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A Limitations and broader impact609

A.1 Limitations610

Although we believe concept-based XAI to be a promising research direction, it isn’t without pitfalls.611

It is capable of producing explanations that are ideally easy to understand by humans, but to what612

extent is a question that remains unanswered. The fact that there is no way to mathematically measure613

this prevents researchers from easily comparing the different techniques in the literature other than614

through time consuming and expensive experiments with human subjects. We think that developing a615

metric should be one of the field’s priorities.616

With CRAFT, we address the question of what by showing a cluster of the images that better represent617

each concept. However, we recognize that it’s not perfect: in some cases, concepts are difficult to618

clearly define – put a label on what it represents –, and might induce some confirmation and selection619

bias. Feature visualization [18] might help in better illustrating the specific concept (as done in620

appendix B.3), but we believe there’s still space for improvement. For instance, an interesting idea621

could be to leverage image captioning methods to describe the clusters of image crops, as textual622

information could help humans in better understanding clusters.623

Although we believe CRAFT to be a considerable step in the good direction for the field of concept-624

based XAI, it also have some pitfalls. Namely, we chose the NMF as the activation factorization,625

which, while drastically improving the quality of extracted concepts, also comes with it’s own caveats.626

For instance, it is known to be NP-hard to compute exactly, and in order to make it scalable, we had627

to use a tractable approximation by alternating the optimization of U and W through ADMM [63].628

This approach might indeed yield non-unique solutions. Our experiments (section 4.4), have shown a629

low variance on between the runs, which comforts us about the stability of our results.However the630

absence of formal guarantee for uniqueness must be kept in mind: this subject is still an active topic631

of research and improvement could be expected in the near future. Namely, sparsity constraints and632

regularization seem to be promising paths. Naturally, we also need enough samples of the class under633

study to be available for the factorization to construct a relevant concept bank, which might affect the634

quality of the explanations on frugal applications where data is very scarce.635

A.2 Broader impact636

We do hope that CRAFT helps in the transition to more human-understandable ways of explain-637

ing neural network models. It’s capacity to find easily understandable concepts inside complex638

architectures and providing an indication of where they are located in the image is – to the best of639

our knowledge – unmatched. We also think that this method’s structure is a step towards reducing640

confirmation bias: for instance dataset’s labels are never used in this method, only the model’s641

predictions. Without claiming to remove confirmation bias, the method focuses on what the model642

sees rather than what we expect the model to see. We believe this can help end-users build trust on643

computer vision models, and at the same time, provide ML practitioners with insights into potential644

sources of bias in the dataset (e.g. the ski pants in the astronaut/shovel example). Other methods645

in the literature obtaining similar results require very specific architectures [36] or to train another646

model to generate the explanations [66], so CRAFT provides a considerable advantage in the matter647

of flexibility in comparison.648

B More results of CRAFT649

B.1 Concept Attribution Maps.650

We show more examples of Concept Attribution Maps for the classes ‘Chain saw’ in Figure S2 and651

‘Parachute’ in Figure S1.652
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Figure S1: CRAFT results for the class ‘Parachute’. The model under study is a ResNet50, and we
used the penultimate layer to apply the matrix activation factorization.

Figure S2: CRAFT results for the class ‘Chain saw’. The model under study is a ResNet50 we
used the penultimate layer to apply the matrix activation factorization.

B.2 Most important concepts.653

We show more example of the 4 most importants concepts for 6 classes: ‘Chain saw’ and ‘English654

springer’ (Figure S3), ‘Gas pump’ and ‘Golf ball’ (Figure S4), ‘French horn’ and ‘Garbage Truck’655

(Figure S5).656
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Figure S3: CRAFT most important concepts. The 4 most important concepts (higher means more
important) for ‘English springer’ (left) and ‘Chain saw’ (right).
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Figure S4: CRAFT most important concepts. The 4 most important concepts (higher means more
important) for ‘Gas pump’ (left) and ‘Golf ball’ (right).
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Figure S5: CRAFT most important concepts. The 4 most important concepts (higher means more
important) for ‘French horn’ (left) and ‘Garbage truck’ (right).
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B.3 Feature Visualization validation657

Another way of interpreting concepts – as per [22] – is to employ feature visualization methods:658

through optimization, find an image that maximizes an activation pattern. In our case, we used the set659

of regularization and constraints proposed by [18], which allow us to successfully obtain realistic660

images. In Figure S6, we showcase these synthetic images obtained through feature visualization,661

along with the segments that maximize the target concept. We observe that they do reflect the662

underlying concepts of interest.663

Concretely, to produce those feature visualization, we are looking for an image x∗ that is optimized to664

correspond to a concept from the concept bank Wi. We use the so called ‘dot-cossim’ loss proposed665

by [18], which give the following objective:666

x∗ = argmax
x∈X

⟨hl(x),Wi⟩
⟨hl(x),Wi⟩2

||hl(x)|| ||Wi||
− R(x)

WithR(·), the regularizations applied to x – the default regularizations in the Xplique library [67].667

As for the specific parameters, we used Fourier preconditioning on the image with a decay rate of 0.8668

and an Adam optimizer (lr = 1e− 1).669
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Figure S6: Feature visualization for CRAFT concepts.. The model under study is a ResNet50 we
used the penultimate layer to apply the matrix activation factorization.

C Backpropagating through the NMF block670

C.1 Alternating Direction Method of Multipliers (ADMM) for NMF671

We recall that NMF decomposes the positive features vector A ∈ Rn×p of n examples lying in672

dimension p, into a product of positive low rank matrices U(A) ∈ Rn×r and W (A) ∈ Rp×r (with673

r << min(n, p)), i.e the solution to the problem:674

min
U≥0,W≥0

1

2
∥A−UW T ∥2F (5)

22



For simplicity we used a non-regularized version of the NMF objective, following Algorithms 1 and675

3 in paper [62], based on ADMM [63]. This algorithm transforms the non-linear equality constraints676

into indicator functions δ. Auxiliary variables Ũ , W̃ are also introduced to separate the optimization677

of the objective on the one side, and the satisfaction of the constraint on U ,W on the other side.678

The equality constraints Ũ = U , W̃ = W are linear and easily handled by the ADMM framework679

through the associated dual variables Ū , W̄ . In our case, the problem in Equation 5 is transformed680

into:681

min
U ,Ũ ,W ,W̃

1

2
∥A− ŨW̃ T ∥2F + δ(U) + δ(W )

s.t. Ũ = U , W̃ = W

with δ(H) =

{
0 if H ≥ 0

+∞ otherwise

(6)

The constraints are simplified at the cost of a non-smooth (and even a non-finite) objective function682
1
2∥A − ŪW̄ T ∥2F + δ(U) + δ(W ) due to the term δ(U) + δ(W ). ADMM proceeds to create a683

so-called augmented Lagrangian with l2 regularization ρ > 0:684

L(A,U ,W , Ũ , W̃ , Ū , W̄ ) =
1

2
∥A− ŨW̃ T ∥2F + δ(U) + δ(W )

+ ŪT (Ũ −U) + W̄ T (W̃ −W )

+
ρ

2

(
∥Ũ −U∥22 + ∥W̃ −W ∥22

) (7)

The (regularized) problem associated to this Lagrangian is decomposed into a sequence of convex685

problems that alternate minimization over the U , Ũ , Ū and the W , W̃ , W̄ triplets.686

Ut+1 = argmin
U=Ũ

1

2
∥A− ŨW T

t ∥2F + δ(U) +
ρ

2
∥Ũ −U∥22 (8)

Wt+1 = argmin
W=W̃

1

2
∥A−UtW̃

T ∥2F + δ(W ) +
ρ

2
∥W̃ −W ∥22 (9)

This guarantees a monotonic decrease of the objective function ∥A − ŨtW̃
T
t ∥2F . Each of these687

sub-problems is thus solved with ADMM separately, by alternating minimization steps of 1
2∥A−688

ŨW T
t ∥2F + ŪT (Ũ −U)+ ρ

2∥U − Ũ∥22 over Ũ (i), with minimization steps of δ(U)+ ρ
2∥U − Ũ∥22689

over U (ii), and gradient ascent steps (iii) on the dual variable Ū ← Ū +(Ũ −U). A similar scheme690

is used for W updates. Step (i) is a simple convex quadratic program with equality constraints, whose691

KKT [56, 57] conditions yield a linear system with a Positive Semi-Definite (PSD) matrix. Step (ii)692

is a simple projection of Ũ onto the convex set δ−1(0). Finally, step (iii) is inexpensive.693

Concretely, we solved the quadratic program using Conjugate Gradient [68], from694

jax.scipy.sparse.linalg.cg. This indirect method only involves matrix-vector products and can be more695

GPU-efficient than methods that are based on matrix factorization (such as Cholesky decomposition).696

Also, we re-implemented the pseudo code in [62] in Jax for a fully GPU-compatible program. We697

used the primal variables U0,W0 returned by sklearn.decompose.nmf as a warm start for ADMM698

and observe that the high quality initialization of these primal variables considerably speeds up the699

convergence of the dual variables.700

C.2 Implicit differentiation701

The Lagrangian of the NMF problem reads L(U ,W , Ū , W̄ ) = 1
2∥A−UW T ∥2F−ŪTU−W̄ TW ,702

with dual variables Ū and W̄ associated to the constraints U ≥ 0,W ≥ 0. It yields a function F703

based on the KKT conditions [56, 57] whose optimal tuple U ,W , Ū , W̄ is a root.704

For single NNLS problem (for example, with optimization over U ) the KKT conditions are:705
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
∇U

(
1
2∥A− ŨW̃ T ∥2F + ŪT (−U)

)
= 0, stationarity

−U ≤ 0, primal feasability
Ū ⊙U = 0, complementary slackness
Ū ≥ 0, dual feasability

(10)

By stacking the KKT conditions of the NNLS problems the we obtain the so-called optimality706

function F :707

F ((U ,W , Ū , W̄ ),A) =


(UW T −A)W − Ū ,

(WUT −AT )U − W̄ ,

Ū ⊙U ,

W̄ ⊙W ,

(11)

The implicit function theorem [39] allows us to use implicit differentiation [38, 39, 58] to efficiently708

compute the Jacobians ∂U
∂A and ∂W

∂A without requiring to back-propagate through each of the iterations709

of the NMF solver:710

∂(U ,W , Ū , W̄ )

∂A
= −(∂1F )−1∂2F (12)

Implicit differentiation requires access to the dual variables of the optimization problem in equation 1,711

which are not computed by Scikit-learn’s popular implementation. Scikit-learn uses Block coordinate712

descent algorithm [60, 61], with a randomized SVD initialization. Consequently, we leverage our713

implementation in Jax based on ADMM [63].714

Concretely, we perform a two-stage backpropagation Jax (2))Tensorflow (1) to leverage the advantage715

of each framework. The lower stage (1) corresponds to feature extraction A = hl(X) from crops of716

images X , and upper stage (2) computes NMF A ≈ UW T .717

We use the Jaxopt [40] library that allows efficient computation of ∂(U ,W ,Ū ,W̄ )
∂A = −(∂1F )−1∂2F .718

The matrix (∂1F )−1 is never explicitly computed – that would be too costly. Instead, the system719

∂1F
∂(U ,W ,Ū ,W̄ )

∂A = −∂2F is solved with Conjugate Gradient [68] through the use of Jacobian720

Vector Products (JVP) v 7→ (∂1F )v.721

The chain rule yields:
∂U

∂X
=

∂A

∂X

∂U

∂A

Usually, most Autodiff frameworks (e.g Tensorflow, Pytorch, Jax) handle it automatically. Unfor-722

tunately, combining two of those framework raises a new difficulty since they are not compatible.723

Hence, we re-implement manually the two stages auto-differentiation.724

Since r is far smaller (r = 25 in all our experiments) than input dimension X (typically 224× 244725

for ImageNet images), back-propagation is the preferred algorithm in this setting over forward-726

propagation. We start by computing sequentially the gradients ∇XUi for all concepts 1 ≤ i ≤ r.727

This amounts to compute v = ∇AUi with Implicit Differentiation in Jax, convert the Jax array v728

into Tensorflow tensor, and then to compute ∇XUi =
∂A
∂X∇AUi = ∇X(hl(X) · v). The latter is729

easily done in Tensorflow. Finally we stack the gradients∇XUi to obtain the Jacobian ∂U
∂X .730

D Sobol indices for concepts731

We propose to formally derive the Sobol indices for the estimation of the importance of concepts.732

Let us define a probability space (Ω,A,P) of possible concept perturbations. In order to build733

these concept perturbations, we start from an original vector of concepts coefficient Û ∈ Rr and734

use stochastic masks M = (M1, ...,Mr) ∈ M ⊆ [0, 1]r, as well as a perturbation operator π :735

A×M→ A to create stochastic perturbation of Û that we call concept perturbation U = π(Û ,M).736

Concretely, to create our concept perturbation we consider the inpainting function as our perturbation737

operator (as in [4, 13, 14]) : π(Ũ ,M) = Ũ ⊙M + (1 −M)µ with ⊙ the Hadamard product738
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and µ ∈ R a baseline value, here zero. For the sake of notation, we will note f : A → R the739

function mapping a random concept perturbation U from the layer l to the output. We denote the740

set U = {1, ..., r}, u a subset of U , its complementary ∼ u and E(·) the expectation over the741

perturbation space. Finally, we assume that f ∈ L2(A,P) i.e. |E(f(U))| < +∞.742

The Hoeffding decomposition allows us to express the function f into summands of increasing743

dimension, denoting fu the partial contribution of the concepts Uu = (Ui)i∈u to the score f(U):744

f(U) = f∅ +

d∑
i

fi(Ui) +
∑

1⩽i<j⩽d

fi,j(Ui, Uj) + · · ·+ f1,...,r(U1, ..., Ur)

=
∑
u⊆U

fu(Uu)

(13)

Eq. 13 consists of 2r terms and is unique under the following orthogonality constraint:745

∀(u,v) ⊆ U2 s.t. u ̸= v, E
(
fu(Uu)fv(Uv)

)
= 0 (14)

Furthermore, orthogonality yields the characterization fu(Uu) = E(f(U)|Uu)−
∑

v⊂u fv(Uv)746

and allows us to decompose the model variance as:747

V(f(U)) =

d∑
i

V(fi(Ui)) +
∑

1⩽i<j⩽d

V(fi,j(Ui, Uj)) + ...+ V(f1,...,r(U1, ..., Ur))

=
∑
u⊆U

V(fu(Uu))

(15)

Building from Eq. 15, it is natural to characterize the influence of any subset of concepts u as its own748

variance w.r.t. the total variance. This yields, after normalization by V(f(U)), the general definition749

of Sobol’ indices.750

Definition D.1 (Sobol indices [46]). The sensitivity index Su which measures the contribution of the751

concept set Uu to the model response f(U) in terms of fluctuation is given by:752

Su =
V(fu(Uu))

V(f(U))
=

V(E(f(U)|Uu))−
∑

v⊂u V(E(f(U)|Uv))

V(f(U))
(16)

Sobol indices give a quantification of the importance of any subset of concepts with respect to the753

model decision, in the form of a normalized measure of the model output deviation from f(U). Thus,754

Sobol indices sum to one :
∑

u⊆U Su = 1.755

Furthermore, the framework of Sobol’ indices enables us to easily capture higher-order interactions756

between features. Thus, we can view the Total Sobol indices defined in 2 as the sum of of all the Sobol757

indices containing the concept i : STi =
∑

u⊆U,i∈u Su. Concretely, we estimate the total Sobol758

indices using the Jansen estimator [50] and Quasi-Monte carlo Sequence (Sobol LPτ sequence).759

E Human experiments760

We first describe how participants were enrolled in the study, then our general experimental design761

(See SI for more informations).762

Participants Behavioral accuracy data were gathered from n = 73 participants. All participants763

provided informed consent electronically in order to perform the experiment (∼ 4 − 6 min). The764

protocol was approved by the University IRB and was carried out in accordance with the provisions765

of the World Medical Association Declaration of Helsinki. For each of the 2 experiment tested, we766

had prepared filtering criteria for uncooperative people (namely based on time), but all participants767

passed these filters.768
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General study design For the first experiment – consisting in finding the intruder among elements769

of the same concept and an element from a different concept (but of the same class, see Figure S8) –770

the choice was randomized in order to avoid any kind of bias due to the order of presentation of the771

choices. Moreover, in order to avoid any bias coming from the participants themselves (one group772

being more successful than the other) all participants were in the two conditions of finding intruders773

in batches of images coming from either concepts or sub-concepts. Concerning experiment 2, the774

order was also randomized (see see Figure S9).775

The participants had to successively find 30 intruders (15 block concepts and 15 block sub-concepts)776

for experiment 1 and then make 15 choices (sub-concept vs concept) for experiment 2, see Figure S7.777

The expert participants are people working in machine learning (researchers, software developers,778

engineers) and have participated in the study following an announcement in the authors’ labora-779

tory/company. The other participants (Laymen) have no particular competence in machine learning.780

Figure S7: Human Experiment Website.

Figure S8: Binary choice experiment.

Figure S9: Intruder experiment.

F Fidelity experiments781

For our experiments on the concept importance measure, we focused on certain classes of IL-782

SRVC2012 [27] and used a ResNet50V2 [69] that had already been trained on this dataset. Just like783

in [23, 24], we measure the insertion and deletion metrics for our concept extraction technique – as784

well as concepts vectors extracted using PCA, ICA and RCA as dimensionality reduction algorithms,785

see Figure S10 – and we compare them when we add/remove the concepts as ranked by the TCAV786

score [22] and by the Sobol importance score. As originally explained in [13], the objective of787

these metrics is to add/remove parts of the input according to how much an explainability method788

considers that it is influential and looking at the speed at which the logit for the predicted class789

increases/decreases.790
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In particular, for our experimental evaluations, we have randomly chosen 100000 images from791

ILSVRC2012 [27] and computed the deletion and insertion metrics for 5 different seeds – for a total792

of half a million images. In Figure S10, the shade around the curves represent the standard deviation793

over these 5 experiments.794

Figure S10: (1) Deletion curves for different concept extraction methods, Sobol outperforms TCAV
not only for NMF to correctly estimate concept importance (lower is better). (2) Insertion curves
for different concept extraction methods, Sobol outperforms TCAV to correctly estimate concept
importance (higher is better).
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G Additional examples of concepts and sub-concepts795

G.1 Sanity Check796

Following the work from [30], we performed a sanity check on our method, by running the concept797

extraction pipeline on a randomized model. This procedure was performed on a ResNet-50v2 model798

with randomized weights. When weights are randomized, concepts are mainly based on color799

histograms. This might result from skip connections which propagate signal from the inputs.800

Figure S11: Sanity check of the method: we ran the method on a Resnet50 with randomized
weights, and extracted the 3 most relevant concepts for the class ‘Chain saw’. When weights are
randomized, concepts are mainly based on color histograms. This might result from skip connections
which propagate signal from the inputs.

H Computational cost801

Although CRAFT seems like it would require a lot of resources to run, it is actually quite efficient.802

Scikit-learn’s implementation of NMF runs quite fast on the relatively small matrices we work with,803

and thus, a small amount of steps of ADMM are required; the computation of Sobol indices on804

only the last layers of the network is not very expensive; and, thanks to the efficiency of jaxopt,805

the concept-wise grad-cAM takes about as much time to calculate as the standard version (for each806

concept). That being said, the code in its current form doesn’t support batched input images for807

concept-wise heatmaps, so Smoothgrad [5] and other methods based on the aggregation of gradients808

will take considerably longer to compute.809
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