
Appendix A Definitions, proofs, and related work592

Here, we provide missing definitions of the KLD and the �-divergence.593

Definition 2 (Kullback-Leibler divergence [53]). The KLD between probability densities g(·) and594

f(·) is given by595

KLD(g||f) =
Z

g(x) log
g(x)

f(x)
dx.

Definition 3 (�-divergence [9, 63]). The �-divergence is defined as596

D(�)
B (g||f) = 1

�(� � 1)

Z
g(x)�dx+

1

�

Z
f(x)�dx� 1

� � 1

Z
g(x)f(x)��1dx,

where � 2 R\{0, 1}. D(�)
B is a member of the Bregman-divergence family [16] with  (t) = 1

�(��1) t
� .597

When � ! 1, D(1)
B (g(x)||f(x)) ! KLD(g(x)||f(x)).598

The �-divergence has often been referred to as the density-power divergence in the statistics literature599

[9] where it is often parameterised with �DPD = � � 1.600

Intuition for how �D-Bayes provides DP estimation is provided in Figure 5 which shows the601

divergence between the posterior before and after adding an observation y that is |y � µ| standard602

deviations away from the posterior mean µ when updating using a Gaussian distribution under603

KLD-Bayes and �D-Bayes. The influence of observations under KLD-Bayes is steadily increasing,604

making the posterior sensitive to extreme observations and therefore leaking their information. Under605

�D-Bayes, the influence initially increases before being maximised at a point depending on the value606

of �, before decreasing to 0. Therefore, each observation has bounded influence on the posterior,607

allowing for DP estimation.608
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Figure 5: The influence of adding an observation y with |y � µ| on the posterior conditioned on a
sample of 1000 points from a N (0, 1) when fitting a N (µ,�2).

A.1 Bernstein-von Mises theorem for �D-Bayes609

The general Bernstein-von Mises theorem for generalised posteriors [Theorem 4; 64] can be applied610

to the �D-Bayes posterior to show that611 Z ���⇡̃(�)(�)�N
⇣
�; 0, (H(�)

0 )�1
⌘��� d� �!

n!1
0 (5)

where ⇡̃(�) denotes the density of
p
n(✓̃ � ✓̂(�)n ) when ✓̃ ⇠ ⇡(�)(·;D), N (x;µ,�2) denotes the612

normal distribution with mean µ and variance �2, and613

✓̂(�)n := argmin
✓2⇥

nX

i=1

`(�)(Di, f(·; ✓)), ✓(�)0 := argmin
✓2⇥

Eg

h
`(�)(D, f(·; ✓))

i

H(�)
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✓
@

@✓i@✓j
ED

h
`(�)(D, f(·; ✓(�)0 ))

i◆

i,j

.
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That is to show that the �D-Bayes posterior converges to a Gaussian distribution centered around the614

�D minimising parameter ✓(�)0 in total variation distance.615

A.2 Proofs616

A.2.1 Proof of Lemma 1617

Lemma 1 (Bounded sensitivity of the �D-Bayes loss). Under Condition 1 the sensitivity of the618

�D-Bayes-loss for any � > 1 is
��`(�)(D, f(·; ✓))� `(�)(D0, f(·; ✓))

��  M��1

��1 .619

Proof. By (4), for � > 1620
���`(�)(D, f(·; ✓))� `(�)(D0, f(·; ✓))

��� =
1

� � 1

�
f(D0; ✓)��1 � f(D; ✓)��1

�

 max
D

1

� � 1
f(D; ✓)��1)

 M��1

� � 1

621

A.2.2 Proof of Theorem 1622

Theorem 1 (Differential privacy of the �D-Bayes posterior). Under Condition 1, a draw ✓̃ from the623

�D-Bayes posterior ⇡(�)(✓|D) in (3) is ( 2M
��1

��1 , 0)-differentially private.624

Proof. Define D = {D1, . . . , Dn}, D0 = {D0
1, . . . , D

0
n} and let j be the index such that Dj 6= D0

j625

with Dj = D0
i for all i 6= j. Firstly, the normalising constant of the �D-Bayes posterior combining626

(3) with (4) is627

P `(D) :=

Z
⇡(✓) exp

 
�w

nX

i=1

`{✓, Di}
!
d✓ (6)

Then,628

log
⇡(�)(✓|D)

⇡(�)(✓|D0)
=

nX

i=1

`(�)(D0
i, f(·; ✓))�

nX

i=1

`(�)(Di, f(·; ✓)) + log
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P (�)(D)

= `(�)(D0
j ; f(·; ✓))� `(�)(Dj ; f(·; ✓)) + log

P (�)(D0)

P (�)(D)

where P (�)(D0) is the normaliser of the general Bayesian posterior defined in (3).629

Now, by Condition 1 and Lemma 1,630

`(�)(D0
j ; f(·; ✓))� `(�)(Dj ; f(·; ✓)) 

M��1

� � 1
,

and631

P (�)(D0) =

Z
exp

(
�

nX
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`(�)(D0
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)
⇡(✓)d✓
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Z
exp
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which combined provides that632

log
⇡(✓|D)

⇡(✓|D0)
 2

M��1

� � 1
.

633
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A.2.3 Proof of Theorem 2634

Theorem 2 (Consistency of �D-Bayes sampling). Under the conditions of Theorem 4 of [64],635

1. a posterior sample ✓̃ ⇠ ⇡(�)(✓|D) is a consistent estimator of ✓(�)0 .636

2. if data D1, . . . , Dn ⇠ g(·) were generated such that there exists ✓0 with g(D) = f(D; ✓0), then637

✓̃ ⇠ ⇡(�)(✓|D) for all 1  �  1 is consistent for ✓0.638

Proof. For part 1), define Br(x0) = {x 2 Rp : |x � x0| < r}. Theorem 4 of [64] applied to639

�D-Bayes posterior proves that640

Z

B"(✓
(�)
0 )

⇡(�)(✓|D)d✓ �!
n!1

1

for all " > 0. This is enough to show that for ✓̃ ⇠ ⇡(�)(✓|D) ! ✓(�)0 in probability.641

For part 2), note that if g(D) = f(D; ✓0), then for all 1  �  1642

✓(�)0 : = argmin
✓2⇥

Eg

h
`(�)(D; f(·; ✓))

i

= argmin
✓2⇥

D(�)
B (g||f(·; ✓))

= ✓0.

643

A.2.4 Proof of Proposition 1644

Proposition 1 (Asymptotic efficiency). Under the conditions of Theorem 4 of [64], ✓̃ ⇠ ⇡(�)(✓|x)645

is asymptotically distributed as
p
n(✓̃ � ✓(�)0 )

weakly�! N (0, (H(�)
0 )�1K(�)

0 (H(�)
0 )�1 + (H(�)

0 )�1),646

where K(�)
0 and H(�)

0 are defined in Appendix A.1.647

Proof. Let ✓̃ ⇠ ⇡(�)(✓|D). By the Bernstein-von Mises theorem [64] applied to �D-Bayes in (5),648

p
n(✓̃ � ✓̂(�)n ) ! N (0, (H(�)

0 )�1).

By the asymptotic normality of ✓̂(�)n [10], we have that649

p
n(✓̂(�)n � ✓(�)0 ) !D N (0, (H(�)

0 )�1K(�)
0 (H(�)

0 )�1)

for K0 :=
⇣

@
@✓i

ED

h
`(�)(D; f(·; ✓(�)0 ))

i
@

@✓j
ED

h
`(�)(D; f(·; ✓(�)0 ))

i⌘

i,j
. The result then comes650

from the asymptotic independence of ✓̃ � ✓̂(�)n and ✓̂(�)n [see e.g. 80]651

A.2.5 Proof of Proposition 2652

Proposition 2 (DP-MCMC methods for the �D-Bayes-Posterior). Under Condition 1, the penalty653

algorithm of [Algorithm 1; 82], DP-HMC of [Algorithm 1; 72] and DP-Fast MH of [Algorithm 2;654

84] and under further Condition 2 DP-SGLD of [Algorithm 1; 56] can be used to produce (✏, �)-DP655

estimation from the �D-Bayes posterior with � > 0 without requiring the clipping of any gradients.656

Condition 2 (Boundedness of the model density/mass function gradient). The model density or mass657

function f(·; ✓) is such that there exists 0 < G(�) < 1 such that
��r✓f(D; ✓)⇥ f(D; ✓)��2

�� 658

G(�), 8✓ 2 ⇥.659

Proof. Algorithm 1 of [82], Algorithm 1 of [72] and Algorithm 2 of [84] requires a posterior whose660

log-likelihood has bounded sensitivity. For �D-Bayes posterior, this requires �D-Bayes-loss has661

bounded sensitvity which is provided by Condition 1 and Lemma 1.662
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Algorithm 1 of [56] requires a posterior whose log-likelihood has bounded gradient. For �D-Bayes663

posterior, this requires �D-Bayes-loss to have bounded gradient:664

|r✓`
(�)(D; ✓)| = r✓f(D; ✓)⇥ f(D; ✓)��2 �

Z
r✓f(D; ✓)⇥ f(D; ✓)��1dD

= r✓f(D; ✓)⇥ f(D; ✓)��2 �
Z

r✓f(D; ✓)⇥ f(D; ✓)��2 ⇥ f(D; ✓)dD

 max{G(�), G(�)M},

assuming we can interchange integration and differentiation and as
��r✓f(D; ✓)⇥ f(D; ✓)��2

�� 665

G(�) by Condition 2 not requiring the clipping of any gradients.666

A.3 Related work667

Here, we would like to extend our discussion of two important areas within the related work.668

A.3.1 Differentially private logistic regression669

Chaudhuri et al. [19] propose a regularised DP logistic regression, solving (1). (1) adds the regulariser670

to the average loss and as a result, the impact of the regulariser does not diminish as n ! 1. Even671

though the scale of the Laplace noise decreases as n grows, Chaudhuri et al. [19] consistently estimate672

a parameter that is not the data generating parameter. Alternatively, one could choose a regulariser673

�0 := �
n whose influence decreases as n grows. This would allow for unbiased inference as n ! 1674

(assuming a Bayesian model with corresponding prior distribution), but the n cancels in the scale of675

the Laplace noise and therefore the perturbation scale does not decrease in n, and the estimator is676

inconsistent. Choosing instead �0 := �
nr with 0 < r < 1, would help in constructing unbiased and677

consistent estimators. In our experiments, we did not find this choice to help.678

A.3.2 Differentially private Monte Carlo methods679

Wang et al. [80] propose using Stochastic Gradient Langevin Dynamics [SGLD; 81] with a modified680

burn-in period and bounded step-size to provide DP sampling when the log-likelihood has bounded681

gradient. Li et al. [56] improve upon [80], taking advantage of the moments accountant [1] to allow682

for a larger step-size and faster mixing for non-convex target posteriors. Foulds et al. [28] extend683

their privatisation of sufficient statistics to a Gibbs sampling setting where the conditional posterior684

distribution for a Gibbs update is from the exponential family. Yıldırım and Ermiş [82] use the685

penalty algorithm which adds noise to the log of the Metropolis-Hastings acceptance probability.686

Heikkilä et al. [38] use Barker’s acceptance test [8, 75] and provide RDP guarantees. Räisä et al. [72]687

derive DP-HMC also using the penalty algorithm. Zhang and Zhang [84] propose a random batch688

size implementation of Metropolis-Hasting for a general proposal distribution that takes advantage of689

the inherent randomness of Metropolis-Hasting and is asymptotically exact. Lastly, Awan and Rao690

[7] consider DP rejection sampling.691

A.4 Attack optimality692

Remark 1. Let p(✓̃|D) be the density of the privacy mechanism—i.e the Laplace density for [19] or693

the posterior (i.e. Equations 2,3) for OPS. An attacker estimating M(✓̃, D,D0) = p(✓̃|D0)

(p(✓̃|D)+p(✓̃|D0))
694

is Bayes optimal. For OPS, M(✓̃, D,D0) = exp{`(D0
l; f(·; ✓̃))� `(Dl; ✓̃)}

R
exp{`(Dl; f(·; ✓))�695

`(D0
l; f(·; ✓))}⇡(✓|D)d✓ where D,D0 s.t. D \D0 = {Dl} and D0 \D = {D0

l} (see Appendix A.4).696

The privacy attacks outlined in Section 4 require the calculation of697

M(✓̃, D,D0) := p(m = 1; ✓̃, D,D0) = p(✓̃|D0)/(p(✓̃|D)) + p(✓̃|D0))

= 1/(p(✓̃|D)/p(✓̃|D0) + 1)

by Bayes Theorem. For [19], it is698

p(✓̃|D) = L
✓
✓̂(D),

2

n�✏

◆
,

where ✓̂(D) was defined in (1).699
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For the OPS methods, Minami et al. [65] and �D-Bayes, p(✓̃|D) is the posterior700

p(✓̃|D) = ⇡(`)(✓̃|D) / ⇡(✓) exp{�
nX

i=1

`(Di; ✓)}

where for [65] `(Di; f(·; ✓)) = �w log f(Di; ✓), and for �D-Bayes `(Di; f(·; ✓)) =701

`(�)(Di; f(·; ✓)) given in (4). Without loss of generality, index observations within D and D0702

such that D \D0 = {Dl} and D0 \D = {D0
l}. Then,703

⇡̃(✓̃|D)

⇡̃(✓̃|D0)
=

⇡(✓̃) exp{�
Pn

i=1 `(Di; f(·; ✓̃))}R
⇡(✓) exp{�

Pn
i=1 `(Di; f(·; ✓))}d✓

�
⇡(✓̃) exp{�

Pn
i=1 `(D

0
i; f(·; ✓̃))}R

⇡(✓) exp{�
Pn

i=1 `(D
0
i; f(·; ✓))}d✓

= exp{`(D0
l; f(·; ✓̃))� `(Dl; f(·; ✓̃))}

Z
⇡(✓) exp{�

Pn
i=1 `(D

0
i; f(·; ✓))}R

⇡(✓) exp{�
Pn

i=1 `(Di; f(·; ✓))}d✓
d✓

= exp{`(D0
l; f(·; ✓̃))� `(Dl; ✓̃)}

Z
exp{`(Dl; ✓)� `(D0

l; f(·; ✓))}
⇡(✓) exp{�

Pn
i=1 `(Di; f(·; ✓))}R

⇡(✓) exp{�
Pn

i=1 `(Di; f(·; ✓))}d✓
d✓

= exp{`(D0
l; f(·; ✓̃))� `(Dl; f(·; ✓̃))}

Z
exp{`(Dl; f(·; ✓))� `(D0

l; f(·; ✓))}⇡(✓|D)d✓

⇡ exp{`(D0
l; f(·; ✓̃))� `(Dl; f(·; ✓̃))}

1

N

NX

j

exp{`(Dl; f(·; ✓j))� `(D0
l; f(·; ✓j))},

where {✓j}Nj=1 ⇠ ⇡(✓|D). The adversary only needs to sample from the posterior based on dataset704

D to be able to estimate M(✓̃, D,D0) for all D0 differing from D in only one index l.705

Appendix B Additional experimental details and results706

Additional experimental details Unless otherwise specified, we choose d = 2 in the simulated707

experiments. The MCMC methods are run for 1000 warm-up steps, and 100 iterations. DPSGD is708

run for 15 + b✏c epochs, with clipping norm 1, batch size 100, and learning rate of 10�2. All other709

implementation details can be found on https://anonymous.4open.science/r/beta-bayes-710

ops-6626.711

Neural network classification Similarly to neural network regression, we can use �D-Bayes for712

neural network classification. As we see in Figure 6, �D-Bayes regularly outperforms DPSGD for713

✏ > 0.2 on simulated and real data, except on abalone.714

Sensitivity in number of features Please refer to Figure 7 for the sensitivity of the private methods715

w.r.t. the number of features in the data set. We see that the RMSE of the data generating parameter ✓716

(divided by the number of dimensions of ✓) increases. The reason for this is two-fold: 1) The methods717

of [19] and [65] provide their privacy guarantees w.r.t. the number of features. While more noise718

has to be added for [19], the influence of the prior increases for [65] when the number of features719

increases for a fixed privacy budget. 2) A single sample from a posterior is of higher variance the720

higher-dimensional the posterior is, negatively influencing OPS methods such as [65] and �D-Bayes.721

722

Membership inference attacks For ✏ 2 {0.2, 1, 2, 7, 10, 20}, we run 10,000 rounds of the attack723

presented in Section 4. In Figure 8, we use the approach presented by [44] to estimate a lower bound724

on ✏ given the false positive and negative rates of the attacks. Note that these lower bounds are725

unrealistic for ✏ < 1. We see that, for any RMSE value, �D-Bayes achieves a lower practical bound726

on ✏ than [19], which gives exact privacy guarantees.727

Compute While the final experimental results can be run within approximately two hours on a728

single Intel(R) Xeon(R) Gold 5118 CPU @ 2.30GHz core, the complete compute needed for the final729

results, debugging runs, and sweeps amounts to around 11 days.730

Licenses The UCI data sets are licensed under Creative Commons Attribution 4.0 International731

license (CC BY 4.0).732

19
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Figure 6: Test set predictive ROC-AUC of DP estimation for neural network classification as the
number of observations n increases on simulated and UCI data.

Figure 7: Parameter log RMSE of DP logistic regression (first row), test set predictive log RMSE of
DP neural network regression (second row), and test set ROC-AUC of DP neural network classification
(third row) as the number of features d increases on simulated data with n = 1000.

Figure 8: Lower bound on ✏ against log RMSE. Points correspond to values of ✏.
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