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This appendix provides the following supplementary information:
* Section A: A detailed explanation of the SAN-based discriminator as an alternative to GAN mentioned in Section 3.2
* Section B: An in-depth description of the editing method introduced in Section 3.4
 Section C: Details of the experimental settings used in Sections 4
* Section D: Definitions of evaluation metrics for the text-to-motion task
* Section E: Additional experiments on the performance of the proposed method

A. SAN-based discriminator

Takida et al. [35] incorporated a sliced optimal transport perspective into a general GAN and established a new framework,
slicing adversarial network (SAN). Following this work, we first decompose the discriminator f¢ into the last linear layer
and the remaining neural part, denoted as w € R% and hy : RN*E — R% with d,, € N, respectively. This decomposition
provides an interpretation of the discriminator: the neural function h,, maps motion sequences to non-linear features, and
then the linear layer w projects them into scalars. As a preliminary step for applying SAN to the adversarial training in
Section 3.2.1, we normalize w using its norm, resulting in w = w/||w]||2, which indicates the direction of the projecting.
Now, the discriminator is represented in the form of an inner product as f(z) = w ' h, (), and its parameter is ¢ = {¢, w}.
The prior work has shown that the discriminator obtained from the optimal solution of w in the hinge loss (5) does not
guarantee gradients that make the generated distribution close to the data distribution. To address this issue, we adopt the
SAN maximization problem instead of Equation (5). Specifically, we optimize the neural part ¢ with the original hinge loss,
while applying the Wasserstein GAN loss [1] to the direction w. The modified maximization objective is formulated as

Lsan(¢; 9.1, x) = Loan({@,w™ 14,0, @) + w ' (hg- (®) — By, (212) [P (95 (2))]) , (12)

where ()~ indicates a stop gradient operator. The second term in Equation (12) induces the direction that best discriminates
between the real and generated sample sets in the feature space. We employ the same minimization objective as defined in
Equation (6).

B. Editing procedure on guided generation

In Algorithm 1, we show the specific procedure for guided generation described in Section 3.4. Note that we apply a time-
travel technique to the update rule in Section 3.4 as in [14, 25, 38, 42] to achieve better editing results. This technique adds
noise after each gradient descent step to implicitly perform a multi-step optimization of minimizing the distance measuring
function £(-, y) and lead to an improvement in the editing quality.

C. Implementation Details

Training setup for stage 1 model: During the training, motion sequences are segmented into lengths of L = 64. We use
AdamW optimizer and batch size of 128. The hyperparameters in Eq. (4) and (6) are set as Ayt = 1.0, Aeg = 1.0 x 107, and
Aadv = 1.0 x 1073, Our model {gy,, g, fo } are trained with a simple multi-step learning late, the first 10,000 iterations with
a learning rate of 2.0 x 104, and latter 5,000 with a learning rate of 2.0 x 10~° in the case of HumanML3D dataset [12].
Note that in Section E, we also conducted training and evaluation on a different dataset, the KIT-ML dataset [30]. For this
dataset, the model was trained for the first 10,000 iterations with a learning rate of 5.0 x 1075, followed by an additional 5,000
iterations with a reduced learning rate of 5.0 x 10~°. In addition, we replace the reconstruction loss in (4) with smooth ¢;
loss (known as the special case of Huber loss) function and introduce a position enhancement term, following the technique
in [43].

Training setup for stage 2 model: During the training, we use the AdamW optimizer with a batch size of 64. The model
€p is trained for 10,000 epochs with a cosine annealing learning rate schedule starting at 1.0 x 10™4, including a warm-up
phase. For inference, we adopt DDIM with 50 sampling steps and employ a trailing strategy. The classifier-free guidance
scale s in Eq. (17) is set to s = 11 for HumanML3D and s = 7 for the KIT-ML dataset. Notably, we observed in Section E
that the performance is significantly influenced by the scale s.

D. Evaluation metrics details

We provide more details of evaluation metrics in Section 4.1. We use five metrics to quantitatively evaluate text-to-motion
models. These metrics are calculated based on motion and text features extracted with pre-trained networks. More specifi-
cally, we utilize the motion encoder and text encoder provided in [12]. We denote ground-truth motion features, generated
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Algorithm 1 Guided Generation for Motion Editing

Require: motion control signal y, output of text encoder 7(c), estimator in latent diffusion €4(+, ¢, 7(c)), distance measuring
function £(-;y), pre-defined parameter &;, time-dependent step-size p;, and the repeat times of time-travel of each step
{7“17 L. ,TT}’-

1. zp ~ N(O, I)

2: fort=1T,--- ,1do

33 fori=r---,1do
4: € ~ N(O, I)

5: Zojp = \/%(zt — V1 —ageg(zs,t,7(c)))

6 201t = 20|t — PtV zo), EMotion (93 (20/¢); Y)

7

8

9

Zt—1 = \/@tz0|t + mEg(zt,t, T(C)) + 0t€t

if 7 > 1 then
: e, ~N(0,I)
10: zZ = \/OTtthl + \/1 — OétE;’
11: end if
12:  end for
13: end for
14: return g.(zo) > edited motion generation sample

motion features, and text features as fu = Em(Ta) € R9'2, fred = Em(Tprea) € R9'2, and fi = Er(c) € RP'2, where
Em(+) and Er(+) represent the motion encoder and the text encoder, respectively. We explain the five metrics below.

R-Precision: R-Precision evaluates semantic alignment between input text and generated motion in a sample-wise man-
ner. Given one motion sequence and 32 text descriptions (one ground truth and thirty-one randomly selected mismatched
descriptions), we rank the Euclidean distances between the motion and text embeddings. Then, we compute the average
accuracy at top-1, top-2, and top-3 places.

Fréchet Inception Distance (FID): FID evaluates the overall motion quality by measuring the distributional difference
between the motion features of the generated motions and those of real motions. We obtain FID by

1
FID := Hﬂgt - Upred”% - tr(zgt + Epred - (QthEpred) 2 ), (13)

where ftg and fipreq are the mean of fy and fireq, respectively, Xy and Xpreq are their corresponding covariance matrices, and
tr denotes the trace of a matrix.

Multi-modal distance (MMDist): MMDist gauges sample-wise semantic alignment between input text and generated
motion as well. MMDist is computed as the average Euclidean distance between the motion feature of each generated
motion and the text feature of its corresponding description in the test set. Precisely, given /N randomly generated samples,
it computes the average Euclidean distance between each text feature and its corresponding generated motion feature:

N
. 1
MMDist := ﬁ Zl prred,i - ftext,i“%a (14)

where fpreq,; and fiex s are the features of the i-th text-motion pair.

Diversity: Diversity measures the variance of the generated motions across the test set. We randomly sample 2.5; motions
and extract motion features { Sored,15 -y fpred,2 s, + from the motions. Then, those motion features are grouped into the same
size of two subsets, {v1, ..., vs, } and {v], ..., v, }. The Diversity for this set of motions is defined as

Sa
1
Diversity 1= — v; — V|3 15
¥ = 55 5 =il 15)
Sq = 300 is used in our experiments, following previous works.
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Multi-modality (MModality): MModality measures how much the generated motions diversify within each text descrip-
tion. Given a set of motions with K text descriptions, we randomly sample 2.5; motions corresponding to the k-th text
description and extract motion features { fored,k, 15 -+5 fored, k,25, }. Then, those motion features are grouped into the same size
of two subsets, {vg,1, ..., Vk,s, } and {vy, 4, ..., v} g, }. The MModality for this motion set is formalized as

K S

, 1
MModality = %5 S vk — vil3. (16)
k=11=1

S; = 10 is used in our experiments, following previous works.

E. Additional experiments

E.1. Performance comparison on the KIT-ML dataset

We evaluate our method not only on the HumanML3D dataset presented in Section 4.1 but also on the KIT-ML dataset [30],
comparing its performance against other text-to-motion generation methods. The KIT-ML dataset includes 3,911 human
motion sequences and 6,278 text descriptions derived from the KIT [27] and CMU [5] datasets. These data are split into
training, validation, and test sets with proportions of 80%, 5%, and 15%, respectively. Consistent with Section 4.1, the
evaluated methods are categorized into three groups: (i) those using VQ-based latent representations (discrete), (ii) those
employing data-space diffusion models (continuous, raw data), and (iii) those utilizing VAE-based latent representations
(continuous, latent). As shown in Table 5, MoLA achieves the best performance in terms of R-Precision and MMDist,
particularly among continuous-based methods. However, it does not outperform methods like MLD in terms of FID. Com-
paring this with Table 1, we observe a discrepancy in the FID trends across the two datasets, suggesting there is room for
improvement in this aspect of MoLA.

R-Precision 1

Category Method Top-T Top-2 Top3 FID | MMDist | Diversity - MModality 1
N/A Real motion data 0.424F005 0 649F 006 (779006 ( 031F 001 2 788F 012 11 08+ 097 -
M2DM [21] 0.416%F0 0.628+001 0.743%004 0.515F929  3.015F 017 11.417%F97 3.325%37
AttT2M [47] 0.413%:006 ,632+:006 (751006 (870039 3039+ 021 10.96+123 2.981%+047
T2M-GPT [43] 0.416+-006 0.627+:006 0.745%:006 0.514%:029 3.007+029  10.921%108 1.570+-039
Discrete MoMask [13] 04335007 0,656+ 0.781F09%  0.204F 01 2.779+:022 - 1.131%:043
DiverseMotion [24]  0.416%:095  0.637+008  (.760% 01! 0.468F098  9.89oF.041 10 g73+10L 9 9G2+-079
MMM [29] 0.381%:005 0.590%-006 0.718%:005 0.429+:019 3.146F019  10.633%097 1.105+026
ParCO [48] 0.430%-004 0.649%007 (. 772%+:008 () 453+.027 9 gopE-028 (). g5+-094 1.245%:022
BAMM [28] 0.438%:009 (661 +-009 (788005 (9 183+-013  9.723+.026 17 8F-094 1.609+-065
MotionDiffuse [45]  0.417F90%1  0,621F00%  (,739F 001 1 g54F.062 9 958005 11 10+ 143 .730F 013
Continuous (raw data) MDM [36] 0.164+004  .291+004 (396004 (497021 9 191+.022 10,847+ 109 1 go7E-214
Fg-T2M [37] 0.418+:005  .626%004  (.745F004 o 571E04T 3114015 10.93+083 1.019%:029
MLD [3] 0.390%00 0.609+00 0.734F 007 0,404%027  3204F027 1080+ 7 2,192+ 071
Continuous (latent) MotionLCM [6] - — — — — — -
MoLA (ours) 0.432%:008 9 g55+:008  ( 770E-004 () 599+.056 9 9q2+-053 1] 199+.158 1 7gg+.174

Table 5. Comparison with state-of-the-art methods on KIT-ML dataset. Note that discrete representations do not allow for training-free
motion editing; therefore, methods based on VQ-based latent representations (Discrete) are grayed out. The best scores for each metric in
the methods using VAE-based latent representations (Continuous (latent)) are highlighted in bold.

E.2. Ablation of classifier-free diffusion guidance on stage 2

As explained in Section 3.3, we employ a classifier-free diffusion guidance technique [15]. In training, we randomly drop
the condition 7(c¢) with a probability of 10% and train both the conditional model €4(z¢, t, 7(c)) and the unconditional model
eg(zt,t, ). In inference, the two predictions are linearly combined as follows:

eo(zt,t,¢) = s-€g(ze,t,7(c)) + (1 — 5) - €9 (21, t, &), a7

where s is the guidance scale, and s > 1 can amplify the effect of the guidance. We investigate how the performance of our
method changes with different values of the hyperparameter s. From Figure 6, we observe that the best performance in FID
is achieved at s = 11 on the HumanML3D dataset. Consequently, we adopt s = 11 in Section 4.1.
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Figure 6. Evaluation sweep over guidance scale s
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