
A Proofs438

We first redefine notation for clarity and then provide the proofs of the results in the main paper.439

Notation. Let k ∈ N denote an iteration of policy evaluation(in Section 3.2). V k denotes the440

true, tabular (or functional) V-function iterate in the MDP, without any correction. V̂ k denotes the441

approximate tabular (or functional) V-function iterate.442

The empirical Bellman operator can be expressed as follows:443

(B̂πV̂ k)(s) = Ea∼π(a|s)r̂(s, a) + γ
∑
s′

Ea∼π(a|s)P̂ (s
′|s, a)[V̂ k(s′)] (10)

where r̂(s, a) is the empirical average reward obtained in the dataset when performing action a at444

state s . The true Bellman operator can be expressed as follows:445

(BπV k)(s) = Ea∼π(a|s)r(s, a) + γ
∑
s′

Ea∼π(a|s)P (s
′|s, a)[V k(s′)] (11)

Now we first prove that the iteration in Eq.2 has a fixed point. Assume state value function is lower446

bounded, i.e., V (s) ≥ C ∀s ∈ S, then Eq.2 can always be solved with Eq.3. Thus, we only need to447

investigate the iteration in Eq.3.448

Denote the iteration as a function operator T π on V . Suppose supp d ⊆ supp du, then the operator449

T π is a γ-contraction in L∞ norm where γ is the discounting factor.450

Proof of Lemma 3.1: Let V and V ′ are any two state value functions with the same support, i.e.,451

suppV = suppV ′.452

|(T πV − T πV ′)(s)| =
∣∣∣∣(B̂πV (s)− α[

d(s)

du(s)
− 1])− (B̂πV ′(s)− α[

d(s)

du(s)
− 1])

∣∣∣∣
=
∣∣∣B̂πV (s)− B̂πV ′(s)

∣∣∣
=|(Ea∼π(a|s)r̂(s, a) + γEa∼π(a|s)

∑
s′

P̂ (s′|s, a)V (s′))

− (Ea∼π(a|s)r̂(s, a) + γEa∼π(a|s)
∑
s′

P̂ (s′|s, a)V ′(s′))|

=γ

∣∣∣∣∣Ea∼π(a|s)∑
s′

P̂ (s′|s, a)[V (s′)− V ′(s′)]

∣∣∣∣∣
||T πV − T πV ′||∞ =max

s
|(T πV − T πV ′)(s)|

=max
s
γ

∣∣∣∣∣Ea∼π(a|s)∑
s′

P̂ (s′|s, a)[V (s′)− V ′(s′)]

∣∣∣∣∣
≤γEa∼π(a|s)

∑
s′

P̂ (s′|s, a)max
s′′
|V (s′′)− V ′(s′′)|

=γmax
s′′
|V (s′′)− V ′(s′′)|

=γ||(V − V ′)||∞
453

We present the bound on using empirical Bellman operator compared to the true Bellman operator.454

Following previous work [4], we make the following assumptions that: Pπ is the transition matrix455

coupled with policy, specifically, PπV (s) = Ea′∼π(a′|s′),s′∼P (s′|s,a′)[V (s′)]456

Assumption A.1. ∀s, a ∈ M, the following relationships hold with at least (1 − δ) (δ ∈ (0, 1))457

probability,458

|r − r(s, a)| ≤ Cr,δ√
|D(s, a)|

, ||P̂ (s′|s, a)− P (s′|s, a)||1 ≤
CP,δ√
|D(s, a)|

(12)
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Under this assumption, the absolute difference between the empirical Bellman operator and the actual459

one can be calculated as follows:460

|(B̂π)V̂ k − (Bπ)V̂ k)| = Ea∼π(a|s)|r − r(s, a) + γ
∑
s′

Ea′∼π(a′|s′)(P̂ (s
′|s, a)− P (s′|s, a))[V̂ k(s′)]|

(13)

≤ Ea∼π(a|s)|r − r(s, a)|+ γ|
∑
s′

Ea′∼π(a′|s′)(P̂ (s
′|s, a′)− P (s′|s, a′))[V̂ k(s′)]|

(14)

≤ Ea∼π(a|s)
Cr,δ + γCP,δ2Rmax/(1− γ)√

|D(s, a)|
(15)

Thus, the estimation error due to sampling error can be bounded by a constant as a function of Cr,δ461

and Ct,δ . We define this constant as Cr,T,δ .462

Thus we obtain:463

∀V, s ∈ D, |B̂πV (s)− BπV (s)| ≤ Ea∼π(a|s)
Cr,t,δ

(1− γ)
√
|D(s, a)|

(16)

Next we provide an important lemma.464

Lemma A.2. (Interpolation Lemma) For any f ∈ [0, 1], and any given distribution ρ(s), let df be465

an f-interpolation of ρ and D, i.e.,df (s) := fd(s) + (1− f)ρ(s), let v(ρ, f) := Es∼ρ(s)[
ρ(s)−d(s)
df (s)

],466

then v(ρ, f) satisfies v(ρ, f) ≥ 0.467

The proof can be found in [6]. By setting f as 1, we have Es∼ρ(s)[
ρ(s)−d(s)
d(s) ] > 0.468

Proof of Theorem 3.2: The V function of approximate dynamic programming in iteration k can be469

obtained as:470

V̂ k+1(s) = B̂πV̂ k(s)− α[ d(s)
du(s)

− 1] ∀s, k (17)

The fixed point:471

V̂ π(s) = B̂πV̂ π(s)− α[ d(s)
du(s)

− 1] ≤ BπV̂ π(s) + Ea∼π(a|s)
Cr,t,δRmax

(1− γ)
√
|D(s, a)|

− α[ d(s)
du(s)

− 1]

(18)
Thus we obtain:472

V̂ π(s) ≤ V π(s) + (I − γPπ)−1Ea∼π(a|s)
Cr,t,δRmax

(1− γ)
√
|D(s, a)|

− α(I − γPπ)−1[
d(s)

du(s)
− 1] (19)

, where Pπ is the transition matrix coupled with the policy π and PπV (s) =473

Ea′∼π(a′|s′)s′∼P (s′|s,a′)[V (s′)].474

Then the expectation of V π(s) under distribution d(s) satisfies:475

Es∼d(s)V̂
π(s) ≤Es∼d(s)(V π(s)) + Es∼d(s)(I − γPπ)−1Ea∼π(a|s)

Cr,t,δRmax

(1− γ)
√
|D(s, a)|

−αEs∼d(s)(I − γPπ)−1[
d(s)

du(s)
− 1])︸ ︷︷ ︸

>0

(20)

When α ≥
Es∼d(s)Ea∼π(a|s)

Cr,t,δRmax

(1−γ)
√

|D(s,a)|

Es∼d(s)[
d(s)
du(s)

−1])
, Es∼d(s)V̂ π(s) ≤ Es∼d(s)(V π(s)).476
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Proof of Theorem 3.3: The expectation of V π(s) under distribution d(s) satisfies:477

Es∼du(s)V̂
π(s) ≤Es∼du(s)(V

π(s)) + Es∼du(s)(I − γP
π)−1Ea∼π(a|s)

Cr,t,δRmax

(1− γ)
√
|D(s, a)|

− αEs∼du(s)(I − γP
π)−1[

d(s)

du(s)
− 1])

(21)

Noticed that the last term:478 ∑
s∼du(s)

(
df (s)

du(s)
− 1) =

∑
s

du(s)(
df (s)

du(s)
− 1) =

∑
s

df (s)−
∑
s

du(s) = 0 (22)

We obtain that:479

Es∼du(s)V̂
π(s) ≤ Es∼du(s)(V

π(s)) + Es∼du(s)(I − γP
π)−1Ea∼π(a|s)

Cr,t,δRmax

(1− γ)
√
|D(s, a)|

(23)

480

Proof of Theorem 3.4: Recall that the expression of the V-function iterate is given by:481

V̂ k+1(s) = Bπ
k

V̂ k(s)− α[ d(s)
du(s)

− 1]∀s, k (24)

Now the expectation of V π(s) under distribution du(s) is given by:482

Es∼du(s)V̂
k+1(s) = Es∼du(s)

[
Bπ

k

V̂ k(s)− α[ d(s)
du(s)

− 1]

]
= Es∼du(s)B

πk

V̂ k(s) (25)

The expectation of V π(s) under distribution d(s) is given by:483

Es∼d(s)V̂
k+1(s) = Es∼d(s)Bπ

k

V̂ k(s)−α[ d(s)
du(s)

−1] = Es∼d(s)Bπ
k

V̂ k(s)−αEs∼d(s)[
d(s)

du(s)
−1]

(26)
Thus we can show that:484

Es∼du(s)V̂
k+1(s)− Es∼d(s)V̂ k+1(s) = Es∼du(s)B

πk

V̂ k(s)− Es∼d(s)Bπ
k

V̂ k(s) + αEs∼d(s)[
d(s)

du(s)
− 1]

= Es∼du(s)V
k+1(s)− Es∼d(s)V k+1(s)− Es∼d(s)[Bπ

k

(V̂ k − V k)]

+ Es∼du(s)[B
πk

(V̂ k − V k)] + αEs∼d(s)[
d(s)

du(s)
− 1]

(27)

By choosing α:485

α >
Es∼d(s)[Bπ

k

(V̂ k − V k)]− Es∼du(s)[Bπ
k

(V̂ k − V k)]
Es∼d(s)[

d(s)
du(s)

− 1]
(28)

We have Es∼du(s)V̂
k+1(s)− Es∼d(s)V̂ k+1(s) > Es∼du(s)V

k+1(s)− Es∼d(s)V k+1(s) hold.486

Proof of Theorem 3.5: V̂ is obtained by solving the recursive Bellman fixed point equation in the487

empirical MDP, with an altered reward, r(s, a) − α[ d(s)du(s)
− 1], hence the optimal policy π∗(a|s)488

obtained by optimizing the value under Eq. 3.5.489

Proof of Theorem 3.6: The proof of this statement is divided into two parts. We first relates the490

return of π∗ in the empirical MDP M̂ with the return of πβ , we can get:491

J(π∗, M̂)− α 1

1− γ
Es∼dπ∗

M̂
(s)[

d(s)

du(s)
− 1] ≥ J(πβ , M̂)− 0 = J(πβ , M̂) (29)

The next step is to bound the difference between J(πβ , M̂) and J(πβ ,M) and the difference between492

J(π∗, M̂) and J(π∗,M). We quote a useful lemma from [4] (Lemma D.4.1):493
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Algorithm 1 CSVE based Offline RL Algorithm
Input: data D = {(s, a, r, s′)}
Parametered Models: Qθ, Vψ , πϕ, Qθ, Mν

Hyperparameters: α, λ, learning rates ηθ, ηψ, ηϕ, ω
▷ Train the transition model with the static dataset D
Mν ← train(D).
▷ Train the conservative value estimation and policy functions
Initialize function parameters θ0, ψ0, ϕ0, θ0 = θ0
for step k = 1 to N do
ψk ← ψk−1 − ηψ∇ψLπV (Vψ; Q̂θk)
θk ← θk−1 − ηθ∇θLπQ(Qθ; V̂ψk

)

ϕk ← ϕk−1 − ηϕ∇ϕL+
π (πϕ)

θk ← ωθk−1 + (1− ω)θk
end for

Lemma A.3. For any MDP M , an empirical MDP M̂ generated by sampling actions according to494

the behavior policy πβ and a given policy π,495

|J(π, M̂)−J(π,M)| ≤ (
Cr,δ
1− γ

+
γRmaxCT,δ
(1− γ)2

)Es∼dπ∗
M̂

(s)[

√
|A|√
|D(s)|

√
Ea∼π(a|s)(

π(a|s)
πβ(a|s)

)] (30)

Setting π in the above lemma as πβ , we get:496

|J(πβ , M̂)− J(πβ ,M)| ≤ (
Cr,δ
1− γ

+
γRmaxCT,δ
(1− γ)2

)Es∼dπ∗
M̂

(s)[

√
|A|√
|D(s)|

√
Ea∼π∗(a|s)(

π∗(a|s)
πβ(a|s)

)]

(31)

given that
√
Ea∼π∗(a|s)[

π∗(a|s)
πβ(a|s) ] is a pointwise upper bound of

√
Ea∼πβ(a|s)[

πβ(a|s)
πβ(a|s) ]([4]). Thus we497

get,498

J(π∗, M̂) ≥ J(πβ , M̂)− 2(
Cr,δ
1− γ

+
γRmaxCT,δ
(1− γ)2

)Es∼dπ∗
M̂

(s)[

√
|A|√
|D(s)|

√
Ea∼π∗(a|s)(

π∗(a|s)
πβ(a|s)

)]

+ α
1

1− γ
Es∼dπ

M̂
(s)[

d(s)

du(s)
− 1]

(32)
which completes the proof.499

Here, the second term is sampling error which occurs due to mismatch of M̂ and M ; the third term500

denotes the increase in policy performance due to CSVE in M̂ . Note that when the first term is small,501

the smaller value of α are able to provide an improvement compared to the behavior policy.502

B CSVE Algorithm and Implementation Details503

In section 4, we have given the complete formula descriptions of a practical offline RL algorithm504

of CSVE. Here we put all together and describe the practical deep offline reinforcement learning505

algorithm in Alg. 1. In particular, the dynamic model model, value functions and policy are all506

parameterized with deep neural networks and trained via stochastic gradient decent methods.507

We implement our method based on an offline deep reinforcement learning library d3rlpy [33]. The508

code is available at: https://github.com/2023AnnonymousAuthor/csve .509

B.1 Additional ablation study510

Effect of exploration on near states. We analyze the impact of varying the factor λ in Eq. 9, which511

controls the intensity on such exploration. We investigated λ values of {0.0, 0.1, 0.5, 1.0} in the512
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Table 3: Hyper-parameters of CSVE evaluation

Hyper-parameters Value and description

B 5, number of ensembles in dynamics model
α 10, to control the penalty of out-of-distribution states
τ 10, budget parameter in Eq. 8

β
In Gym domain, 3 for random and medium tasks, 0.1 for the other tasks;
In Adroit domain, 30 for human and cloned tasks, 0.01 for expert tasks

γ 0.99, discount factor.
H 1 million for Mujoco while 0.1 million for Adroit tasks.
w 0.005, target network smoothing coefficient.

lr of actor 3e-4, policy learning rate
lr of critic 1e-4, critic learning rate

medium tasks, fixing β = 0.1. The results are plotted in Fig. 2. As shown in the upper figures, λ has513

obvious effect to policy performance and variances during training. With increasing λ from 0, the514

converged performance gets better in general. However, when the λ becomes too large (e.g., λ = 3515

for hopper and walker2d), the performance may degrade or even collapse. By further investigating516

the Lπ loss in Eq.9, as shown in the bottom figures, we found that larger λ values have negative effect517

to Lπ; however, once Lπ converges low reasonably, the bigger λ leads to performance improvement.518
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Figure 2: Effect of λ to performance scores (upper figures) and losses (bottom figures) in Eq. 9 on
medium tasks.

Effect of model errors. Compared to traditional model-based offline RL algorithms, CSVE is less519

affected by model biases. To measure this quantitatively, we studied the impact of model biases on520

performance by using the average L2 error on transition prediction as a surrogate for model biases.521

As shown in Fig. 3, the effect of model bias on RL performance is subtle in CSVE. Specifically, for522

the halfcheetah task, there is no observable impact of model errors on scores, while in the hopper and523

walker2d tasks, there is only a slight decrease in scores as the errors increase.524
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Figure 3: Effect of the model biases to performance scores. The correlation coefficient is −0.32,
−0.34, and −0.29 respectively.

C Experimental Details and Complementary Results525

C.1 Hyper-parameters of CSVE evaluation in experiments526

The detailed hyper-parameters of CSVE used in experiments are provided in Table 3.527

C.2 More experiments on hyper-parameters effect528

We also investigated λ values of {0.0, 0.5, 1.0, 3.0} in the medium-replay tasks. The results are529

shown in Fig. 2.530
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Figure 4: Effect of λ to Score (upper figures) and Lπ loss in Eq. 9 (bottom figures)

C.3 Details of Baseline CQL-AWR531

In order to directly compare effect of the conservative state value estimation against Q value estimation,532

we implement a baseline method namely CQL-AWR as follows:533

Q̂k+1 ← argmin
Q

α (Es∼D,a∼π(a|s)[Q(s, a)]− Es∼D,a∼π̂β(a|s)[Q(s, a)]) +
1

2
Es,a,s′∼D[(Q(s, a)− β̂πQ̂k(s, a))2]

π ← argmin
π′

Lπ(π
′) = −Es,a∼D

[
log π′(a|s) exp

(
βÂk+1(s, a)

)]
− λEs∼D,a∼π′(s)

[
Q̂k+1(s, a)

]
where Âk+1(s, a) = Q̂k+1(s, a)− Ea∼π[Q̂k+1(s, a)].

In CQL-AWR, the critic adopts a normal CQL equation, while the policy improvement part uses a534

AWR extended with new action exploration indicated by the conservative Q function. Compared535

to our CSVE implementation, its policy part is similar except that the exploration is Q-based and536

model-free.537

C.4 Reproduction of COMBO538

In Table 1 of our main paper, our results of COMBO adopt the one presented in literature [23]. Here539

we list other reproducing efforts and results which may be helpful for readers to compare CSVE with540

COMBO.541

Official Code. We preferred to rerun the official COMBO code provided by authors. The code is542

implemented in Tensoflow 1.x and depends on software versions in 2018. We rebuilt the environment543

but still failed to reproduce the results. For example, Fig. 5 shows the asymptotic performance on544

medium datasets until 1000 epochs, in which the scores have been normalized with corresponding545

SAC performance. We found that in both hopper and walker2d, the scores show dramatic fluctuations.546

The average scores of last 10 epochs for halfcheetah, hopper and walker2d are 71.7, 65.3 and -0.26 in547

respect. Besides, we found that even in D4RL v0 dataset, COMBO’s behaviours are similar with548

recommended hyper-parameters.549

17

https://openreview.net/attachment?id=8WRYT8QAcj&name=supplementary_material


0 200 400 600 800 1000

0

10

20

30

40

50

60

70

Sc
or

e

halfcheetah_v2: Score of Return Average

0 200 400 600 800 1000
0

10

20

30

40

50

60

70

Sc
or

e

hopper_v2: Score of Return Average

0 200 400 600 800 1000

2

0

2

4

6

8

10

Sc
or

e

walker2d_v2: Score of Return Average

Figure 5: Return of official COMBO implementation on D4RL mujoco v2 tasks, fixing seed=0.

JAX-based optimized implementation Code [34]. We also rerun one recent re-implementation550

in RIQL which is the most highly tuned implementation so far. The results are shown in Fig.6. For551

random and expert datasets, we used the same hyper-parameters same with medium and medium-552

expert respectively. For all other datasets, we used the default hyper-parameters given by authors553

[34]. By comparing with the authors’ results (Table 10 and Fig.7 in [34]), our reproduced results are554

still lower and with larger variances.555

C.5 Effect of Exploration on near Dataset Distributions556

As discussed in Section 3.1 and 4.2, proper choice of exploration on the distribution (d) beyond data557

(du) should help policy improvement. The factor λ in Eq. 9 controls the trade-off on such ’bonus’558

exploration and complying the data-implied behaviour policy.559

In section 5.2, we have investigated the effect of λ in medium datasets of mujoco tasks. Now let us560

further take the medium-replay type of datasets for more analysis of its effect. In the experiments,561

with fixed β = 0.1, we investigate λ values of {0.0, 0.5, 1.0, 3.0}. As shown in the upper figures562

in Fig. 4, λ shows obvious effect to policy performance and variances during training. In general,563

there is a value under which increasing λ leads to performance improvement, while above which564

further increasing λ hurts performance. For example, with λ = 3.0 in hopper-medium-replay task565

and walker2d-medium-replay task, the performance get worse than with smaller λ values. The value566

of λ is task-specific, and we find that its effect is highly related to the loss in Eq. 9 which can be567

observed by comparing bottom and upper figures in Fig. 4. Thus, in practice, we can choose proper λ568

according to the above loss without online interaction.569

C.6 Conservative State Value Estimation by Perturbing Data State with Noise570

In this section, we investigate a model-free method for sampling OOD states, and compare its results571

with the model-based method adopted in our implementation in section 4.572

The model-free method samples OOD states by randomly adding Gaussian noise to the sampled573

states from data. Specifically, we replace the Eq.5 with the following Eq. 33, and other parts are same574

as previous.575

V̂ k+1 ← argmin
V

LπV (V ; Q̂k) = α
(
Es∼D,s′=s+N(0,σ2)[V (s′)]− Es∼D[V (s)]

)
+ Es∼D

[
(Ea∼π(·|s)[Q̂k(s, a)]− V (s))2

]
.

(33)

The experimental results on mujoco control tasks are summarized in Table 4. As shown, with different576

noise levels (σ2), the model-free CSVE may performs better or worse than our original model-based577

CSVE implementation; and for some problems, the model-free method show very large variances578

across seeds. Intuitively, if the noise level covers the reasonable state distribution around data, its579

performance is good; otherwise, it misbehaves. Unfortunately, it is hard to find a noise level that is580

consistent for different tasks or even the same tasks with different seeds.581

18

https://github.com/fuyw/RIQL


0 200 400 600 800 1000
Time Step (1e3)

0

5

10

15

20

25

30
halfcheetah-random-v2

0 200 400 600 800 1000
Time Step (1e3)

5

0

5

10

15

20

25

30
hopper-random-v2

0 200 400 600 800 1000
Time Step (1e3)

0

2

4

6

8

10

12

14

16
walker2d-random-v2

0 200 400 600 800 1000
Time Step (1e3)

0

10

20

30

40

50

60
halfcheetah-medium-v2

0 200 400 600 800 1000
Time Step (1e3)

0

20

40

60

80

100

hopper-medium-v2

0 200 400 600 800 1000
Time Step (1e3)

0

20

40

60

80

walker2d-medium-v2

0 200 400 600 800 1000
Time Step (1e3)

10

20

30

40

50

halfcheetah-medium-replay-v2

0 200 400 600 800 1000
Time Step (1e3)

20

40

60

80

100
hopper-medium-replay-v2

0 200 400 600 800 1000
Time Step (1e3)

0

20

40

60

80

walker2d-medium-replay-v2

0 200 400 600 800 1000
Time Step (1e3)

0

20

40

60

80

halfcheetah-medium-expert-v2

0 200 400 600 800 1000
Time Step (1e3)

20

40

60

80

100

hopper-medium-expert-v2

0 200 400 600 800 1000
Time Step (1e3)

20

0

20

40

60

walker2d-medium-expert-v2

0 200 400 600 800 1000
Time Step (1e3)

0

10

20

30

40

halfcheetah-expert-v2

0 200 400 600 800 1000
Time Step (1e3)

0

20

40

60

80

100

120

hopper-expert-v2

0 200 400 600 800 1000
Time Step (1e3)

1.0

0.5

0.0

0.5

1.0

1.5

2.0

2.5

walker2d-expert-v2

Figure 6: Return of an optimized COMBO implementation[34] on D4RL mujoco v2 tasks. The data
are got by running with 5 seeds for each task, and the dynamics model has 7 ensembles.

19



Table 4: Performance comparison on Gym control tasks. The results of different noise levels is over
three seeds.

CQL CSVE σ2=0.05 σ2=0.1 σ2=0.15

R
an

do
m HalfCheetah 17.5± 1.5 26.7± 2.0 20.8± 0.4 20.4± 1.3 18.6± 1.1

Hopper 7.9± 0.4 27.0± 8.5 4.5± 3.1 14.2± 15.3 6.7± 5.4
Walker2D 5.1± 1.3 6.1± 0.8 3.9± 3.8 7.5± 6.9 1.7± 3.5

M
ed

iu
m HalfCheetah 47.0± 0.5 48.6± 0.0 48.2± 0.2 47.5± 0.0 46.0± 0.9

Hopper 53.0± 28.5 99.4± 5.3 36.9± 32.6 46.1± 2.1 18.4± 30.6
Walker2D 73.3± 17.7 82.5± 1.5 81.5± 1.0 75.5± 1.9 78.6± 2, 9

M
ed

iu
m

R
ep

la
y HalfCheetah 45.5± 0.7 54.8± 0.8 44.8± 0.4 44.1± 0.5 43.8± 0.4

Hopper 88.7± 12.9 91.7± 0.3 85.5± 3.0 78.3± 4.3 70.2± 12.0
Walker2D 81.8± 2.7 78.5± 1.8 78.7± 3.3 76.8± 1.3 66.8± 4.0

M
ed

iu
m

E
xp

er
t HalfCheetah 75.6± 25.7 93.1± 0.3 87.5± 6.0 89.7± 6.6 93.8± 1.6

Hopper 105.6± 12.9 95.2± 3.8 63.2± 54.4 99.0± 11.0 37.6± 63.9
Walker2D 107.9± 1.6 109.0± 0.1 108.4± 1.9 109.5± 1.3 110.4± 0.6

E
xp

er
t HalfCheetah 96.3± 1.3 93.8± 0.1 59.0± 28.6 67.5± 21.9 75.3± 27.3

Hopper 96.5± 28.0 111.2± 0.6 67.3± 57.7 109.2± 2.4 109.4± 2.1
Walker2D 108.5± 0.5 108.5± 0.0 109.7± 1.1 108.9± 1.6 108.6± 0.3
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