
Under review as a conference paper at ICLR 2024

A EXPERIMENT DETAILS

To enhance the reproducibility of NeRFuser, we summarize the experiment details such as the
configurations and parameters used in Table 6.

Table 6: Hper-parameters. We list all hyper-parameters for reproducing NeRFuser results below.

Parameter Value
training iteration 50K
Learning rate Scheduler False
Optimizer Adam
learning rate 0.0005
Weight Decay 1× 10−6

Translation loss coefficient (λtrans) 300
Rotation loss coefficient (λtrans) 1
Gripper openness loss coefficient (λtrans) 1
Collision loss coefficient (λtrans) 1
Diffusion loss coefficient (λdiff) 5
denoising steps (training) 100
ray batch size bray 512
embedding loss coefficient λfeat 0.01
Batch size 32
GPU RTX 3090

B SIMULATED TASK DESCRIPTIONS

We have chosen ten language-conditioned tasks from RLBench (James et al., 2020). An overview of
these tasks is presented in Table 7. Our variations include randomly sampled colors, sizes, placements,
and object categories. The color set includes twenty instances: red, maroon, lime, green, blue, navy,
yellow, cyan, magenta, silver, gray, orange, olive, purple, teal, azure, violet, rose, black, and white.
The size set comprises two types: short and tall. The placements and object categories are specific to
each task. The average keyframes numbers are varied from 2 to 15, representing different horizon
length.

Table 7: Language-conditioned tasks in RLBench (James et al., 2020).

Task Variation Type # of Variations Avg. Keyframs Language Template

turn tap placement 2 2.0 “turn — tap”
drag stick color 20 6.0 “use the stick to drag the cube onto the — — target”
open fridge placement 1 4.4 “open the fridge door”
put in drawer placement 3 15.0 “put the item in the — drawer”
sweep to dustpan size 2 4.6 “sweep dirt to the — dustpan”
meat off grill category 2 5.0 “take the — off the grill”
phone on base placement 1 6.4 “put the phone on the base”
place wine placement 3 6.2 “stack the wine bottle to the — of the rack”
slide block color 4 4.7 “slide the block to — target”
put in safe placement 3 6.1 “put the money away in the safe on the — shelf”

C REAL ROBOT KEYFRAMES

We demonstrate the keyframes from two of our real robot tasks.

14



Under review as a conference paper at ICLR 2024

Figure 6: Keyframes for Real-Robot tasks We give two examples of keyframes used in our real
robot tasks.

D MODEL ARCHITECTURES

Figure 7: Fusion Decoder Architecture.
3D Encoder. We use a 3D UNet with 4.72M parameters to encode the input voxel 1003 × 10 into a
deep 3D volumetric representation of size 1003 × 64.We provide the PyTorch-Style pseudo-code for
the forward process as follows. Each conv layer comprises a single 3D Convolutional Layer, followed
by Batch Normalization, and Leaky ReLU activation.

def forward(self, x):
conv0 = self.conv0(x) # 100ˆ3x8
conv2 = self.conv2(self.conv1(conv0)) # 50ˆ3x16
conv4 = self.conv4(self.conv3(conv2)) # 25ˆ3x32
conv6 = self.conv6(self.conv5(conv4)) # 13ˆ3x64
conv8=self.conv8(self.conv7(conv6)) # 7ˆ3x128
x = self.conv10(self.conv9(conv8)) # 7ˆ3x256
x = conv8 + self.conv11(x) # 7ˆ3x128
x = conv6 + self.conv13(x) # 13ˆ3x64
x = conv4 + self.conv15(x) # 25ˆ3x32
x = conv2 + self.conv17(x) # 50ˆ3x16
x = self.conv_out(conv0 + self.conv19(x)) # 100ˆ3x64
return x

Fusion Decoder.We use several set abstraction blocks to fuse pre-trained 3D semantics feature,
geometric point cloud feature, language feature from CLIP and robot proprioception embedding.
This generates a vision-language feature of size 1024 as input of policy MLP.

Noise Predictor. The architecture of the noise predictor is a modified U-Net architecture designed to
handle 1D inputs and incorporates conditional inputs. It’s comprised of an Encoder, Decoder, and
additional components to process conditional inputs.

15



Under review as a conference paper at ICLR 2024

• Encoder: The encoder is composed of a sequence of conditional residual block and each
block has two “Conv1d → GroupNorm → Mish” components. A downsampling layer is
applied after each block, performing downsampling with Conv1d.

• Decoder: Similar to the encoder while replacing the downsampling layers with upsampling
layers performed by ConvTranspose1d.

• Final Convolution Layer: A sequence comprising a “Conv1d → GroupNorm → Mish”
and Conv1d layer.

We apply the Feature-wise Linear Modulation (FiLM) (Perez et al., 2018) to enable the noise predictor
to predict the noise with conditional input, the fused feature. This technique is particularly useful in
conditional generation tasks. The FiLM module performs modulation by applying a simple affine
transformation to each feature map. Given a feature map x, the FiLM transformation is defined as:

FiLM(x) = γ · x+ β, (6)

where x is the input feature map, γ is the scale parameter, and β is the shift parameter. In our noise
predictor architecture, the fused feature is used to predict the FiLM parameters γ and β. The predicted
parameters are then used to modulate the feature maps within each block.

Policy MLP. The Policy MLP is composed of several MLPs. The translation output has one
independent MLP and the remaining rotation, collision, and open action, share another set of MLP.

16


	Experiment Details
	Simulated Task Descriptions
	Real Robot Keyframes
	Model Architectures

