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This appendix provides the following supplementary information: 762
• Section A: A detailed explanation of the SAN-based discriminator as an alternative to GAN mentioned in Section 3.2 763
• Section B: An in-depth description of the editing method introduced in Section 3.4 764
• Section C: Details of the experimental settings used in Sections 4 765
• Section D: Definitions of evaluation metrics for the text-to-motion task 766
• Section E: Additional experiments on the performance of the proposed method 767

A. SAN-based discriminator 768

Takida et al. [35] incorporated a sliced optimal transport perspective into a general GAN and established a new framework, 769
slicing adversarial network (SAN). Following this work, we first decompose the discriminator fϕ into the last linear layer 770
and the remaining neural part, denoted as w ∈ Rdw and hφ : RN×L → Rdw with dw ∈ N, respectively. This decomposition 771
provides an interpretation of the discriminator: the neural function hφ maps motion sequences to non-linear features, and 772
then the linear layer w projects them into scalars. As a preliminary step for applying SAN to the adversarial training in 773
Section 3.2.1, we normalize w using its norm, resulting in ω = w/∥w∥2, which indicates the direction of the projecting. 774
Now, the discriminator is represented in the form of an inner product as fϕ(x) = ω⊤hφ(x), and its parameter isϕ = {φ,ω}. 775

The prior work has shown that the discriminator obtained from the optimal solution of ω in the hinge loss (5) does not 776
guarantee gradients that make the generated distribution close to the data distribution. To address this issue, we adopt the 777
SAN maximization problem instead of Equation (5). Specifically, we optimize the neural part φ with the original hinge loss, 778
while applying the Wasserstein GAN loss [1] to the direction ω. The modified maximization objective is formulated as 779

LSAN(ϕ;ψ,η,x) = LGAN({φ,ω−};ψ,η,x) + ω⊤ (
hφ−(x)− Eqη(z|x)[hφ−(gψ(z))]

)
, (12) 780

where (·)− indicates a stop gradient operator. The second term in Equation (12) induces the direction that best discriminates 781
between the real and generated sample sets in the feature space. We employ the same minimization objective as defined in 782
Equation (6). 783

B. Editing procedure on guided generation 784

In Algorithm 1, we show the specific procedure for guided generation described in Section 3.4. Note that we apply a time- 785
travel technique to the update rule in Section 3.4 as in [14, 25, 38, 42] to achieve better editing results. This technique adds 786
noise after each gradient descent step to implicitly perform a multi-step optimization of minimizing the distance measuring 787
function L(·,y) and lead to an improvement in the editing quality. 788

C. Implementation Details 789

Training setup for stage 1 model: During the training, motion sequences are segmented into lengths of L = 64. We use 790
AdamW optimizer and batch size of 128. The hyperparameters in Eq. (4) and (6) are set as λact = 1.0, λreg = 1.0×10−4, and 791
λadv = 1.0× 10−3. Our model {qη, gψ, fψ} are trained with a simple multi-step learning late, the first 10,000 iterations with 792
a learning rate of 2.0 × 10−4, and latter 5,000 with a learning rate of 2.0 × 10−5 in the case of HumanML3D dataset [12]. 793
Note that in Section E, we also conducted training and evaluation on a different dataset, the KIT-ML dataset [30]. For this 794
dataset, the model was trained for the first 10,000 iterations with a learning rate of 5.0×10−5, followed by an additional 5,000 795
iterations with a reduced learning rate of 5.0 × 10−6. In addition, we replace the reconstruction loss in (4) with smooth ℓ1 796
loss (known as the special case of Huber loss) function and introduce a position enhancement term, following the technique 797
in [43]. 798

Training setup for stage 2 model: During the training, we use the AdamW optimizer with a batch size of 64. The model 799
ϵθ is trained for 10,000 epochs with a cosine annealing learning rate schedule starting at 1.0 × 10−4, including a warm-up 800
phase. For inference, we adopt DDIM with 50 sampling steps and employ a trailing strategy. The classifier-free guidance 801
scale s in Eq. (17) is set to s = 11 for HumanML3D and s = 7 for the KIT-ML dataset. Notably, we observed in Section E 802
that the performance is significantly influenced by the scale s. 803

D. Evaluation metrics details 804

We provide more details of evaluation metrics in Section 4.1. We use five metrics to quantitatively evaluate text-to-motion 805
models. These metrics are calculated based on motion and text features extracted with pre-trained networks. More specifi- 806
cally, we utilize the motion encoder and text encoder provided in [12]. We denote ground-truth motion features, generated 807

11



CVPR
#*****

CVPR
#*****

CVPR 2025 Submission #*****. CONFIDENTIAL REVIEW COPY. DO NOT DISTRIBUTE.

Algorithm 1 Guided Generation for Motion Editing

Require: motion control signal y, output of text encoder τ(c), estimator in latent diffusion ϵθ(·, t, τ(c)), distance measuring
function L(·;y), pre-defined parameter ᾱt, time-dependent step-size ρt, and the repeat times of time-travel of each step
{r1, · · · , rT }.

1: zT ∼ N (0, I)
2: for t = T, · · · , 1 do
3: for i = rt, · · · , 1 do
4: ϵt ∼ N (0, I)
5: z0|t =

1√
ᾱt
(zt −

√
1− ᾱtϵθ(zt, t, τ(c)))

6: z0|t = z0|t − ρt∇z0|tLMotion(gψ(z0|t);y)

7: zt−1 =
√
ᾱtz0|t +

√
1− ᾱt − σ2

t ϵθ(zt, t, τ(c)) + σtϵt
8: if i > 1 then
9: ϵ′t ∼ N (0, I)

10: zt =
√
αtzt−1 +

√
1− αtϵ

′
t

11: end if
12: end for
13: end for
14: return gψ(z0) ▷ edited motion generation sample

motion features, and text features as fgt = EM(xgt) ∈ R512, fpred = EM(xpred) ∈ R512, and ftext = ET(c) ∈ R512, where808
EM(·) and ET(·) represent the motion encoder and the text encoder, respectively. We explain the five metrics below.809

R-Precision: R-Precision evaluates semantic alignment between input text and generated motion in a sample-wise man-810
ner. Given one motion sequence and 32 text descriptions (one ground truth and thirty-one randomly selected mismatched811
descriptions), we rank the Euclidean distances between the motion and text embeddings. Then, we compute the average812
accuracy at top-1, top-2, and top-3 places.813

Fréchet Inception Distance (FID): FID evaluates the overall motion quality by measuring the distributional difference814
between the motion features of the generated motions and those of real motions. We obtain FID by815

FID := ∥µgt − µpred∥22 − tr(Σgt +Σpred − (2ΣgtΣpred)
1
2 ), (13)816

where µgt and µpred are the mean of fgt and fpred, respectively, Σgt and Σpred are their corresponding covariance matrices, and817
tr denotes the trace of a matrix.818

Multi-modal distance (MMDist): MMDist gauges sample-wise semantic alignment between input text and generated819
motion as well. MMDist is computed as the average Euclidean distance between the motion feature of each generated820
motion and the text feature of its corresponding description in the test set. Precisely, given N randomly generated samples,821
it computes the average Euclidean distance between each text feature and its corresponding generated motion feature:822

MMDist :=
1

N

N∑
i=1

∥fpred,i − ftext,i∥22, (14)823

where fpred,i and ftext,i are the features of the i-th text-motion pair.824
Diversity: Diversity measures the variance of the generated motions across the test set. We randomly sample 2Sd motions825

and extract motion features {fpred,1, ..., fpred,2Sd
} from the motions. Then, those motion features are grouped into the same826

size of two subsets, {v1, ..., vSd
} and {v′1, ..., v′Sd

}. The Diversity for this set of motions is defined as827

Diversity :=
1

Sd

Sd∑
i=1

∥vi − v′i∥22. (15)828

Sd = 300 is used in our experiments, following previous works.829
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Multi-modality (MModality): MModality measures how much the generated motions diversify within each text descrip- 830
tion. Given a set of motions with K text descriptions, we randomly sample 2Sl motions corresponding to the k-th text 831
description and extract motion features {fpred,k,1, ..., fpred,k,2Sl

}. Then, those motion features are grouped into the same size 832
of two subsets, {vk,1, ..., vk,Sl

} and {v′k,1, ..., v′k,Sl
}. The MModality for this motion set is formalized as 833

MModality =
1

K · Sl

K∑
k=1

Sl∑
i=1

∥vk,i − v′k,i∥22. (16) 834

Sl = 10 is used in our experiments, following previous works. 835

E. Additional experiments 836

E.1. Performance comparison on the KIT-ML dataset 837

We evaluate our method not only on the HumanML3D dataset presented in Section 4.1 but also on the KIT-ML dataset [30], 838
comparing its performance against other text-to-motion generation methods. The KIT-ML dataset includes 3,911 human 839
motion sequences and 6,278 text descriptions derived from the KIT [27] and CMU [5] datasets. These data are split into 840
training, validation, and test sets with proportions of 80%, 5%, and 15%, respectively. Consistent with Section 4.1, the 841
evaluated methods are categorized into three groups: (i) those using VQ-based latent representations (discrete), (ii) those 842
employing data-space diffusion models (continuous, raw data), and (iii) those utilizing VAE-based latent representations 843
(continuous, latent). As shown in Table 5, MoLA achieves the best performance in terms of R-Precision and MMDist, 844
particularly among continuous-based methods. However, it does not outperform methods like MLD in terms of FID. Com- 845
paring this with Table 1, we observe a discrepancy in the FID trends across the two datasets, suggesting there is room for 846
improvement in this aspect of MoLA. 847

Category Method R-Precision ↑ FID ↓ MMDist ↓ Diversity→ MModality ↑Top-1 Top-2 Top-3
N/A Real motion data 0.424±.005 0.649±.006 0.779±.006 0.031±.004 2.788±.012 11.08±.097 -

Discrete

M2DM [21] 0.416±.004 0.628±.004 0.743±.004 0.515±.029 3.015±.017 11.417±.97 3.325±.37

AttT2M [47] 0.413±.006 0.632±.006 0.751±.006 0.870±.039 3.039±.021 10.96±.123 2.281±.047

T2M-GPT [43] 0.416±.006 0.627±.006 0.745±.006 0.514±.029 3.007±.029 10.921±.108 1.570±.039

MoMask [13] 0.433±.007 0.656±.005 0.781±.005 0.204±.011 2.779±.022 - 1.131±.043

DiverseMotion [24] 0.416±.005 0.637±.008 0.760±.011 0.468±.098 2.892±.041 10.873±.101 2.062±.079

MMM [29] 0.381±.005 0.590±.006 0.718±.005 0.429±.019 3.146±.019 10.633±.097 1.105±.026

ParCO [48] 0.430±.004 0.649±.007 0.772±.008 0.453±.027 2.820±.028 10.95±.094 1.245±.022

BAMM [28] 0.438±.009 0.661±.009 0.788±.005 0.183±.013 2.723±.026 11.008±.094 1.609±.065

Continuous (raw data)
MotionDiffuse [45] 0.417±.004 0.621±.004 0.739±.004 1.954±.062 2.958±.005 11.10±.143 0.730±.013

MDM [36] 0.164±.004 0.291±.004 0.396±.004 0.497±.021 9.191±.022 10.847±.109 1.907±.214

Fg-T2M [37] 0.418±.005 0.626±.004 0.745±.004 0.571±.047 3.114±.015 10.93±.083 1.019±.029

Continuous (latent)
MLD [3] 0.390±.008 0.609±.008 0.734±.007 0.404±.027 3.204±.027 10.80±.117 2.192±.071

MotionLCM [6] − − − − − − −
MoLA (ours) 0.432±.008 0.655±.008 0.770±.004 0.529±.056 2.942±.053 11.129±.158 1.789±.174

Table 5. Comparison with state-of-the-art methods on KIT-ML dataset. Note that discrete representations do not allow for training-free
motion editing; therefore, methods based on VQ-based latent representations (Discrete) are grayed out. The best scores for each metric in
the methods using VAE-based latent representations (Continuous (latent)) are highlighted in bold.

E.2. Ablation of classifier-free diffusion guidance on stage 2 848

As explained in Section 3.3, we employ a classifier-free diffusion guidance technique [15]. In training, we randomly drop 849
the condition τ(c) with a probability of 10% and train both the conditional model ϵθ(zt, t, τ(c)) and the unconditional model 850
ϵθ(zt, t,∅). In inference, the two predictions are linearly combined as follows: 851

ϵθ(zt, t, c) = s · ϵθ(zt, t, τ(c)) + (1− s) · ϵθ(zt, t,∅), (17) 852

where s is the guidance scale, and s > 1 can amplify the effect of the guidance. We investigate how the performance of our 853
method changes with different values of the hyperparameter s. From Figure 6, we observe that the best performance in FID 854
is achieved at s = 11 on the HumanML3D dataset. Consequently, we adopt s = 11 in Section 4.1. 855
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Figure 6. Evaluation sweep over guidance scale s
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