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Abstract1

We propose and study a practical graph embedding that in expectation is able to2

distinguish all non-isomorphic graphs and can be computed in polynomial time.3

The embedding is based on Lovász’ characterization of graph isomorphism through4

an infinite dimensional vector of homomorphism counts. Recent work has studied5

the expressiveness of graph embeddings by comparing their ability to distinguish6

graphs to that of the Weisfeiler-Leman hierarchy. While previous methods have7

either limited expressiveness or are computationally impractical, we devise efficient8

sampling-based alternatives that are maximally expressive in expectation. We9

empirically evaluate our proposed embeddings and show competitive results on10

several benchmark graph learning tasks.11

1 Introduction12

We study novel efficient and expressive graph embeddings based on Lovász’ characterisation of13

graph isomorphism through homomorphism counts. While most practical graph embeddings drop14

the property of completeness, that is, the ability to distinguish all non-isomorphic graphs, in favour of15

runtime, we devise efficient embeddings that retain completeness in expectation. To achieve that, we16

sample pattern graphs in a particular way, simultaneously guaranteeing completeness and polynomial17

runtime in expectation. We discuss related work, in particular the relationship to the k-dimensional18

Weisfeiler Leman isomorphism test, and show first results on benchmarks datasets.19

While subgraph counts are also a reasonable choice for expectation complete graph embeddings,20

they have multiple drawbacks compared to homomorphism counts. Most importantly, from a21

computational perspective, computing subgraph counts even for simple graphs such as trees or paths22

is NP-hard [Alon et al., 1995; Marx and Pilipczuk, 2014], while we can compute homomorphism23

counts efficiently [Díaz et al., 2002] as long as the pattern graphs have small treewidth, a measure of24

‘tree-likeness’. In particular, all known exact algorithms for subgraph isomorphism have a runtime25

exponentially in the pattern size or the maximum degree of the pattern even for small treewidth —26

one of the main reasons why the graphlet kernel [Shervashidze et al., 2009] and similar fixed pattern27

based approaches [Bouritsas et al., 2022] only count subgraphs up to size around 5.28

Probably most important from a conceptual perspective, is the relationship of homomorphism counts29

to the cut distance [Borgs et al., 2006; Lovász, 2012]. The cut distance is a well studied and important30

distance on graphs that captures global structural but also sampling-based local information. It is well31

known that the distance given by (potentially approximated and sampled) homomorphism counts is32

close to the cut distance and hence has similar favourable properties. The cut distance, and hence,33

homomorphism counts, capture the behaviour of all permutation-invariant functions on graphs. For34

an ongoing discussion about the importance of the cut distance and homomorphism counts in the35

context of graph learning, see Dell et al. [2018], Grohe [2020], and Hoang and Maehara [2020].36

Completeness in expectation essentially implies one powerful fact which no deterministic embedding37

with bounded expressiveness can guarantee: repetition will make the embedding more expressive38

eventually. If the graph embedding is complete in expectation it is guaranteed that sampling more39

patterns will eventually increase its expressiveness.40
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2 Complete Graph Embeddings41

The graph isomorphism problem is a classical problem in graph theory and its computational42

complexity is a major open problem [Babai, 2016]. Following the classical result of Lovász [1967],43

two graphs are isomorphic if and only if they have the same infinite dimensional homomorphism44

count vectors. This provides a strong graph embedding for graph classification tasks [Barceló et al.,45

2021; Dell et al., 2018; Hoang and Maehara, 2020].46

A graph G = (V (G), E(G)) consists of a set V (G) of vertices and a set E(G) = {e ⊆ V | |e| = 2}47

of edges. The size of a graph is the number of its vertices. In the following F and G denote48

graphs, where F represents a pattern graph and G a graph in our training set. A homomorphism49

φ : V (F ) → V (G) is a map that respects edges, i.e. {v, w} ∈ E(F ) ⇒ {φ(v), φ(w)} ∈ E(G). An50

isomorphism is a bijective homomorphism whose inverse is also a homomorphism. We say that a51

distribution D over a countable domain X has full support if each x ∈ X has nonzero probability.52

Let Gn be the set of all finite graphs of size at most n and let hom(F,G) denote the number of53

homomorphisms of F to G for arbitrarily graphs and φn(G) = hom(Gn, G) = (hom(F,G))F∈Gn54

denote the Lovász vector of G for Gn. Lovász [1967] proved the following classical theorem.55

Theorem 1 (Lovász [1967]). Two arbitrary graphs G,H ∈ Gn are isomorphic iff φn(G) = φn(H).56

We can define a simple kernel on Gn with the canonical inner product using φn.57

Definition 2 (Complete Lovász kernel). Let kφn
(G,H) = ⟨φn(G), φn(H)⟩.58

Note that kφn
is a complete graph kernel [Gärtner et al., 2003] on Gn, i.e., kφn

can be used to59

distinguish non-isomorphic graphs of size n. Similarly, we define complete graph embeddings.60

Definition 3. Let φ : G → X be a permutation-invariant graph embedding from a family of graphs G61

to a vector space X . We call φ complete (on G) if φ(G) ̸= φ(H) for all non-isomorphic G,H ∈ G.62

When studying graph embeddings and graph kernels we face the tradeoff between efficiency and63

expressiveness: complete graph representations are unlikely to be computable in polynomial-time64

[Gärtner et al., 2003] and hence most practical graph representations drop completeness in favour65

of polynomial runtime. In our work, we study random graph representations. While dropping66

completeness and being efficiently computable, this allows us to keep a slightly weaker yet desirable67

property: completeness in expectation.68

Definition 4. A graph embedding φX , which depends on a random variable X , is complete in69

expectation if the graph embedding given by the expectation, EX [φX(·)], is complete.70

Similarly, we say that the corresponding kernel kX(G,H) = ⟨φX(G), φX(H)⟩ is complete in71

expectation. We can use Lovász’ isomorphism theorem to devise graph embeddings that are complete72

in expectation. For that let eF ∈ RGn be the ‘F th’ standard basis unit-vector of Gn73

Theorem 5. Let D be a distribution on Gn with full support and G ∈ Gn. Then the graph embedding74

φF (G) = hom(F,G)eF with F ∼ D and the corresponding kernel k are complete in expectation.75

2.1 Expectation Complete Embeddings and Kernels on G∞76

In this section, we generalise the previous result to the set of all finite graphs G∞. Theorem 1 holds77

for G,H ∈ G∞ and the mapping φ∞ that maps each G ∈ G∞ to an infinite-dimensional vector.78

The resulting vector space, however, is not a Hilbert space with the usual inner product. To see this,79

consider any graph G that has at least one edge. Then hom(Pn, G) ≥ 2 for every path Pn of length80

n ∈ N. Thus, the inner product ⟨φ∞(G), φ∞(G)⟩ is not finite.81

To define a kernel on G∞ without fixing a maximum size of graphs, i.e., restricting to Gn for some82

n ∈ N, we define the countable-dimensional vector φ∞(G) =
(
hom|V (G)|(F,G)

)
F∈G∞

where83

hom|V (G)|(F,G) =

{
hom(F,G) if |V (F )| ≤ |V (G)| ,
0 if |V (F )| > |V (G)| .

That is, φ∞(G) is the projection of φ∞(G) to the subspace that gives us the homomorphism counts84

for all graphs of size at most of G. Note that this is a well-defined map of graphs to a subspace of the ℓ285

space, i.e., sequences (xi)i over R with
∑

i |xi|2 < ∞. Hence, the kernel given by the canonical inner86

product k∞(G,H) = ⟨φ∞(G), φ∞(H)⟩ is finite and positive semi-definite. Note that we can rewrite87
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k∞(G,H) = kmin(G,H) = ⟨φn′(G), φn′(H)⟩ where n′ = min{|V (G)|, |V (H)|}. While the first88

hunch might be to count patterns up to max{|V (G)|, |V (H)|}, it is thus not necessary to guarantee89

completeness. In addition to it, the corresponding map kmax is not even positive semi-definite.90

Lemma 6. kmin is a complete kernel on G∞.91

Given a sample of graphs S, we note that for n = maxG∈S |V (G)| we only need to consider patterns92

up to size n.1 As the number of graphs of a given size n are superexponential it is impractical to93

compute all such counts. Hence, we propose to resort to sampling.94

Theorem 7. Let D be a distribution on G∞ with full support and G ∈ G∞. Then φF (G) =95

hom|V (G)|(F,G)eF with F ∼ D and the corresponding kernel are complete in expectation.96

2.2 Sampling multiple patterns97

Sampling just a one pattern F will not result in a practical graph embedding. Thus, we propose to98

sample ℓ patterns F1, . . . , Fℓ ∼ D i.i.d. and construct the embedding φℓ(G) ∈ Nℓ
0 with (φℓ(G))i =99

hom(Fi, G) if |V (Fi)| ≤ |V (G)| and 0 otherwise for all i ∈ [ℓ] . Note that, for the dot product it100

holds that φℓ(G)Tφℓ(H) =
∑ℓ

i=1⟨φFi(G), φFi(H)⟩ as long as we do not sample patterns twice.2101

3 Computing Embeddings in Expected Polynomial Time102

A graph embedding that is complete in expectation must be efficiently computable to be practical.103

In this section, we describe our main result achieving polynomial runtime in expectation. The best104

known algorithms [Díaz et al., 2002] to exactly compute hom(F,G) take time105

O(|V (F )||V (G)|tw(F )+1) (1)

where tw(F ) is the treewidth of the pattern graph H . Thus, a straightforward sampling strategy to106

achieve polynomial runtime in expectation is to give decreasing probability mass to patterns with107

higher treewidth. Unfortunately, in the case of G∞ this is not possible.108

Lemma 8. There exists no distribution D with full support on G∞ such that the expected runtime of109

Eq. (1) becomes polynomial in |V (G)| for all G ∈ G∞.110

To resolve this issue we have to take the size of the largest graph in our sample into account. For a111

given sample S ⊆ Gn of graphs, where n is the maximum number of vertices in S, we can construct112

simple distributions achieving polynomial time in expectation.113

Theorem 9. There exists a distribution D such that computing the expectation complete graph114

embedding φX(G) takes polynomial time in |V (G)| in expectation for all G ∈ Gn.115

Proof. Sketch. We first draw a treewidth upper bound k from an appropriate distribution. For example,116

a Poisson distribution with parameter λ = O(logn//n) is sufficient. We have to ensure that each117

possible graph with treewidth up to k gets a nonzero probability of being drawn. For that we first118

draw a k-tree, a maximal graph of treewidth k, and then take a random subgraph of it.119

Note that we do not require that the patterns are sampled uniformly at random. It merely suffices120

that each pattern has a nonzero probability of being drawn. To satisfy a runtime of O(|V (G)|d+1) in121

expectation, for example, a Poisson distribution with λ ≤ 1+d logn
n is sufficient.122

4 Related Work123

The k-dimensional Weisfeiler-Leman (WL) test and the Lovász vector restricted to patterns up to124

treewidth k are equally expressive [Dell et al., 2018; Dvořák, 2010]. We propose an efficiently125

computable embedding matching the expressiveness of k-WL, and hence also MPNNs and k-GNNs126

[Morris et al., 2019; Xu et al., 2019], in expectation, see Appendix D.127

Dell et al. [2018] proposed a complete graph kernel based on homomorphism counts related to our128

kmin kernel. Instead of implicitly restricting the embedding to only a finite number of patterns, as we129

do, they weigh the homomorphism counts such that the inner product defined on the whole Lovász130

1Actually, it is sufficient to go up to the size of the second largest graph.
2Note that it does not affect the expressiveness results if we sample a pattern multiple times.

3



Expectation Complete Graph Representations Using Graph Homomorphisms

Table 1: Cross-validation accuracies on benchmark datasets

method MUTAG IMDB-BIN IMDB-MULTI PAULUS25 CSL

GHC-tree 89.28 ± 8.26 72.10 ± 2.62 48.60 ± 4.40 7.14 ± 0.00 10.00 ± 0.00
GHC-cycle 87.81 ± 7.46 70.93 ± 4.54 47.41 ± 3.67 7.14 ± 0.00 100.00 ± 0.00
GNTK 89.46 ± 7.03 75.61 ± 3.98 51.91 ± 3.56 7.14 ± 0.00 10.00 ± 0.00
GIN 89.40 ± 5.60 70.70 ± 1.10 43.20 ± 2.00 7.14 ± 00 10± 0.00
ours (SVM) 86.85 ± 1.28 69.83 ± 0.15 47.31 ± 0.46 100.00 ± 0.00 38.89 ± 11.18
ours (MLP) 88.33 ± 1.11 70.37 ± 0.85 48.75 ± 0.20 49.84 ± 6.74 11.78 ± 1.54

vectors converges. However, Dell et al. [2018] do not discuss runtime aspects and so, our approach131

can be seen as an efficient sampling-based alternative to their weighted kernel.132

Using graph homomorphism counts as a feature embedding for graph learning tasks was proposed133

before by Hoang and Maehara [2020]. They discuss various aspects of homomorphism counts134

important for learning tasks, in particular, universality aspects and their power to capture certain135

properties of the graph, such as bipartiteness. Instead of relying on sampling patterns, which we use136

to guarantee expectation in completeness, they propose to use a fixed number of small pattern graphs.137

This limits the practical usage of their approach due to computational complexity reasons. In their138

experiments the authors only use tree and cycle patterns up to size 6 and 8, respectively, whereas139

we allow patterns of arbitrary size and treewidth, guaranteeing polynomial runtime in expectation.140

Simiarly to Hoang and Maehara [2020], we use the computed embeddings as features for a kernel141

SVM (with RBF kernel) and an MLP.142

Instead of embedding the whole graph into a vector of homomorphism counts, Barceló et al. [2021]143

proposed to use rooted homomorphism counts as node features in conjunction with a graph neural144

network (GNN). They discuss the required patterns to be as or more expressive than the k-WL test.145

We achieve this in expectation when selecting an appropriate sampling distribution.146

Wu et al. [2019] adapted random Fourier features [Rahimi and Recht, 2007] to graphs and proposed147

an sampling-based variant of the global alignment graph kernel. Similar sampling-based ideas were148

discussed before for the graphlet kernel [Shervashidze et al., 2009] and frequent-subtree kernels149

[Welke et al., 2015]. All three papers do not discuss expressiveness aspects, however.150

5 Experiments151

We performed some preliminary experiments on some benchmark datasets. To this end, we sample a152

fixed number ℓ = 30 of patterns as described in Appendix A and compute the sampled min kernel as153

described in Section 3. Table 1 shows averaged accuracies of SVM and MLP classifiers trained on154

our feature sets. We follow the experimental design of Hoang and Maehara [2020] and compare to155

their published results. Even with as little as 30 features, the results of our approach are comparable156

to the competitors on real world datasets. Furthermore, it is interesting to note that a SVM with157

RBF kernel and our features performs perfectly on the PAULUS25 dataset, i.e., it is able to decide158

isomorphism for the strongly regular graphs in this dataset. It also shows good performance, although159

with high deviation, on the CSL dataset, where only the method specifically designed for this dataset,160

GHC-cycle, performs well. We also included GNTK [Du et al., 2019] and GIN [Xu et al., 2019].161

6 Conclusion162

As future work, we will investigate approximate counts to make our implementation more efficient163

[Beaujean et al., 2021]. It is unclear how this affects expressiveness, as we loose permutation-164

invariance. Going beyond expressiveness results, our goal is to further study graph similarities165

suitable for graph learning, such as the cut distance as proposed by Grohe [2020]. Finally, instead166

of sampling patterns from a fixed distribution, a more promising variant is to adapt the sampling167

process in a sample-dependent manner. One could, for example, draw new patterns until each graph168

in the sample has a unique embedding (up to isomorphism) or at least until we can distinguish 1-WL169

classes. Alternatively, we could pre-compute frequent or interesting patterns and use them to adapt170

the distribution. Such approaches would employ the power of randomisation to select a fitting graph171

representation in a data-driven manner, instead of relying on a finite set of fixed and pre-determined172

patterns like in previous work [Barceló et al., 2021; Bouritsas et al., 2022].173
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A Sampling details228

Given a pattern size N ∈ N, we first draw a treewidth upper bound k < N given from some229

distribution. Then we want to sample any graph with treewidth at most k with a nonzero probability.230

A natural strategy is to first sample a k-tree, which is a maximal graph with treewidth k, and then231

take a random subgraph of it. Uniform sampling of k-trees is described by Nie et al. [2015] and232

Caminiti et al. [2010]. Alternatively, the strategy of Yoo et al. [2020] is also possible. Note that233

we only have to guarantee that each pattern has a nonzero probability of being sampled; it does not234

have to be uniform. While guaranteed uniform sampling would be preferable, we resort to a simple235

sampling scheme that is easy to implement. We achieve a nonzero probability for each pattern of at236

most a given treewidth k by first constructing a random k-tree P through its tree decomposition, by237

uniformly drawing a tree T on N − k vertices and choosing a root. We then create P as the (unique238

up to isomorphism) k-tree that has T as tree decomposition. We then randomly remove edges from239

that k-tree i.i.d. with fixed probability (currently set to 0.1). This ensures that each subgraph of P240

will be created with nonzero probability.241

B Implementation details242

The python code and information to reproduce our experiments can be found online3. These sources243

will be made accessible on Github. We rely on the C++ code of Curticapean et al. [2017]4 to efficiently244

compute homomorphism counts. While the code computes a tree decomposition itself we decided to245

simply provide it with our tree decomposition of the k-tree which we compute anyway, to make the246

computation more efficient. Additionally, we use the cross-validation-based eveluation with SVM247

and MLP of Hoang and Maehara [2020]5.248

C Proofs249

Theorem 5. Let D be a distribution on Gn with full support and G ∈ Gn. Then the graph embedding250

φF (G) = hom(F,G)eF with F ∼ D and the corresponding kernel k are complete in expectation.251

Proof. Let D and φF with F ∼ D as stated and G ∈ Gn. Then

g = EF [φF (G)] =
∑

F ′∈Gn

Pr (F = F ′) hom(F ′, G)eF ′ .

The vector g has the entries (g)F ′ = Pr (F = F ′) hom(F ′, G). Let G′ be a graph that is non-252

isomorphic to G and let g′ = EF [φF (G
′)] accordingly. By Theorem 1 we know that hom(Gn, G) ̸=253

hom(Gn, G
′). Thus, there is an F ′ such that hom(F ′, G) ̸= hom(F ′, G′). By definition of D we254

have that Pr(F = F ′) > 0 and hence Pr(F = F ′) hom(F ′, G) ̸= Pr(F = F ′) hom(F ′, G′) which255

implies g ̸= g′. That shows that EF [φF (·)] is complete and concludes the proof.256

Lemma 6. kmin is a complete kernel on G∞.257

Proof. Let G,H ∈ G∞. We have to show that258

φ∞̃(G) = φ∞̃(H) ⇔ G=̃H ,

where G=̃H indicates that G and H are isomorphic. There are two cases:259

|V (G)| = |V (H)|: Then, by Theorem 1 we have φN (G) = φn(H) iff G=̃H for N =260

min{|V (G)|, |V (H)|} = |V (G)| = |V (H)|.261

|V (G)| ̸= |V (H)|: Let w.l.o.g. 0 < |V (G)| < |V (H)|. Let P be the graph on exactly one vertex.262

Then hom(P,G) < hom(P,H), i.e., we can distinguish graphs on different numbers of vertices263

using homomorphism counts. As min{|V (G)|, |V (H)|} ≥ 1, we have P ∈ G|V (G)| and hence264

φ|V (G)|(G) ̸= φ|V (G)|(H). The other direction follows directly from the fact that homomorphism265

counts are invariant under isomorphism.266

Theorem 7. Let D be a distribution on G∞ with full support and G ∈ G∞. Then φF (G) =267

hom|V (G)|(F,G)eF with F ∼ D and the corresponding kernel are complete in expectation.268

3https://drive.google.com/file/d/1kCDS0RcLgpDWNdfJz2xIShWEnTLVPgSe/view
4https://github.com/ChristianLebeda/HomSub
5https://github.com/gear/graph-homomorphism-network
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Proof. We can apply the same arguments as before from Theorem 5 to show that the expected269

embeddings of two graphs G,H with size n′ = min{|V (G)|, |V (H)|} are equal iff their Lovász270

vector restricted to size n′ are equal. By Lemma 6 we know that the latter only can happen if the two271

graphs are isomorphic.272

Lemma 8. There exists no distribution D with full support on G∞ such that the expected runtime of273

Eq. (1) becomes polynomial in |V (G)| for all G ∈ G∞.274

Proof. Let D be such a distribution and let D′ be the marginal distribution on the treewidths of
the graphs given by pk = PrF∼D(tw(F ) = k) > 0. Let G be a given input graph in the
sample with n = |V (G)|. Díaz et al. [2002] has shown that computing hom(F,G) takes time
O
(
|V (F )||V (G)|tw(F )+1

)
Assume for the purpose of contradiction that we can guarantee an ex-

pected polynomial runtime (ignoring the |V (F )| and constant factors for simplicity):

EF∼D[n
tw(F )+1] =

∞∑
k=1

pkn
k+1 ≤ Cnc

for some constants C, c ∈ N. Then for all k ≥ c, it must hold that pknk+1 ≤ Cnc, as all summands275

are positive. However, for large enough n the left hand side is larger than the right hand side.276

Contradiction.277

Theorem 9. There exists a distribution D such that computing the expectation complete graph278

embedding φX(G) takes polynomial time in |V (G)| in expectation for all G ∈ Gn.279

Proof. Let G ∈ Gn. Draw a treewidth upper bound k from a Poisson distribution with parameter λ to280

be determined later. Select a distribution Dn,k which has full support on all graphs with treewidth up281

to k and size up to n, for example, the one described in Appendix A. Using the algorithm of [Díaz282

et al., 2002] this gives, for some constant C ∈ N, an expected runtime of283

Ek∼Poi(λ),F∼Dn,k

[
C|V (F )||V (G)|tw(F )+1

]
≤ Ek∼Poi(λ)

[
Cnk+2

]
=

∞∑
k=0

λke−λ

k!
Cnk+2 =

Cn2

eλ
eλn.

We need to bound the right hand side by some polynomial Dnd for some constants D, d ∈ N. By
rearranging terms we see that

λ ≤
ln D

C + (d− 2) lnn

n− 1
= O

(
log n

n

)
is sufficient.284

285

D Matching the expressivness of k-WL in expectation286

We devise a graph embedding matching the expressiveness of the k-WL test in expecation.287

Theorem 10. Let D be a distribution with full support on the set of graphs with treewidth up to k.288

The resulting graph embedding φk-WL
F (·) with F ∼ D has the same expressiveness as the k-WL test289

in expectation. Furthermore, there is a specific such distribution such that can compute φk−WL
F (G)290

in expected polynomial time O(|V (G)|k+1) for all G ∈ G∞.291

Proof. Let Tk be the set of graphs with treewidth up to k and D be a distribution with full support on292

Tk. Then by the same arguments as before in Theorem 5, the expected embeddings of two graphs G293

and H are equal iff their Lovász vectors restricted to patterns in Tk are equal. By Dvořák [2010] and294

Dell et al. [2018] the latter happens iff k-WL returns the same color histogram for both graphs. This295

proves the first claim.296

For the second claim note that the worst-case runtime for any pattern F ∈ Tk is
O
(
|V (F )||V (G)|k+1

)
by Díaz et al. [2002]. However, the equivalence between homomorphism

8
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counts on Tk and k-WL requires to inspect also patterns F of all sizes, in particular, also larger than
the size n of the input graph. To remedy this, we can draw the pattern size m from some distribution
with bounded expectation and full support on N. For example, the geometric m ∼ Geom(p) with
any parameter p ∈ (0, 1) and expectation E[m] = 1

1−p is sufficient. By linearity of expectation then

E
[
|V (F )||V (G)|tw(F )+1

]
= O

(
|V (G)|tw(F )+1

)
.

297

Note that for the embedding φk−WL
F (·) Lemma 8 does not apply. In particular, the used distribution298

guaranteeing polynomial expected runtime is independent of n and can be used for all G∞.299
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