO), (31)

where C =
∑N

i=1 X
⊤
i Xi is the input correlation matrix.

Proposition 3. Denote σi as the singular values, Algorithm 3 yields the optimal Type-III modular
reconstruction error VIII =

∑d
i=k+1 σ

2
i (C

1
2WV WO).

Proof. As C
1
2 ŴV ŴO has low rank k, this reconstruction error is upper bounded by the residue

of the spectrum of the matrix C
1
2WV WO, i.e., ESVD ≤

√∑d
i=k+1 σ

2
i (C

1
2WV WO). In fact, the

upper bound is achievable by Algorithm 2 since C
1
2 ŴV ŴO = UkΣkV

⊤
k , which is the optimal

rank k approximation to the matrix C
1
2WV WO.

A.4 PROOF OF THEOREM 4: GLOBAL SPARSITY ALLOCATION

Theorem 4. For sufficient large ε, (11) is the optimal sparsity allocation in the equation 10.

20

Published as a conference paper at ICLR 2025

Proof. Consider the relaxed optimization problem

max
ϕ1:L

L∑
i=1

si(1− ϕi) + εH(ϕi) s.t.
1

L

L∑
i=1

ϕi = ϕavg. (32)

Its associated Lagrangian is

L(ϕ1:L, λ) =

L∑
i=1

si(1− ϕi) + εH(ϕi) + λ

(
1

L

L∑
i=1

ϕi − ϕavg

)
. (33)

To find the optimum, we set the gradient of the Lagrangian to zero, which yields

0 = ∇ϕL(ϕ1:L, λ) = ∇ϕ

(
L∑

i=1

si(1− ϕi)− εH(ϕi)i

)
+ λ∇ϕ

(
1

L

L∑
i=1

ϕi − ϕavg

)
(34)

= ∇ϕ

(
L∑

i=1

si(1− ϕi)− ε

L∑
i=1

ϕi log ϕi

)
+ λ∇ϕ

(
1

L

L∑
i=1

ϕi − ϕavg

)
. (35)

This is equivalent to that, for any j = 1, . . . , L,

0 = ∂ϕj

(
L∑

i=1

si(1− ϕi)− ε

L∑
i=1

ϕi log ϕi

)
+ λ∂ϕj

(
1

L

L∑
i=1

ϕi − ϕavg

)
(36)

= −sj − ε log ϕj − ε+ λ
1

L
. (37)

After rearrangement, we have ϕj = C exp(−sj/ε) for some constant C. On the other hand, ϕj

satisfies the constraint of 1
L

∑L
i=1 ϕi = ϕavg, which implies

L∑
j=1

C exp(−sj/ε) = Lϕavg (38)

⇒ C = Lϕavg/

L∑
j=1

exp(−sj/ε) (39)

⇒ ϕi = Lϕavg exp(−si/ε)/

L∑
j=1

exp(−sj/ε). (40)

Finally, we must verify that for any i = 1, . . . , L, the above expression of ϕi is a valid sparsity
allocation, satisfying ϕi ≤ 1 for sufficiently large ε, to ensure it is also the optimum solution to the
original optimization problem in equation 10. Since ϕi = Lϕavg exp(−si/ε)/

∑L
j=1 exp(−sj/ε)

is a continuous function of ε and lim
ε→∞

ϕi = ϕavg < 1, there must exist some constant Ni such
that when ε ≥ Ni, ϕi is less than 1. Hence, the sparsity allocation is a valid optimal solution to
equation 10 if ε > max(N1, . . . , NL), completing the proof.

21

Published as a conference paper at ICLR 2025

B ADDITIONAL EXPERIMENTS

B.1 MODIFIED ALGORITHMS FOR GROUPED QUERY ATTENTION

Some modern LLMs such as Gemma (Team et al., 2024), Llama 3 (AI@Meta, 2024) utilize a shared
key-query strategy to improve inference efficiency. This design adopts the grouped-query attention
(GQA) mechanism (Ainslie et al., 2023) that couples multiple queries and output matrices with
shared keys and values, so compressed key and value matrices also have the constraints of sharing
across different heads. Its mechanism is illustrated as follows.

(GQA)
H/G∑
i=1

∑
j∈Gi

Softmax(σr(XW j
Q)σ

⊤
r (XW i

K)︸ ︷︷ ︸
Type-II

)XW i
V W

j
O︸ ︷︷ ︸

Type-III

, (41)

𝐔

𝐔𝐓

𝐒

𝐒

Grouped Query Attention

Type II

Type III

𝐖𝐐,�

𝐖𝐐,𝐆

𝐖𝐊

𝐖𝐕

𝐖𝐎,�

𝐖𝐎,𝐆

Figure 7: Illustration of Type-II and Type-III modi-
fications in GQA. In Type-I, the index selection matrix
S is shared among different key projection matrices in
the same group. Similarly, in Type-II, the eigenmatrix
U is shared among different output matrices within the
same group.

where Gi denotes the set of each group and
G = |Gi| is each of its size. We see that
our compressed W i

V , W j
K must be jointly

optimized within each group. To address it,
we modify Algorithm 2, 3 by using projec-
tion strategies. In line 3 of Algorithm 2
for Type-II module, we calculate the group
score equal to the square root of sum of the
scores of each head within a group, i.e., si =√∑

h∈G ∥C
1
2

h,Q[:, i]∥2∥C
1
2

h,K [:, i]∥2, where h

indicates the head. By doing in this way, we en-
sure that the column selection matrix for com-
pressions remains equal within the group. For
grouped Type-III modification, in line 3 of Al-
gorithm 3, we calculate the SVD of CWV =
UΣV ⊤ and skip the calculation of W ′

O and the
second SVD and then outputs ŴV = WV Uk,
ŴO,j = U⊤

k WO,j ,∀j ∈ Gi. Since WV

is shared within a group, this ensures that the
compressed ŴV is also shared. In Table 14,
we apply this modification to a Llama-3 8B compression.

B.2 IMPLEMENTATION DETAILS

Setup We utilize the HuggingFace generation library (Wolf et al., 2019) to implement our LLM
models and adapt the SliceGPT (Ashkboos et al., 2024) GitHub repository for correlation matrix
estimations. All compression experiments were conducted on a single NVIDIA A100 80GB GPU,
except for the 70B model compressions, which utilized 8 A100 GPUs. The models use the FP16
data format. Unless otherwise specified, the calibration set consists of a random sample of 128
sequences, each of length 2048, from WikiText-2, following the common practice in the literature
Ashkboos et al. (2024); van der Ouderaa et al. (2023).

Datasets We consider multiple tasks in LM Evaluation Harness (Gao et al., 2021), including ARC-
e, ARC-c (Clark et al., 2018), PIQA (Bisk et al., 2020), WinoGrande (Sakaguchi et al., 2021), and
HellaSwag (Zellers et al., 2019), OpenBookQA (Mihaylov et al., 2018), MathQA (Amini et al.,
2019), BoolQ (Clark et al., 2019), COPA (Roemmele et al., 2011), MMLU (Hendrycks et al., 2020),
and LAMBADA (Paperno et al., 2016).

Conversion of Layernorm to RMSNorm We adapt SliceGPT (Ashkboos et al., 2024) official
code to implement our compression. As shown in the work, this conversion is an invariant trans-
formation that preserves the model output. SliceGPT uses this transformation and the orthogonal
invariance property of RMSNorm to slice the weight matrices. On the other hand, MoDeGPT does
not reply on the invariance property. We use the transformation simply for easy adaptation from
SliceGPT by avoiding building all from the scratch. A side benefit is that our work is compatible

22

Published as a conference paper at ICLR 2025

with SliceGPT where a slicing and our compression can be applied independently. Although our
experiments on OPT and LLAMA do not find clear improvement when incorporating the two (see
Table 22), it might be beneficial for some other LLMs.

Correlation Matrix Estimations Our algorithms utilize various input correlation matrices as de-
tailed in Algorithms 1, 2, and 3. Following the approach used in SliceGPT (Ashkboos et al., 2024),
we employ the Catcher function to gather empirical data from the calibration set. For matrix de-
composition, we upcast correlation matrices from FP16 to FP64 and then downcast the decomposed
weights back to FP16. Our process sequentially compresses weights across all layers, mirroring
SliceGPT’s method. Additionally, our approach is adaptable to parallel structural models like Phi-2,
showcasing flexibility similar to that demonstrated by SliceGPT.

Matrix Operations We utilize torch.svd and torch.pinv in PyTorch for performing Sin-
gular Value Decomposition (SVD) and computing the Moore-Penrose inverse on tensors of dtype
FP64.

MLP Module Algorithm 1 requires a ridge leverage score parameter λ. We find that the results
are largely insensitive to this parameter; therefore, we simply use λ = 1 across all experiments.

Key-Query Module MoDeGPT reduces the feature dimension in the key-query module. In our
current setup, we store head-dependent index selections, which specify the rows of cosine and sine
matrices in the rotary embedding, using only O(dh) INT8 numbers, together with the reduced di-
mension matrices. We’ve observed that this method may slow down generation speed at compression
rates below 10%. A feasible modification is zeroing out columns associated with pruned indices;
however, this increases the memory footprint because the matrices stored do not undergo dimension
reduction. We think there is potential for improvements through enhanced engineering efforts that
could better optimize the balance between memory savings and generation speed.

Value-Output Module Lines 3-5 in Algorithm 3 provide a more computationally efficient imple-
mentation of the SVD of C

1
2WV,jWO,j . Since WV,j and WO,j are thin matrices, applying SVD

directly on their product incurs O(d3h) complexity, while applying SVD to them sequentially incurs
only O(dh × (dh/H)2) computations.

Global Sparsity Allocation To allocate global sparsity, we first calculate the BI scores with a
single forward pass on the calibration set. We then set the sparsity according to a chosen temperature
ε, as detailed in Section 3.3. A high ε leads to a very uniform allocation, while a low value introduces
excessive sparsity in some layers. Empirically, we find that a simple rule of thumb is to choose a
temperature ε that results in maximal layer sparsity around 80%.

Throughput Benchmark We use the official SliceGPT (Ashkboos et al., 2024) codebase to
benchmark the throughput of all methods, with both sequence length and batch size set to 256
and utilizing KVCache.

B.3 ADDITIONAL GENERATION AND ZERO-SHOT EXPERIMENTS

Generation Performance In Table 10, we compare the perplexity of compressed OPT and
LLAMA-2 7B models on WikiText-2 with other baselines that do not use gradient informa-
tion. The rightmost column indicates their computational complexity per layer. We observe that
MoDeGPT performs the best among all structured compression methods, and the 30-40% com-
pressed MoDeGPT models outperform the 2:4 SparseGPT. Notably, our method shows better per-
formance in LLAMA than in OPT models. We suspect this is due to the higher nonlinearity, such as
RoPE and Gated MLP, adopted in LLAMA, and that our method favors more nonlinear structures.
This table also shows that our compression is effective on small language models.

Zero-Shot Task Performance In Table 11, we report the zero-shot performance of LLAMA-2 7B,
calibrated with WikiText-2 and the Alpaca dataset, across various compression rates. We observe
that MoDeGPT outperforms LLM Surgeon as the compression rate increases, and the benefits of us-
ing the Alpaca dataset also grow with higher compression rates. Notably, while ShortGPT performs

23

Published as a conference paper at ICLR 2025

Table 10: Perplexities of none gradient-based structured compression methods on WikiText-2.

Method Compression OPT LLAMA-2 Complexity
125M 1.3B 2.7B 6.7B 7B

Dense 0% 27.65 14.62 12.47 10.86 5.12 -

Sparse GPT 2:4 (Frantar & Alistarh, 2023) 50% 45.07 29.61 14.90 13.00 8.69 O(d3hidden)

10% 767.2 894.4 1229 3464 861.76
Magnitude 20% 4685 1278 2788 16747 821.34 O(d2hidden)

30% 17970 3098 9255 17312 9623

10% 36.29 68.36 20.82 357.61 n/a
SVD 20% 55.48 1023.49 50.01 2387.39 n/a O(d3hidden)

30% 173.77 8851.45 707.17 9448.12 52719

10% 33.3 20.76 17.69 27.2 14259
OBD (LeCun et al., 1989) 20% 94.14 1392 3236 7570 15630 O(Td3hidden)

30% 545.6 2147 7233 7628 21386

10% 34.48 16.58 13.86 11.6 6.46
20% 42.87 19.15 15.86 12.62 7.68

SliceGPT (Ashkboos et al., 2024) 30% 59.87 23.87 19.91 14.19 10.47 O(d3hidden)

40% 102.41 36.2 30.77 17.99 15.19
50% 185.52 66.12 56.99 26.72 24.82

10% 28.06 15.03 12.78 11.17 5.48
20% 29.62 15.98 13.56 11.79 6.16

MoDeGPT 30% 33.27 17.91 14.71 12.67 7.51 O(d3hidden)

(ours) 40% 38.37 21.92 17.43 14.79 8.41
50% 51.81 32.67 24.75 20.39 11.88

Table 11: Downstream zero-shot task performance of LLAMA-2 7B calibrated with 128 samples from Wiki-
Text2.

Compression Method ARC-e ARC-c PIQA WinoGrande HellaSwag Average

0% Dense 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

20%

ShortGPT (Men et al., 2024) 58.33% 38.05% 72.58% 65.51% 65.27% 59.95%
SliceGPT (Ashkboos et al., 2024) 51.47% 31.06% 64.25% 62.74% 49.78% 51.86%
LLM surgeon (van der Ouderaa et al., 2023) 71.36% 41.89% 77.09% 66.30% 71.30% 65.59%
MoDeGPT (ours) 69.07% 42.06% 74.05% 68.03% 69.05% 64.46%
MoDeGPT-Alpaca (ours) 71.71% 41.89% 76.22% 68.19% 69.59% 65.52%

30%

ShortGPT (Men et al., 2024) 48.65% 32.85% 64.31% 64.33% 56.13% 53.25%
SliceGPT (Ashkboos et al., 2024) 44.44% 29.27% 57.56% 58.48% 41.08% 46.17%
LLM surgeon (van der Ouderaa et al., 2023) 63.09% 36.69% 73.56% 61.09% 60.72% 59.03%
MoDeGPT (ours) 63.26% 38.73% 70.40% 67.32% 63.26% 60.78%
MoDeGPT-Alpaca (ours) 65.49% 39.16% 73.34% 66.22% 65.90% 62.02%

40%

ShortGPT (Men et al., 2024) 41.16% 29.94% 60.12% 60.46% 43.67% 47.07%
SliceGPT (Ashkboos et al., 2024) 36.49% 24.57% 54.90% 53.43% 34.80% 40.84%
LLM surgeon (van der Ouderaa et al., 2023) 52.31% 30.29% 69.26% 54.38% 48.04% 50.86%
MoDeGPT (ours) 49.45% 30.03% 64.96% 61.96% 53.01% 51.88%
MoDeGPT-Alpaca (ours) 59.76% 34.73% 70.35% 64.40% 58.63% 57.58%

Table 12: Downstream zero-shot task performance of LLAMA-2 13B calibrated with 128 samples from Wiki-
Text2.

Method Compression ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 77.48% 49.23% 80.47% 72.22% 79.39% 71.76%

SliceGPT (Ashkboos et al., 2024)
20% 55.81% 35.84% 65.83% 67.17% 53.58% 55.65%
30% 45.96% 30.80% 59.63% 61.80% 44.09% 48.46%
40% 38.59% 27.05% 55.98% 56.51% 37.15% 43.06%

MoDeGPT (ours)
20% 74.07% 46.16% 74.53% 70.32% 68.96% 66.81%
30% 71.93% 43.60% 73.94% 71.90% 68.21% 65.92%
40% 62.88% 38.40% 69.10% 67.72% 58.27% 59.27%

24

Published as a conference paper at ICLR 2025

Table 13: Downstream zero-shot task performance of LLAMA-2 13B calibrated with 128 samples from Alpaca.

Method Compression ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 77.48% 49.23% 80.47% 72.22% 79.39% 71.76%

SliceGPT (Ashkboos et al., 2024)
20% 69.36% 40.70% 74.97% 65.67% 61.01% 62.34%
30% 60.27% 36.18% 69.42% 64.09% 49.74% 55.94%
40% 48.99% 32.51% 63.17% 56.75% 39.85% 48.25%

MoDeGPT (ours)
20% 74.24% 45.90% 78.24% 72.53% 75.78% 69.34%
30% 70.24% 41.47% 77.15% 71.27% 71.84% 66.39%
40% 63.72% 38.82% 71.87% 66.30% 62.10% 60.56%

poorly in generation tasks, it significantly outperforms SliceGPT in zero-shot tasks. Both LLM Sur-
geon and MoDeGPT maintain high performance in generation and zero-shot tasks, but our method
requires only 3% of the computational resources compared to LLM Surgeon.

We also test the performance on LLAMA-2 13B using the WikiText-2 calibration set, as shown
in Table 12. Similar to the 7B model, our method excels at higher compression rates (above 20%).
However, at a 40% compression rate, we notice a performance drop in the HellaSwag task compared
to the 30% compression, likely due to inherent biases in our method. Nevertheless, with calibration
from the Alpaca dataset, as shown in Table 13, our method achieves high performance at 20% and
30% compression. Addressing these inherent biases and enhancing performance on the HellaSwag
task is a promising area for future research.

Table 14: Downstream zero-shot task performance of LLAMA-3 8B calibrated with 128 samples from Alpaca.

Method Compression Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 2.98 77.69% 53.58% 80.63% 72.69% 79.16% 72.75%

ShortGPT (Men et al., 2024) 25% 282.56 38.13% 31.40% 60.94% 54.22% 31.52% 43.24%
30% 659.33 36.83% 30.72% 58.98% 54.62% 29.08% 42.04%

SliceGPT (Ashkboos et al., 2024) 25% 3.87 58.88% 33.36% 68.55% 58.01% 49.86% 53.73%
30% 4.52 52.02% 29.18% 64.85% 54.62% 41.38% 48.41%

MoDeGPT (ours) 25% 3.52 67.05% 41.13% 75.52% 69.61% 66.49% 63.96%
30% 3.80 62.75% 38.65% 73.61% 67.25% 62.10% 60.87%

In Table 14, we test our method on LLAMA-3 8B using our modified algorithm tailored for grouped
query attention. As this is a relatively new model, we could only compare results with SliceGPT and
ShortGPT, which already support this model. We observe that compression has a more significant
impact on performance degradation compared to LLAMA-2 for all tested methods. We believe this
is due to denser information encoding in each parameter, making the model more sensitive to weight
changes. However, MoDeGPT maintains approximately 90% performance with 25% compression.
Another interesting observation is that the performance order of ShortGPT and SliceGPT is reversed
for LLAMA-3 compared to LLAMA-2, with ShortGPT’s layer pruning strategy performing much
worse. This suggests fundamental differences between the two models and indicates that LLAMA-3
may require more sophisticated compression techniques.

In Table 16, we evaluate MoDeGPT on a broader range of tasks to assess its generalizability. We
compare MoDeGPT with two baseline methods: SliceGPT (a decomposition approach) and Short-
GPT (a layer-pruning method), all using 30% compression of LLAMA-2 7B, with calibration per-
formed on the Alpaca dataset. The top rows of the table show the raw accuracies, while the bottom
rows display the relative degradation compared to the original dense model.

MoDeGPT demonstrates the least degradation across all tasks, with an average drop of only 7.19%,
while the other methods experience drops exceeding 17%. Notably, the degradation is generally
consistent across tasks, except for Lambada and MMLU, which show more significant drops. These
tasks also exhibit the largest degradations in the baseline methods, suggesting they are more sensitive
to compression.

Lambada, in particular, exhibits an extreme degradation in both SliceGPT and ShortGPT (over 40%
for both), making it the most challenging task to maintain accuracy after compression. In contrast,
MoDeGPT shows a relatively small degradation of just 16.8%, almost 25% lower than the other

25

Published as a conference paper at ICLR 2025

Table 15: Generation samples of LLAMA-2 7B with 30% compression.

Prompt: The universe is the entirety of space, time, matter, and energy that exists.

ShortGPT (Men et al., 2024)

sierpę 2018. The universe is everything that ever did or ever will exist. It includes all the past, all the
present, and all the future. What are the 5 most important things you learned about life? How do you
describe a person in words? Can you be happy with nothing? Is there a word for everything? What is
the meaning of universe? Who is the best person to talk to when you need advice? What is the
meaning of the word universe? What is the meaning of universe according to Godungsseite.
According to Wikipedia, the universe refers to everything that ever existed, continues existence, or
could possibly exist. Thus it includes all the past, all the present, and all the future.

SliceGPT (Ashkboos et al., 2024)

The universe contains many galaxies, stars, planets, other objects such as asteroids, planetary systems.
It has been estimated to contain 100 billion trillion stars. The Sun is a star in the Milky Way galaxy ,
which is one of about 400 billion galaxies in the Milky Way’s vicinity . The Milky Way itself is part
of the Milk Way Group , which includes several smaller groups of galaxies .

MoDeGPT (ours)

The universe is a vast, dynamic, and complex structure that contains many different types of objects,
including stars, galaxies, planets, asteroids, and intergalactic gas clouds. It is also home to life-forms
such as humans, animals, plants, microorganisms, and microscopic organisms. The universe has been
studied by astronomers for centuries, and its size and complexity have been estimated using various
methods. Astronomical observations have revealed that the universe is much larger than previously
thought, with an estimated diameter of approximately 10 billion light years. This means that the
universe is roughly 33 times larger than our solar system. The universe is composed of two main
components: the cosmos and the cosmic void. The cosmos consists of galaxies, which are large
collections of stars and other objects bound together by gravitational forces. The cosmic void, on the
other hand, is a region of space between galaxies that is largely empty of matter.

Table 16: Zero-shot task performance degradation of LLAMA-2 7B, calibrated with 128 samples from the
Alpaca dataset, evaluated across a broader set of tasks.

Method BoolQ PIQA HellaS. WinoG. ARC-e ARC-c OBQA COPA Lamb. MMLU-ml Average

Dense 77.68% 79.05% 76.00% 68.98% 74.58% 46.33% 44.22% 87.00% 73.86% 39.29% 66.70%

SliceGPT (Ashkboos et al., 2024) 61.99% 68.55% 48.69% 59.75% 59.69% 34.47% 31.40% 75.00% 21.02% 23.21% 48.08%

ShortGPT (Men et al., 2024) 62.17% 64.48% 56.15% 64.33% 48.70% 32.59% 32.80% 79.00% 29.03% 24.11% 49.34%

MoDeGPT (ours) 69.76% 73.34% 65.90% 66.22% 65.49% 39.16% 39.00% 87.00% 57.07% 32.14% 59.51%

∆ SliceGPT -15.69% -10.50% -27.31% -9.23% -17.89% -11.86% -12.80% -12.00% -52.84% -16.08% -18.62%

∆ ShortGPT -15.51% -14.57% -19.85% -4.65% -25.88% -13.74% -11.40% -8.00% -44.83% -15.18% -17.36%

∆ MoDeGPT (ours) -7.92% -5.71% -10.10% -2.76% -9.09% -7.17% -5.20% 0% -16.79% -7.15% -7.19%

methods. This hints that MoDeGPT is better at preserving important information, which is crucial
for excelling on more difficult tasks like Lambada.

Finally, we compare the generation quality using samples from the three methods’ generations for
30% compressed LLAMA-2 7B, as shown in Table 15. ShortGPT produces the lowest quality gen-
eration, while both SliceGPT and MoDeGPT generate high-quality responses, with MoDeGPT pro-
viding more detailed responses than SliceGPT.

B.4 ADDITIONAL BASELINE COMPARISONS: FEATURE-MIMIC AND SVD APPROACHES

In Table 17 and 18, we compare our method against feature-mimic and SVD-based approaches,
respectively. In the former case, we observe that alternative methods generally underperform com-
pared to state-of-the-art gradient-based techniques like LLM Surgeon, while our approach achieves
comparable or even superior results. In the latter comparison, our advantage is even more pro-
nounced, which we attribute to our more refined decomposition algorithms, tailored specifically to
different components of the transformer architecture based on their levels of nonlinearity, rather than
relying solely on SVD-based decompositions.

B.5 ADDITIONAL BASELINE COMPARISONS: UNSTRUCTURED/SEM-STRUCTURED
COMPRESSION

In Table 19, We compare MoDeGPT to the state-of-the-art non-structured methods, Wanda,
SparseGPT, and ZeroPruner. These methods generally outperform MoDeGPT at 50% compres-

26

Published as a conference paper at ICLR 2025

Table 17: Comparisons of feature-mimic based methods for 30% compression of LLAMA-2 7B and 13B mod-
els.

Model Method ARC-e ARC-c PIQA WinoG. HellaS. BoolQ OBQA Average.

LLAMA-2 7B

Dense 74.58 46.25 79.11 69.06 75.99 77.74 44.20 66.70
LLM Pruner (Ma et al., 2023) 61.41 33.96 71.93 58.72 59.49 61.41 36.60 53.52
FLAP (An et al., 2024) 60.65 34.47 72.74 64.01 63.80 66.88 36.40 56.99
Bolaco (5 × 4) (Ji et al., 2024) 65.87 34.30 71.27 64.48 57.85 73.85 37.80 57.92
MoDeGPT (ours) 65.49 39.16 73.34 66.22 65.90 69.76 39.00 59.83

LLAMA-2 13B

Dense 77.48 49.23 80.47 72.22 79.39 80.52 45.20 69.22
LLM Pruner (Ma et al., 2023) 65.45 40.36 75.90 60.22 67.90 62.43 44.60 59.55
FLAP (An et al., 2024) 67.38 38.23 74.81 67.48 70.29 65.54 40.00 60.53
Bolaco (5 × 4) (Ji et al., 2024) 71.76 40.10 74.16 69.06 66.66 75.63 41.60 62.71
MoDeGPT (ours) 70.24 41.47 77.15 71.27 71.84 73.7 41.00 63.81

Table 18: Comparisons with SVD-based methods in LLAMA-1 7B.

Compress. Rate Method WikiText-2 ↓ PTB ↓ ARC-e ARC-c PIQA WinoG. HellaS. MathQA OBQA Avg.

0% Dense 5.68 8.35 73 42 79 70 50 27 34 54

20%

FWSVD (Hsu et al., 2022) 1727 2152 31 23 56 50 26 21 15 32
ASVD (Yuan et al., 2023) 11.14 16.55 53 27 68 64 41 24 25 43
SVD-LLM (Wang et al., 2024) 7.94 16.22 58 29 69 58 43 24 22 44
MoDeGPT (ours) 6.53 39.17 70 36 74 69 50 26 31 51

40%

FWSVD (Hsu et al., 2022) 18156 20990 26 22 53 51 26 21 16 30
ASVD (Yuan et al., 2023) 1407 3292 28 22 55 48 26 19 12 30
SVD-LLM (Wang et al., 2024) 13.11 63.75 42 25 60 58 33 21 19 37
MoDeGPT (ours) 9.39 60.55 58 30 65 64 40 23 22 43

sion rate. However, MoDeGPT with 40% compression achieves a significantly better perplexity
(8.41 versus 10.17).

Table 19: Comparisons with semi-structured pruning.

Method Structure 40% 50%
SparseGPT (2:4) Semi-structured - 10.17
Wanda (2:4) Semi-structured - 11.02
ZeroPruner (2:4) Semi-structured - 10.52
MoDeGPT (ours) Structured 8.41 11.88

The observation suggests that with a small
concession on compression rate, our struc-
tured compression can be on par with the
semi-structured method that requires spe-
cial GPU support for efficient inference.

B.6 RECOVERY FINE-TUNING

Table 20: Compression and recovery fine-tuning for LLAMA-2 7B using Alpaca dataset

Method Compress. ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense 0% 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

MoDeGPT
RCT-MLP

20% 69.78 % (↓ 1.93%) 44.20% (↑ 2.31%) 76.99% (↑ 0.77%) 66.61% (↓ 1.58%) 69.23% (↓ 0.36%) 65.36% (↓ 0.16%)
30% 64.94% (↓ 0.55%) 42.15% (↑ 2.99%) 73.83% (↑ 0.49%) 66.54% (↑ 0.32%) 67.08% (↑ 1.18%) 62.91% (↑ 0.89%)
40% 59.26% (↓ 0.50%) 37.12% (↑ 2.39%) 72.09% (↑ 1.74%) 64.33% (↓ 0.07%) 60.82% (↑ 2.19%) 58.72% (↑ 1.14%)

MoDeGPT
RCT-ALL

20% 70.45% (↓ 1.26%) 42.92% (↑ 1.03%) 77.20% (↑ 0.98%) 66.30% (↓ 1.89%) 68.07% (↓ 1.52%) 64.99% (↓ 0.53%)
30% 63.38% (↓ 2.11%) 41.47% (↑ 2.31%) 74.81% (↑ 1.47%) 66.06% (↓ 0.16%) 65.64% (↓ 0.58%) 62.27% (↑ 0.25%)
40% 58.42% (↓ 1.34%) 38.23% (↑ 3.50%) 72.03% (↑ 1.68%) 63.61% (↓ 0.79%) 59.55% (↑ 0.92%) 58.34% (↑ 0.76%)

While MoDeGPT does not require recovery fine-tuning, in this section, we explore how RFT can
further enhance performance. In Table 20, we present recovery fine-tuning results for our method
on LLAMA-2 7B, following the same tuning setting as SliceGPT (Ashkboos et al., 2024). We use a
calibration set of 128 random samples, each 2048 in length, from the Alpaca dataset, and a recovery
fine-tuning set of 8000 samples, each 1024 in length, employing LoRA (Hu et al., 2021). We use
SliceGPT’s hyperparameters for LoRA, except for the learning rate, which is set to 5 × 10−5. The
other primary hyperparameters used are lora_alpha = 10, lora_r = 32, lora_dropout = 0.05,
and batch_size = 3. We evaluate two scenarios: 1) fine-tuning all linear matrices, and 2) tuning
only the MLP.

The green and red indicators in the table denote performance increases or decreases relative to the
compressed model before fine-tuning. Notably, tuning exclusively within the MLP consistently
yields better performance than tuning all parameters. Since we followed the same tuning setting as

27

Published as a conference paper at ICLR 2025

SliceGPT (Ashkboos et al., 2024) for a fair comparison, it is likely that better configurations exist
for our method, potentially enhancing performance further. Another key observation is that despite
fine-tuning using 40 times more data than calibration and employing backpropagation, MoDeGPT
without RFT achieves very similar performance. The percentage difference is minimal, suggesting
that using local reconstruction error as the objective is an effective and efficient method with our
compression technique.

The table demonstrates that fine-tuning can slightly improve performance for higher compression
rates, with the most significant increase observed in the ARC-c task. Evaluating the full benefits of
fine-tuning remains a subject for future research.

B.7 EXPERIMENTS WITH EQUAL COMPUTATIONAL BUDGETS

Table 21: Compression comparisons with approximately equal computational budgets.

Method Time (Compress / Fine-tune) PPL ARC-e ARC-c PIQA WinoG. HellaS. Average.

SliceGPT 26m / 4h05m 2.59 (3.52) 56.82 (56.69) 38.48 (34.47) 71.82 (68.55) 59.83 (59.75) 59.30 (48.69) 57.26 (53.63)

SLEB 9m / 4h50m 2.67 (4.36) 52.36 (52.36) 34.04 (31.91) 71.00 (69.58) 59.98 (58.17) 60.16 (58.28) 55.51 (54.06)

MoDeGPT 4h09m / 31m 2.70 (3.08) 67.42 (65.49) 40.96 (39.16) 74.10 (73.34) 65.98 (65.49) 66.57 (65.90) 63.01 (62.02)

We study the combined effect of compression and recovery fine-tuning for different approaches
with equal computational cost, as shown in Table 21 . In this experiment, we compress LLAMA-2
7B with a 30% compression rate on a single A100 GPU. The model is first compressed using 128
samples from the Alpaca dataset for calibration, followed by fine-tuning with LoRA on 5k Alpaca
samples. For fair comparisons, we fix the hyperparameters as lora_alpha = 10, lora_r = 32,
and lora_dropout = 0.05. We compare MoDeGPT against SliceGPT and SLEB, which serve as
baselines for decomposition-based and layer-pruning-based approaches, respectively.

Since the methods vary in compression time, we adjust the fine-tuning epochs to equalize the total
time spent across methods. The table reports the time spent in each phase for different methods.
Notably, MoDeGPT has the longest compression time and is therefore fine-tuned for only one epoch.
The table presents zero-shot accuracies both before and after fine-tuning (after/before).

MoDeGPT achieves the highest zero-shot performance across all tasks, excluding perplexity, both
before and after fine-tuning, with its performance advantage primarily arising from the compres-
sion phase. The superior perplexity but lower zero-shot performance of SliceGPT compared to
MoDeGPT underscores the pivotal role of the compression stage, suggesting that an excessive com-
putational focus on fine-tuning may lead to overfitting.

Lastly, SLEB, despite having the longest fine-tuning time, exhibits smaller improvements than
SliceGPT in zero-shot performances, further emphasizing the pivotal role of the compression phase
in determining the final model’s performance. Moreover, MoDeGPT outperforms the baselines even
without fine-tuning, demonstrating its effectiveness during the compression stage.

B.8 COMBINATION OF MODEGPT AND SLICEGPT

MoDeGPT is orthogonal to SliceGPT as it reduces dimensions from different sides of a weight ma-
trix. Figures 1 (c) and (d) provide an illustrative comparison. Combining SliceGPT with MoDeGPT
seems to be a natural extension. To demonstrate their compatibility, we experimented with various
configurations as shown in Table 22. The numbers x-y-z in the leftmost column indicate x% slicing
rate of SliceGPT, and y% and z% compression rates of MoDeGPT in MLP and MHA modules,
respectively. The two rightmost columns test the use of sparsity allocation in the MLP and/or MHA
modules.

Notably, our tests show that applying sparsity allocation with SliceGPT barely improves perfor-
mance, consistent with the findings in the SliceGPT paper (Ashkboos et al., 2024). Therefore, we
do not use sparsity allocation for slicing. Compared to the results in Table 3, the combination of
SliceGPT and MoDeGPT does not improve perplexity over pure MoDeGPT. We attribute this to
two points: 1. the significant overhead induced by slicing: to achieve a target compression rate, the

28

Published as a conference paper at ICLR 2025

Table 22: Perplexity performance of SliceGPT + MoDeGPT on LLAMA-2 7B

Slice-MLP-MHA
(%-%-%)

Compression
Rate

WikiText2
Perplexity ↓

MLP Sparsity
Allocation

MHA Sparsity
Allocation

Dense 0% 5.12 - -

20-20-0 19.65% 7.38 ✓ ✗

20-20-0 19.65% 7.33 ✗ ✗

25-25-0 27.38% 8.42 ✓ ✗

30-30-0 34.93% 9.99 ✓ ✗

20-25-0 22.25% 7.70 ✗ ✗

15-30-0 11.77% 7.27 ✗ ✗

10-30-0 9.03% 6.83 ✗ ✗

10-25-25 28.00% 7.31 ✗ ✗

10-30-25 30.91% 7.78 ✗ ✗

20-20-20 29.18% 8.00 ✗ ✗

model must slice at a higher rate. 2. the slicing and compression ratio might not be optimal, and it
might changes from layer to layer.

Although we did not make exhaustive search, we believe there is an efficient sparsity allocation for
slicing, and better tuning of the slicing and compression ratios could enhance the performance of
the combined method. We leave this as a topic for future research.

B.9 COMPRESSION TIME AND MEMORY CONSUMPTION

Table 23: Compression computations for calibration set of size 128 in WikiText2.

Model MoDeGPT SliceGPT Ashkboos et al. (2024) LLM surgeon van der Ouderaa et al. (2023)
Time GPUs Time GPUs Time GPUs

LLAMA-2 7B 4h09m 1xA100 80GB 0h26m 1xA100 80GB 17h08m 4xH100 80GB

LLAMA-2 13B 8h26m 1xA100 80GB 0h45m 1xA100 80GB 1d9h26m 8xH100 80GB

Table 24: Memory consumption and compute time of 30% compression for blocks in transformer layers tested
on a single A100 80GB GPU.

Block LLAMA-7B (13.81 GiB) LLAMA-13B (25.92 GiB)
Peak Memory (GiB) GPU hours Peak Memory (GiB) GPU hours

MHA 15.54 (+11.5%) 2h52m 28.60 (+9.4%) 5h04m
MLP 23.33 (+68.9%) 1h13m 41.40 (+54.1%) 3h22m

In Table 23, we compare the compression times of MoDeGPT, SliceGPT, and LLM Surgeon. Since
MoDeGPT and SliceGPT do not leverage gradients, they can compress a model of size 13B us-
ing a single GPU. From previous tables, we observe that while our compute time is longer than

29

Published as a conference paper at ICLR 2025

Table 25: Downstream zero-shot task performance of 30% MoDeGPT on LLAMA-2 7B for varying global
rank temperature.

Method ε Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

Dense - 5.12 74.58% 46.25% 79.11% 69.06% 75.99% 69.00%

MoDeGPT (ours)

0.075 7.44 59.72% 37.29% 68.50% 65.90% 61.55% 58.59%
0.1 7.46 63.43% 39.42% 70.78% 65.59% 63.24% 60.49%
0.5 7.03 56.14% 32.34% 67.68% 64.88% 58.01% 55.81%
1 7.25 53.20% 31.06% 66.16% 64.17% 56.66% 54.25%
2 7.35 53.62% 31.06% 65.83% 63.14% 55.98% 53.93%
∞ 9.06 52.36% 30.80% 65.18% 63.69% 55.31% 53.47%

SliceGPT, MoDeGPT achieves significantly better performance. Conversely, our computation time
is considerably shorter than LLM Surgeon, yet we achieve comparable performance. Even when
equating 1 H100 to 1 A100, our method can save up to 97% of computations. In Table 24, we report
the peak GPU memory usage when compressing LLAMA-2 7B and 13B models on a single A100
GPU. The primary source of additional memory overhead, beyond the model itself, is the storage
of intermediate activations required for correlation estimation in the MLP. The table shows that this
overhead ranges from approximately 50% to 70%. However, for the 13B model, the peak memory
usage remains under 50% of the total GPU memory capacity.

B.10 GLOBAL SPARSITY ALLOCATION

In Table 25, we report the perplexity and zero-shot performance as we vary the temperature pa-
rameter in the global sparsity allocation. Initially, the uniform strategy, corresponding to an infinite
temperature, performs significantly worse than our sparsity allocation strategy.

Layer IDLayer ID

Sp
ar

is
ty

Sp
ar

is
ty

M
ea

n
A

cc
ur

ac
y

 εLayer ID

Im
po

rta
nc

e
Sc

or
e

Pe
rp

le
xi

ty

0.075 0.1 0.5 1 2

Figure 8: Dynamic sparsity allocation across layers for LLAMA-2 7B.

For ε = 0.075, this results in extreme sparsity, as shown in Figure 8, and performance begins to
drop. For ε ≥ 1, the allocation becomes too similar to the uniform strategy. In practice, we find
that the ε value that yields a minimum layer allocation around 20% performs exceptionally well.
In Figure 8, left and middle panels, we also observe how the allocation shape for different ε values
corresponds to the importance score in the left figure. For LLMs, both OPT and LLAMA show that
the first and last few layers have significantly higher importance and, therefore, should allocate less
sparsity, as depicted in the figure. On the right of Figure 8, we also show the allocation for different
compression levels. The shape remains similar across different levels using the same ε. For higher
compression rates, the maximum layer sparsity also increases, suggesting that we should increase ε
to avoid extreme sparsity. We report the ranks of the QKV projection matrices across various layers
of compressed LLAMA-2 7B and 70B models, as determined by the global sparsity allocation used
in this study (equation 11), with their distributions visualized in Figure 10.

The ranks were computed using equation 11 with 128 samples from WikiText-2 and ε values of
0.1 and 0.02 for the 7B and 70B models, respectively. These ε values were selected to ensure the
maximum layer sparsity remains around 70–80%, as a 90% sparsity level is often too extreme, based
on our experience from experiments.

Interestingly, we found that the rank distributions exhibit similar shapes across the models, suggest-
ing a deep connection between the allocation strategy and the LLAMA-2 family architectures.

30

Published as a conference paper at ICLR 2025

Table 26: Layer ranks for various models.

Model Layer Rank
LLAMA-2 7B 3989, 3886, 3813, 3889, 3750, 3616, 3598, 3612

3625, 3593, 3546, 3660, 3654, 3568, 3575, 3544
3453, 3241, 2997, 2703, 2413, 1741, 1620, 1217
1129, 1254, 1054, 741, 1203, 1363, 2640, 4060

LLAMA-2 70B 8192, 8183, 8186, 8169, 8143, 8103, 8130, 8088
8134, 7983, 7908, 7873, 7957, 8018, 7932, 7968
7772, 8000, 7858, 7784, 7486, 7419, 7079, 7016
7090, 7596, 7214, 6784, 6620, 6556, 6204, 6384
6366, 6762, 6719, 6411, 6472, 6356, 6651, 6918
7138, 6839, 6872, 6112, 6620, 5467, 5042, 5328
4402, 3940, 3563, 3745, 3632, 3076, 2814, 3051
2814, 2622, 3025, 2395, 2189, 2128, 2158, 2128
2248, 2037, 2760, 2947, 2453, 3051, 3152, 3609
3446, 3540, 4148, 4694, 5548, 5994, 7355, 8187

Global Allocation (Ours) OWL

Figure 9: Layer sparsity distribution comparisons.

Table 27: Global sparsity allocation comparisons.

Method Sparsity Mean Sparsity Std Perplexity ↓ PIQA HellaS. WinoG. ARC-E ARC-C Average

Uniform Allocation 30% 0% 9.06 65.18 55.31 63.69 52.36 30.80 53.47

Global Sparsity Allocation (Ours) 30% 26.72% 7.51 71.40 63.26 67.32 63.26 38.73 60.79

OWL Yin et al. (2023) 30% 4.46% 6.9 68.17 59.12 65.67 56.9 33.36 56.64

We also compare our global allocation strategy in equation 11 with a state-of-the-art alternative,
OWL (Yin et al., 2023), as shown in Table 27. In this experiment, we compress LLAMA-2 7B using
MoDeGPT with different global sparsity strategies. Despite our method having a higher perplexity,
it consistently achieves better zero-shot performance across all reported tasks. Figure 9 visualizes
the layer sparsity distributions of the two approaches. Unlike OWL, our distribution exhibits much
greater heterogeneity across layers, showing less sparsity in the first and last layers. This figure
suggests that heterogeneity may play a crucial role in structured compression.

B.11 REFINED SPARSITY ALLOCATION: DIFFERENTIATING MLP AND MHA BLOCKS WITH
FINER-GRAINED SCORES

In this subsection, we refined our global sparsity allocation strategy by introducing different sparsity
levels for the MLP and MHA blocks within each transformer layer. A similar approach to layer
pruning, which employs distinct sparsity levels for MLP and MHA, has been explored by Finercut
(Zhang et al., 2024). This strategic refinement has significantly improved both compression accuracy
and inference throughput, particularly enhancing inference speed. Notably, in our 30% compression
experiments on LLAMA-2 7B, as illustrated in Table 28, we achieved the highest throughput among

31

Published as a conference paper at ICLR 2025

Figure 10: Layer Ranks of LLAMA-2 7B and 70B.

all baselines, surpassing even dedicated layer pruning strategies, while maintaining exceptional ac-
curacy.

Instead of computing a single score per layer, we now calculate two distinct scores—one for MLP
and another for MHA—applying the correlation methodology outlined in Section 3.3. This dual-
score system enables a more nuanced sparsity allocation that aligns better with the unique com-
putational and structural characteristics of each block type, thereby optimizing performance with-
out incurring significant computational overhead.The updated global sparsity allocation in Equation
equation 10 is as follows:

max
ϕ1:L

L∑
i=1

∑
j∈mlp,mha

wj

(
sji (1− ϕj

i) + εH(ϕi)
)
,

such that
1

L(wmlp + wmha)

L∑
i=1

∑
j∈mlp,mha

wjϕ
j
i = ϕavg, 0 ≤ ϕj

i ≤ 1, (42)

where ϕj
i and sji represent the sparsity and score for the j-th block in layer i , respectively, and

the weights wmlp = 2, wmha = 1 are applied to preserve the average sparsity, consistent with the
parameter size ratio in transformer blocks. The solution has a similar closed-form expression:

ϕ = L(wmlp + wmha)ϕavg × Softmax(−w ⊙ s/ε). (43)
Importantly, these updates come with minimal computational overhead. Although we now calcu-
late two scores per layer (instead of one), the computational cost is negligible as score calculation
remains lightweight and does not increase compression time.

Table 28: Enhanced Compression through Nonuniform Sparsity in MLP and MHA Blocks.

Method MLP Sparsity Mean MHA Sparsity Mean ↑ Throughput (token/s) PIQA HellaS. WinoG. ARC-e ARC-c ↑Average

SLEB Song et al. (2024) 30.0% 30.0% 2539.39 (1.49×) 69.58 58.28 58.17 52.36 31.91 54.06

SliceGPT Ashkboos et al. (2024) 30.0% 30.0% 1815.67 (1.07×) 68.55 48.69 59.75 56.69 34.47 53.63

MoDeGPT (uniform module sparsity) 30.0% 30.0% 2490.15 (1.46×) 73.34 65.90 66.22 65.49 39.16 62.02

MoDeGPT (nonuniform module sparsity) 26.8% 36.4% 2722.98 (1.60×) 73.78 65.14 68.03 66.79 38.40 62.43

B.12 ABLATION STUDY ON COMPRESSION IN EACH MODULE

Impact of Module-Wise Compression on Perplexity. Table 29 presents the perplexity changes
in the LLAMA-2 7B model when compressing each module individually. The rightmost column
shows the normalized slope of perplexity change relative to the parameter size in each module. The
results reveal that the MLP module has the most significant impact on overall performance, likely
due to its containing 66% of the model’s parameters. On the other hand, the slope indicates that
the compression algorithms for Type I and Type III modules perform comparably, while Type II
performs the worst. This finding aligns with our theoretical results, which suggest that the recon-
struction bounds are weakest in Type III. From a decomposition perspective, the CR approximation
is the most coarse-grained, leading to the least effective compression outcomes.

32

Published as a conference paper at ICLR 2025

Table 29: Perplexity of compressed LLAMA-2 7B in each module.

Module
Compression Rate 0% 10% 20% 30% 40% 50% Normalized Slope

Type I: MLP 5.12 5.34 5.68 6.71 7.12 8.24 0.094
Type II: Query, Key 5.12 5.14 5.23 5.43 5.58 6.33 0.121

Type III: Value, Output 5.12 5.16 5.24 5.37 5.62 5.92 0.095

Table 31: Heterogeneous sparsity allocation in modules.

Sparsity (MLP, MHA) Perplexity ↓ ARC-e ARC-c PIQA WinoGrande HellaSwag Average

30%, 30% 7.51 65.49% 39.16% 73.34% 66.22% 65.90% 62.02%

35%, 20% 7.79 60.52% 38.48% 68.82% 65.98% 61.34% 59.03%

25%, 40% 7.14 57.03% 35.15% 70.89% 65.27% 61.63% 57.99%

Table 30: Module-Wise Throughputs of 30% Compressed
LLAMA-2 7B

Module Throughputs (tokens/s)
Type I: MLP 1585

Type II: Query, Key 2136
Type III: Value, Output 2121

Impact of Module-Wise Compression
on Throughput. Table 30 presents the
throughputs for the 30% compressed
LLAMA-2 7B across different modules.
The results indicate that the compression
yields similar speedups for both Type-II
and Type-III modules. This sharp differ-
ence in speedups highlights the potential for uniform compression across modules, which we leave
as a direction for future research.

Heterogeneous Sparsity Across Modules In our work, we apply nonuniform sparsity across lay-
ers while maintaining uniform sparsity across modules within the same layer. To investigate whether
heterogeneity in module sparsity can enhance performance, we conducted an experiment compress-
ing LLAMA-2 7B by 30%, with varying sparsity levels in the MLP and MHA blocks. The sparsity
levels were adjusted to ensure the average compression rate remained at 30%.

We tested three configurations: equal sparsity for MLP and MHA, higher sparsity in MLP, and
higher sparsity in MHA. The results are presented in Table 31 . From the table, we observe that
while lower sparsity in MLP yields the best perplexity, it results in the worst zero-shot performance
among the three configurations. Conversely, uniform sparsity across modules outperforms the other
configurations in all tasks, while high and low MLP sparsity each demonstrate strengths in specific
tasks compared to one another. These findings underscore the sensitivity of compression perfor-
mance to variations in module sparsity, suggesting that a more sophisticated allocation method may
be necessary to surpass the performance of uniform allocation.

B.13 SCALABILITY TO LARGER MODELS

While our work is tested on a single GPU, it can be extended to multi-GPU setups to compress
larger models, such as those with 70B parameters. To apply our method to larger models, the model
must fit within the GPU memory to perform the forward pass. As shown in Table 24 , memory
utilization is less than twice the model size, so approximately double the model’s size in GPU
memory is expected for running our method. In our compression process, the most computationally
intensive part is the compression of the value-output module, as highlighted in Table 7. Since the
computational complexity of this module scales cubically with the hidden dimension (due to the
SVD in the value-output compression) and is proportional to the number of layers being compressed,
the time required to compress a 70B model using multi-GPUs can be estimated using the following

33

Published as a conference paper at ICLR 2025

formula:

Compute Time (70B)

= Compute Time (7B) ×
(

hidden dim(70B)
hidden dim(7B)

)3

× layer num(70B)
layer num(7B)

= 4 hours × (8192/4096)3 × (80/32) = 80 hours

For a sanity check, we applied the same formula to estimate the compression time for a 13B model
and obtained an estimate of 9 hours, which aligns closely with our empirical result of 8 hours and
26 minutes, as shown in Table 7.

B.14 HIGH COMPRESSION RATE EXPERIMENTS

Table 32: Perplexity of LLAMA-2 7B Across 10% to 80% Compressions

Compression Rate 0% 10% 20% 30% 40% 50% 60% 70% 80%
Perplexity 5.12 5.48 6.16 7.51 8.41 11.88 26.59 84.22 245.84

We analyzed the perplexity of LLAMA-2 7B at high compression rates, using 128 samples from
WikiText2 for calibration. We observed a significant breakdown point at 50% compression, where
the perplexity increased sharply from 41% to 123%. This indicates the compression limit of our
method.

B.15 SENSITIVITY ANALYSIS OF DFFERENT CALIBRATION SETS

In Table 33, we evaluate in-domain and out-of-domain perplexity using different calibration sets:
WikiText2, PTB (Marcus et al., 1993), and Alpaca. Our results indicate that perplexity is minimized
when the model is calibrated with the same dataset as the test set. Notably, when calibrated with
different datasets, the results on Alpaca demonstrate the most consistent performance with the least
variance, while PTB shows the highest variance. Nevertheless, calibration with PTB provides the
most robust results across all three datasets.

B.16 ADDITIONAL SPEEDUP EXPERIMENTS

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

MoDeGPTSliceGPT Dense

Compression Rate
batch size = 64 batch size = 128 batch size = 256 batch size = 512

x0.82

x1.24

x1.42
x1.45 x1.52

x1.06

x1.00
x1.03 x1.05

x0.96

x0.69
x0.76 x0.76

x0.88

x0.97

Figure 11: Throughput benchmarks of compressed LLAMA-2 7B on a single A100 80GB GPU.

Table 34 reports the throughputs and latency on fast and slow parallel computing environments
using NVIDIA A100 and Intel(R) Xeon(R) CPU E5-2670 v2 @ 2.50 GHz with 20 cores. The
results indicate that the reduction in computational complexity is proportional to the compression
percentage. While the speedup for single-batch inference is comparable to that of the original model,
we observe significant improvements in speedup for multi-batch inference on the GPU and on the
CPU. Therefore, our method performs optimally when the parallel computing capabilities of the
environment are fully utilized.

In Figure 11, we explored various batch sizes, comparing the throughput of 30% compressed
MoDeGPT with 30% sliced SliceGPT (Ashkboos et al., 2024) and the dense model. We found
that throughput surpassed that of the dense model for batch sizes over 64. Particularly, at batch

34

Published as a conference paper at ICLR 2025

Table 33: Perplexity results under different calibration datasets.

Calibration Set
Test Set WikiText2 ↓ PTB ↓ Alpaca ↓

WikiText2 6.16 27.69 (+22%) 3.12 (+11%)
PTB 6.99 (+13%) 22.75 3.14 (+12%)

Alpaca 7.64 (+24%) 40.71 (+79%) 2.80

Table 34: Inference speed and computational complexity of the pruned LLAMA-2 7B model.

Method # Parameter
(B)

Memory
(GiB)

Compute Complexity
(GMACs) ↓

Latency CPU
(s/token) ↓

Latency GPU
(s/token) ↓

256-Batch Throughputs
(tokens/s) ↑

Dense 6.74 12.92 425.12 (1.00×) 32.41 (1.00×) 0.035 (1.00×) 1700 (1.00×)

20% SliceGPT 5.45 10.45 339.04 (0.80×) 26.46 (0.82×) 0.037 (1.06×) 1802 (1.06×)
20% MoDeGPT 5.44 10.43 339.34 (0.80×) 22.66 (0.70×) 0.034 (0.97×) 2168 (1.28×)

30% SliceGPT 4.73 9.07 298.36 (0.70×) 25.28 (0.78×) 0.037 (1.06×) 1830 (1.08×)
30% MoDeGPT 4.79 9.07 297.91 (0.70×) 19.20 (0.59×) 0.034 (0.97×) 2521 (1.48×)

40% SliceGPT 4.11 7.88 262.12 (0.62×) 22.68 (0.70×) 0.037 (1.06×) 1839 (1.08×)
40% MoDeGPT 4.14 7.94 256.34 (0.60×) 18.57 (0.57×) 0.036 (1.03×) 2568 (1.51×)

Dense

LoCoGPT

Th
ro

ug
hp

ut
 (T

ok
en

s/
s)

Sparsity x0.96

x1.29

x1.46
x1.50

x1.58

x1.10
x1.03 x1.07 x1.09

x0.99

x0.72 x0.79 x0.79

x0.91
x1.00

Transform (eq.11)

82%

Score

Figure 12: Speedup vs. compression.

sizes exceeding 256, MoDeGPT’s throughput was 1.46 times greater than the dense model, while
SliceGPT only achieved 1.07 times the throughput. MoDeGPT’s increased throughput stems from
its reduced matrix size and avoidance of extra adapters in residual paths.

Finally, we benchmark throughput. We set the sequence length to 256 and recorded the average
generation time of LLAMA-2 7B on a single A100 GPU with batch size 256. In Figure 12, SVD
exhibits lower throughput than the uncompressed model due to the doubled amount of matrices
in its decomposed form which makes computation less parallelizable. SliceGPT, while achieving
greater throughput, sees less than a 10% speedup, hindered by additional computations in residual
paths. In contrast, MoDeGPT achieves non-trivial speedups that increase with compression rates; at
50% compression, it achieves a 58% increase in throughput, significantly surpassing both SVD and
SliceGPT. However, at compression rates below 10%, throughput drops below that of the uncom-
pressed model. This decrease is attributed to the implementation of the compressed Type-II module,
which needs an optimized kernel to better parallelize the computation of the pruned attention heads.
We leave the implementation of such an optimized computation kernel as future work to address the
corner case.

C LIMITATIONS AND BROADER IMPACTS

Intrinsic Bias Our experiments on zero-shot tasks show that MoDeGPT excels in certain zero-
shot tasks while underperforming in others, indicating an intrinsic bias toward specific tasks. Our

35

Published as a conference paper at ICLR 2025

current method does not offer a definitive solution to eliminate this bias. Addressing bias removal
will be a critical area for future research.

Overfitting the Reconstruction Loss While MoDeGPT excels in zero-shot tasks by minimizing
local reconstruction error, we noted instances where compressed models, despite achieving lower
perplexity, underperformed in zero-shot tasks. This discrepancy may stem from the models overfit-
ting local reconstructions to calibration data. Addressing this overfitting remains a challenge for our
method.

Broader Impacts The introduction of Modular Decomposition (MoDeGPT) significantly impacts
the ethical deployment and broader adoption of Large Language Models (LLMs). By minimizing
computational demands, MoDeGPT enables effective deployment on resource-constrained devices,
democratizing access to cutting-edge AI and potentially reducing the technological divide between
large and small entities.

Additionally, MoDeGPT ’s efficiency in using computational resources can decrease energy con-
sumption during AI training and inference, promoting sustainable AI practices and reducing the
environmental impact of large-scale computations. However, the potential for increased misuse of
AI technologies, such as surveillance and disinformation, highlights the need for robust governance
and ethical frameworks.

Ultimately, by maintaining high accuracy while reducing model size, MoDeGPT ensures the reli-
ability of AI applications in critical domains such as healthcare. The development of MoDeGPT
thus promises greater AI accessibility and sustainability, but it also introduces new challenges in
governance and ethical technology use.

36

	Introduction
	Background and Related Work
	Related Works
	Transformer architecture
	Low-rank matrix approximation

	MoDeGPT
	Modular Reconstruction Objective
	Algorithms
	Global Sparsity Allocation

	Experiments
	Setups
	Generation Performance
	Zero-shot performance
	Computation and Throughput
	Ablation study

	Conclusion
	Proofs
	Proof of Theorem 1 and Proposition 1: MLP Compression with Nyström Approximation
	Proof of Theorem 2 and Proposition 2: Key-Query Compression with CR Approximation
	Proof of Theorem 3 and Proposition 3: Value-Output Compression with SVD
	Proof of Theorem 4: Global Sparsity Allocation

	Additional Experiments
	Modified Algorithms for Grouped Query Attention
	Implementation Details
	Additional Generation and Zero-Shot Experiments
	Additional Baseline Comparisons: Feature-Mimic and SVD Approaches
	Additional Baseline Comparisons: Unstructured/Sem-Structured Compression
	Recovery Fine-tuning
	Experiments with Equal Computational Budgets
	Combination of MoDeGPT and SliceGPT
	Compression Time and Memory Consumption
	Global Sparsity Allocation
	Refined Sparsity Allocation: Differentiating MLP and MHA Blocks with Finer-Grained Scores
	Ablation Study on Compression in Each Module
	Scalability to Larger Models
	High Compression Rate Experiments
	Sensitivity Analysis of Dfferent Calibration Sets
	Additional Speedup Experiments

	Limitations and Broader Impacts

