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ABSTRACT

Agents navigating in 3D environments require some form of memory, which should
hold a compact and actionable representation of the history of observations useful
for decision taking and planning. In most end-to-end learning approaches the
representation is latent and usually does not have a clearly defined interpretation,
whereas classical robotics addresses this with scene reconstruction resulting in
some form of map, usually estimated with geometry and sensor models and/or
learning. In this work we propose to learn an actionable representation of the scene
independently of the targeted downstream task and without explicitly optimizing
reconstruction. The learned representation is optimized by a blind auxiliary agent
trained to navigate with it on multiple short sub episodes branching out from a
waypoint and, most importantly, without any direct visual observation. We argue
and show that the blindness property is important and forces the (trained) latent
representation to be the only means for planning. With probing experiments we
show that the learned representation optimizes navigability and not reconstruction.
On downstream tasks we show that it is robust to changes in distribution, in
particular the sim2real gap, which we evaluate with a real physical robot in a real
office building, significantly improving performance.

1 INTRODUCTION

Navigation in 3D environments requires agents to build actionable representations, which we define
as in Ghosh et al. (2019) as “aim(ing) to capture those factors of variation that are important for
decision making”. Classically, this has been approached by integrating localization and reconstruction
through SLAM (Thrun et al., 2005; Bresson et al., 2017; Lluvia et al., 2021), followed by planning
on these representations. On the other end of the spectrum we can find end-to-end approaches,
which map raw sensor data through latent representations directly to actions and are typically trained
large-scale in simulations from reward (Mirowski et al., 2017; Jaderberg et al., 2017) or with imitation
learning (Ding et al., 2019). Even for tasks with low semantics like PointGoal, it is not completely
clear whether an optimal representation should be “handcrafted” or learned. While trained agents can
achieve extremely high success rates of up to 99% (Wijmans et al., 2019; Partsey et al., 2022), this has
been reported in simulation. Performance in real environments is far lower, and classical navigation
stacks remain competitive in these settings (Sadek et al., 2022). This raises the important question
of whether robust and actionable representations should be based on precise reconstruction, and we
argue that an excess amount of precision can potentially lead to a higher internal sim2real gap and
hurt transfer, similar (but not identical) to the effect of fidelity in training in simulation (Truong et al.,
2022). Interestingly, research in psychology has shown that human vision has not been optimized for
high-fidelity 3D reconstruction, but for the usefulness and survival (Prakash et al., 2021).

We argue that artificial agents should follow a similar strategy and we propose tailored auxiliary
losses, which are based on interactions with the environment and directly target the main desired
property of a latent representation: its usability for navigation. This goal is related to Cognitive Maps,
spatial representations built by biological agents known to emerge from interactions (Tolman, 1948;
Blodgett, 1929; Menzel, 1973), even in blind agents, biological (Lumelsky & Stepanov, 1987) or
artificial ones (Wijmans, 2022; Wijmans et al., 2023).
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Figure 1: Without reconstruction, we learn an ac-
tionable map-like representation computed by an
agent of the visual observations collected along
its trajectory . We optimize for its usefulness:
a representation estimated at point is passed to
a blind auxiliary agent trained to reach subgoals

on short episodes . Solving this requires
sufficient latent reconstruction of the scene, and
we show that blindness of the auxiliary agent is a
key property. We train in simulation and transfer
to a real environment.

Inspired by this line of research, we propose learning
a latent spatial representation we call Navigability and
avoid spending training signals on learning to explicitly
reconstruct the scene in unnecessary detail, potentially
not useful or even harmful for transfer. We augment
the amount of information carried by the training signal
compared to reward. We consider the ability of per-
forming local navigation an essential skill for a robot,
i.e. the capability to detect free navigable space, avoid
obstacles, and find openings in closed spaces in order
to leave them. We propose to learn a representation
which optimizes these skills directly, prioritizing usabil-
ity over fidelity, as shown in Figure 1. A representation
is built by an agent through sequential integration of
visual observations. This representation is passed to a
blind auxiliary agent, which is trained to use it as its
sole information to navigate to a batch of intermediate
subgoals. Optimizing over the success of the blind aux-
iliary agent leads to an actionable representation and
can be done independently of the downstream task.

We explore the following questions: (i) Can a latent cognitive map be learned by an agent through the
communication with a blind auxiliary agent? (ii) What kind of spatial information does it contain?
(iii) Can it be used for downstream tasks? (iv) Is it more transferable than end-to-end training in
out-of-distribution situations such as sim2real transfer?

2 RELATED WORK

Navigation with mapping and planning — Classical methods typically require a map (Burgard
et al., 1998; Marder-Eppstein et al., 2010; Macenski et al., 2020) and are composed of three modules:
mapping and localization using visual observations or Lidar (Thrun et al., 2005; Labbé & Michaud,
2019; Bresson et al., 2017; Lluvia et al., 2021), high-level planning (Konolige, 2000; Sethian, 1996)
and low-level path planning (Fox et al., 1997; Rösmann et al., 2015). These methods depend
on sophisticated noise filtering, temporal integration with precise odometry and loop closure. In
comparison, we avoid the intermediate goal of explicit reconstruction, directly optimizing usefulness.

End-to-end training — on the other side of the spectrum we find methods which directly map sensor
input to actions and trained latent representations, either flat vectorial like GRU memory, or structured
variants: neural metric maps encoding occupancy (Chaplot et al., 2020b), semantics (Chaplot et al.,
2020a) or fully latent metric representations (Parisotto & Salakhutdinov, 2018; Beeching et al., 2020b;
Henriques & Vedaldi, 2018); neural topological maps (Beeching et al., 2020a; Shah & Levine, 2022;
Shah et al., 2021); transformers (Vaswani et al., 2017) adapted to navigation (Fang et al., 2019;
Du et al., 2021; Chen et al., 2022; Reed et al., 2022); and implicit representations (Marza et al.,
2023). While these methods share our goal of learning useful and actionable representations, these
representations are tied to the actual downstream task, whereas our proposed “Navigability” optimizes
for local navigation, an important capability common to all navigation tasks.

Pre-text tasks — Unsupervised learning and auxiliary tasks share a similar high-level goal with
our work, they provide a richer and more direct signal for representation learning. Potential fields
(Ramakrishnan et al., 2022) are trained from top down maps and contain unexplored areas and
estimates of likely object positions. A similar probabilistic approach has been proposed in RECON
by Shah et al. (2021). In (Marza et al., 2022), goal direction is directly supervised. Our work can
be seen as a pre-text task directly targeting the usefulness of the representation combined with an
inductive bias in the form of the blind auxiliary agent.

Backpropagating through planning — in this line of work a downstream objective is backpropa-
gated through a differentiable planning module to learn the upstream representation. In (Weerakoon
et al., 2022) and similarly in (Dashora et al., 2021), this is a cost-map used by a classical planner.
Neural-A* (Yonetani et al., 2021) learns a cost-map used by a differentiable version of A*. Similarly,
Cognitive Mapping and Planning (Gupta et al., 2017) learns a mapping function by backpropagating
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through Value Iteration Networks (Tamar et al., 2016). Our work shares the overall objective, the
difference being that (i) we optimize Navigability as an additional pre-text task and, (ii) we introduce
the blind agent as inductive bias, which minimizes the reactive component of the task and strengthens
the more useful temporal integration of a longer history of observations — see Section 4. Somewhat
related to our work, motion planning performance has been proposed as learnable evaluation metric
(Philion et al., 2020), and attempts have been made to leverage this kind of metric for learning
representations (Philion & Fidler, 2020; Zeng et al., 2021), albeit without application to navigation.

Sim2Real transfer — transferring representations to real world has gained traction since the recent
trend to large-scale learning in simulated 3D environments (Höfer et al., 2020; Chattopadhyay
et al., 2021; Kadian et al., 2020; Anderson et al., 2018; Dey et al., 2023). Domain randomization
randomizes the factors of variation during training (Peng et al., 2018; Tan et al., 2018), whereas
domain adaptation transfers the model to real environments, or in both directions (Truong et al.,
2021), through adversarial learning (Zhang et al., 2019), targeting dynamics (Eysenbach et al., 2021)
or perception (Zhu et al., 2019), or by fine-tuning to the target environment (Sadek et al., 2022).
Table 6 in appendix lists some efforts. Our work targets the transfer of a representation by optimizing
its usefulness instead of reconstruction.

Biological agents — like rats, have been shown to build Cognitive Maps, spatial representations
emerging from interactions (Tolman, 1948), shown to partially emerge even when there is no reward
nor incentives (Blodgett, 1929; Tolman, 1948). Similarly, chimpanzees are capable of developing
greedy search after interactions (Menzel, 1973). Blind biological agents have been shown to be
able navigate (Lumelsky & Stepanov, 1987), which has recently been replicated for artificial agents
(Wijmans et al., 2023). Certain biological agents have also been shown to develop grid, border and
place cells (Hafting et al., 2005), which have also been reproduced in artificial agents (Cueva & Wei,
2018; Banino et al., 2018). There are direct connections to our work, where a representation emerges
from interactions of a blind agent.

Goal-oriented models — are learned through optimizing an objective with respect to subgoals.
Hindsight Experience Replay (Andrychowicz et al., 2017) optimizes sample efficiency by reusing
unsuccessful trajectories, recasting them as successful ones wrt. different goals. Chebotar et al. (2021)
learn “Actionable Models” by choosing different states in trajectories as subgoals through hindsight
replay. In Reinforcement Learning (RL), successor states provide a well founded framework for goal
dependent value functions (Blier et al., 2021). Subgoals have also recently been integrated into the
MDP-option framework (Lo et al., 2022). Similarly, subgoals play a major part in our work.

3 LEARNING NAVIGABILITY

We learn a representation useful for different visual navigation problems, and without loss of generality
we formalize the problem as a PointGoal task: An agent receives RGB-D observations ot and a
Euclidean goal vector (GPS+Compass) Gt at each time step t and must take actions at, which are
typically discrete actions from a given alphabet {FORWARD 25cm, TURN LEFT 10◦, TURN RIGHT
10◦ and STOP}. The agent sequentially builds a representation rt from the sequence of observations
{ot′}t′<t and the previous action at−1, and a policy π predicts a distribution over actions,

rt = f(ot, Gt, rt−1,at−1) , p(at) = π(rt), (1)

where f in our case is a neural network with GRU memory (Cho et al., 2014), but which can also be
modeled as self-attention over time as in (Chen et al., 2021; Janner et al., 2021; Reed et al., 2022).
We omit dependencies on parameters and gating mechanisms from our notations.
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Figure 2: Our training data is organized into “long
episodes” from start S to target T navigated by the
main agent π and “short episodes” branching out at
waypoints Wi to subgoals gj .

We do not focus on learning the main policy π,
which can be trained with RL, imitation learning
(IL) or other losses on a given downstream task.
Instead, we address the problem of learning the
representation rt through its usefulness: we opti-
mize the amount of information rt carries about the
navigability of (and towards) different parts of the
scene. When given to a blind auxiliary agent, this
information should allow the agent to navigate to
any sufficiently close point, without requiring any
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k,.
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Figure 3: Learning navigability: the difference between classical behavior cloning (Left), which directly learns
the main target policy π on a downstream task, and learning navigability (Right), i.e. learning a representation
rt predicted by f through a blind auxiliary policy ρ allowing to navigate by predicting sequences of actions for
a batch of different subgoals for each time instant t. The representation is then used by the downstream policy π.

visual observation during its own steps. We cast this as a tailored variant of behavior cloning (BC)
using privileged information from the simulator.

We organize the training data into episodes, for each of which we suppose the existence of optimal
(shortest) paths, e.g. calculated in simulation from GT maps. We distinguish between long and short
episodes, as shown in Figure 2. During training, long episodes are followed by the (main) agent π,
which integrates observations into representations rt as in eq. (1). At waypoints Wi sampled regularly
during the episode, representations rt are collected and sent to a batch (of size B) of multiple blind
auxiliary agents, which branch out and are trained to navigate to a batch of subgoals {gj}j=1...B .

The blind agent is governed by an auxiliary policy ρ operating on its own recurrent GRU memory h,

hk,j = f̄(gj ,hk−1,j , rt, āk−1,j), (2)
p(āk,j) = ρ(hk,j), (3)

where the index j is over the subgoals of the batch, k goes over the steps of the short episode, and the
actions āk,j are actions of the aux agent. The representation rt collected at step t of the main policy
remains constant over the steps k of the auxiliary policy, with f̄ its GRU update function. This is
illustrated in Figure 3 (f̄ not shown, integrated into ρ).

We train the policy ρ and the function f predicting the representation rt jointly by BC minimizing
the error between actions āk,j and the GT actions ā∗k,j derived from shortest path calculations:

f̂ =argminf,ρ
∑

k

∑B
j=1 LCE(āk,j , ā

∗
k,j), (4)

where LCE is the cross-entropy loss and the index k runs over all steps in the training set. Let us
recall again a detail, which might be slightly hidden in the notation in equation (4): while the loss
runs over the steps k in short-trajectories, these steps are attached to the steps t in long episodes
through the visual representation rt built by the encoder f , as in equation (3). The auxiliary policy ρ
is a pre-text task and not used after training. Navigation is performed by the main agent π, which is
finetuned on its own downstream objective.

Navigability vs. BC — there is a crucial difference to classical Behavior Cloning, which trains the
main policy jointly with the representation f from expert trajectories mimicking or approximating
the desired optimal policy (see Ramrakhya et al. (2023) for comparisons), i.e.:

rt = f(ot, Gt, rt−1,at−1) , p(at) = π(rt) (5)

(f̂ , π̂) = argminf,π
∑

i∈D LCE(a
∗
i , π(ri)), (6)

where Gt is the (global) navigation goal and D the training data. In the case of navigation, these
experts are often shortest path calculations or human controllers combined with goal selection through
hindsight. It is a well-known that BC is suboptimal for several reasons (Kumar et al., 2022). Amongst
others, it depends on sufficient sampling of the state space in training trajectories, and it fails to
adequately learn exploration in the case where no single optimal solution is available to the agent due
to partial observability. In contrast, our navigability loss trains the representation rt only, and can be
combined with independently chosen downstream policies.
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Subgoal mining — For a given compute budget, the question arises how many steps are spent on
long vs. short episodes, as each step spent on a short episode is removing one visual observation
from training — ρ is blind. We sample waypoints on each long episode and attach a fixed number
of subgoals to each waypoint sampled uniformly at a given Euclidean distance. Mining subgoal
positions is key to the success of the method: Sampled too close, they lack information. Outside of
the observed are (and thus not represented in rt), the blind auxiliary agent would have to rely on
regularities in environment layouts to navigate, and not on rt. We sample a large initial number of
subgoals and remove less informative ones, ie. those whose geodesic distance dG to the waypoint is
close to its Euclidean distance dE , i.e. dG

dE
<T . For these, following the compass vector would be a

sufficient strategy, non-informative about the visual representation. Details are given in Section 5.

Implementation and downstream tasks — Akin to training with PPO (Schulman et al., 2017), a
rollout buffer is collected with multiple parallel environment interactions, on which the Navigability
loss is trained. This facilitates optional batching of PPO with navigability, with both losses being
separated over different environments — see Section 5, and the appendix for implementation.

Training of the agent is done in two phases: a first representation training, in which the main policy
π, the representation rt and the auxiliary agent ρ are jointly trained minimizing LNav , eq. (4). This
is followed by fine-tuning on the downstream task with PPO. We also propose a combination of
Navigability and BC losses using L = LNav + LBC . The advantages are two-fold: (i) training the
main policy is not idle for environments selected for the Navigability loss, and (ii) visual observations
gathered in environment steps spent in short episodes are not wasted, as they are used for training rt
through backpropagation through the main policy — see Section 5.

4 ON THE IMPORTANCE OF THE BLINDNESS PROPERTY

We argue that blindness of the auxiliary agent is an essential property, which we motivate by consid-
ering the impact of the supervised learning objective in terms of compression and vanishing gradients.

t1

t2

π

Figure 4: Beh. cloning.

Figure 4 shows a main agent π which, after having entered the scene and
made a circular motion, has observed the central square-shaped obstacle
and the presence of the door it came through. Our goal is to maximize the
amount of information on the obstacles and navigable space extracted by
the agent through its training objective. Without loss of generality we single
out the representation estimated at t=t1 indicated in Figure 4. While this
information is in principle present in the observation history {ot}t≤t1 , there
is no guarantee that it will be kept in the representation rt at t=t1, as the
amount of information storable in the recurrent memory rt is much lower

than the information observed during the episode. Agent training leads to a learned compression
mechanism, where the policy (expressed through equation (5)) compresses {ot}t≤t1 in two steps: (1)
information from ot not useful at all is discarded by f before it is integrated into rt; (2) information
from ot useful for a single step is integrated into rt, used by π and then discarded by f at the
next update, i.e. it does not make it into rt+1. Here we mean by “information content” the mutual
information (MI) between rt and the observation history, i.e.

I(rt;opast) = Ep(opast)

[
log

p(rt|opast)

p(rt)

]
, (7)

where opast = {ot′}t′≤t. Dong et al. (2020) provide a detailed analysis of information retention and
compression in RNNs in terms of MI and the information bottleneck criterion (Bialek et al., 2001).

The question therefore arises, whether the BC objective is sufficient to retain information on the
scene structure observed before t=t1 in rt at t=t1. Without loss of generality, let us single out the
learning signal at t=t2, where t2 > t1, as in Figure 4. We assume the agent predicts an action at,
which would lead to a collision with the central obstacle, and receives a supervision GT signal a∗t ,

which avoids the collision: a∗
t . Minimizing L(at,a∗t ) requires learning to predict the correct

action a∗t given its “input” rt, and in this case this can happen in two different reasoning modes:

(r1) learning a memory-less policy which avoids obstacles visible in its current observation, or
(r2) learning a policy which avoids obstacles it detects in its internal latent map, which was

integrated over its history of observations.
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It is needless to say that (r2) is the desired behavior compatible with our goal stated above. However,
if minimizing the BC objective can be realized by both, (r1) and (r2), we argue that training will
prioritize learning (r1) and neglect (r2) for essentially two reasons: firstly, the compression mechanism
favors (r1) which does not require holding it in an internal state for longer than one step. Secondly,
reasoning (r2) happens over multiple hops and requires backpropagation over multiple time instants,
necessary for the integration of the observed sequence into a usable latent map. The vanishing
gradient problem will make learning (r2) harder than the short chain reasoning (r1).

ρ

t1

t2

π

Figure 5: Navigability.

Let’s now consider the navigability loss, illustrated in Figure 5. The main
agent π integrates visual observations over its own trajectory up to waypoint
t=t1. The aux agent ρ navigates on the blue trajectory and we again consider
the effect of the supervised learning signal at t=t2. Minimizing L(at,a∗t )
requires learning an agent which can predict the correct action a∗t given its
“input” rt, but now, this can happen in one way only: since the agent ρ is
blind, the BC objective cannot lead to reasoning (r1), i.e. memory-less, as
it lacks the necessary visual observation to do so. To consistently predict
the correct action a∗t , the representation rt collected at t=t1 is necessary, i.e.

(r2). Making the aux agent blind has thus the double effect of resisting the compression mechanism
in learning, and to force the learning signal through a longer backpropagation chain, both of which
help integrating relevant observations into the agent memory. Ribeiro et al. (2020) have recently
shown that information retention and vanishing gradients, albeit different concepts, are related.

For these reasons, navigability is different from data augmentation (DA): the steps on short episodes
improve the representation integrated over visual observations on long episodes, whereas classical
DA would generate new samples and train them with the same loss. We see it as generating a new
learning signal for existing samples on long episodes using privileged information from the simulator.

An argument could be made that our stated objective, i.e. to force an agent to learn a latent map,
is not necessary if optimizing BC does not naturally lead to it. As counter argument we claim that
integrating visual information over time (r2) increases robustness compared to taking decisions
from individual observations (r1), in particular in the presence of sim2real gaps. We believe that
reactive reasoning (r1) will lead to more likely exploitation of spurious correlations in simulation then
mapping (r2), and we will provide evidence for this claim in the sim2real experiments in Section 5.

Related work — recent work (Wijmans et al., 2023) has covered experiments on representations
learned by a blind agent. Compared to our work, Wijmans et al. (2023) present an interesting set
of experiments on the reasoning of a trained blind agent, but it does not propose a new method:
no gradients flow from the probed agent to the blind one. In contrast, in our work the blind agent
contributes to enrich the representation of a new navigation agent. Our situation corresponds to a
non-blind person which is blind-folded and needs to use the previously observed information from
memory, with gradients flowing back from the blindfolded situation to the non-blind one.

5 EXPERIMENTAL RESULTS

We train all agents in the Habitat simulator (Savva et al., 2019) and the Gibson dataset (Xia et al.,
2018). We follow the standard train/val split over scenes, i.e. 72 training, 14 for validation, 14 for
testing, with approximately 68k, 75k and 71k episodes per scene, respectively.

Subgoals — All standard episodes are used as long episodes during training, short episodes have
been sampled additionally from the training scenes. To be comparable, evaluations are performed
on the standard (long) episodes only. To produce short episodes, we sample waypoints every 3m
on each long episode and attach 20 subgoals to each waypoint at a Euclidean distance ∈ [3, 5]m.
The threshold for removing uninformative subgoals is set to T=1.5m. This leads to the creation of
∼ 36M short training episodes — no short episode is used for validation or testing.

Sim2Real — evaluating sim2real transfer is inherently difficult, as it would optimally require to
evaluate all agent variants and ablations on a real physical robot and on a high number of episodes.
We opted for a three-way strategy: (i) Sim2Real experiments evaluate the model and policy π
trained in simulation on a real physical robot. It is the only form of evaluation which correctly
estimates navigation performance in a real world scenario, but for practical reasons we limit it to
11 episodes in a large (unseen) office environment shown in Fig. 1 and Table 1; (ii) Evaluation in
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Simulation allows large-scale evaluation on a large number of unseen environments and episodes;
(iii) Sim2NoisySim allows similar large-scale evaluation and approximates the transfer gap through
artificial noise on simulation parameters. We added noise of different types, similar to Anderson et al.
(2018), but with slightly different settings: Gaussian Noise of intensity 0.1 on RGB, Redwood noise
with D=30 on depth, and actuator noise with intensity 0.5. Details are given in the appendix.

Table 1: Sim2Real transfer — Avg. per-
formance over 11 episodes in a real envi-
ronment (Fig. 1 and map below) using the
map+plan baseline and three agents trained
with PPO, BC and ours, corresponding to
variants (a), (c), (e) of Table 2.

Method Success SPL sSPL
(-) Map+Plan 36.4 29.6 32.7
(a) PPO 45.5 14.7 20.0
(c) BC L⃝ S⃝ 72.7 36.3 36.3
(e) Navig.+BC 81.8 45.6 44.0

Metrics — we report Success , which is the number of
correctly terminated episodes, and SPL (Anderson et al.,
2018), Success weighted by the optimality of the navigated
path, SPL = 1

N

∑N
i=1 Si

(
ℓ∗i

max(ℓi,ℓ∗i )

)
, where ℓi is the

length of the agent’s path in episode i and ℓ∗i is the length
of the GT path. For robot experiments we also use Soft-SPL
(Anderson et al., 2018), which extends SPL by modifying
the definition of Si: in failed episodes it is weighted by the
distance achieved towards the goal instead of being zero.

Training setup — we propose a two-phase strategy with
a fixed compute budget of 100M env. steps:

Phase 1: Pre-training takes 50M steps. We combine
and test 4 strategies: standard PPO, standard BC, Nav-
igability loss and a reconstruction loss (details below),
for a total of 8 variants (Table 2).

Phase 2: Fine-tuning is the same for all methods, done
with PPO (Schulman et al., 2017) for 50M steps on the
downstream PointGoal task. We reinitialize the main
policy π to evaluate the quality of the learned represen-
tations, the aux agent is not used. We use a common
reward definition (Chattopadhyay et al., 2021) as rt = R · Isuccess −∆Geo

t − λ, where R=2.5,
∆Geo

t is the gain in geodesic distance to the goal, and a slack cost λ=0.01 encourages efficiency.

The best checkpoint is chosen on the validation set and all results are reported on the test set.

Robot experiments — are performed with a Locobot robot on a large office building with thick
carpets, uneven floor and large windows (Fig. 1 and top-down map in Table 1). Results for 11
episodes, shown on the map (avg. GT geodesic length 8.9m), are reported in Table 1 for three end-
to-end trained agents (PPO, BC and our proposed agent) and for a map+plan baseline (Gupta et al.,
2017) used in (Chaplot et al., 2020b;a), for a total of 44 robot experiments. A detailed description of
the agents can be found further below. Overall, the differences in performance are significant, with
a clear advantage of the proposed Navigability representation in terms of all 3 metrics, providing
evidence for its superior robustness (Success) and efficiency (SPL, sSPL). Qualitatively, the three
agents show significantly different behavior on these real robot experiments. Our Navigability+BC
variant is more efficient in reaching the goals and goes there more directly. The PPO agent shows
zig-zag motion (increasing SPL and sSPL), and, in particular, often requires turning, whose objective
we conjecture is to orient and localize itself better. The BC variant struggled less with zig-zag motion
but created significantly longer and more inefficient trajectories than the proposed Navigability agent.

Impact of navigability — is studied in Table 2, which compares different choices of pre-training in
phase 1. For each experiment, agents were trained on 12 parallel environments. These environments
where either fully used for training with BC (with a choice of the proposed navigability loss or
classical BC of the main policy, or both), or fully used for classical RL with PPO training with
PointGoal reward, or mixed (6 for BC and 6 for PPO), indicated in columns Nr. Envs PPO and Nr.
BC Envs, respectively. Agents trained on the navigability loss navigated fewer steps over the long
episodes and saw fewer visual observations, only 5% = 2.5M. We see that BC (b) outperforms PPO
(a), and navigability loss alone (d) is competitive and comparable, outperforming these baselines
when transferred to noisy environments. Mixing training with PPO on the PointGoal downstream
task in half of the training environments, as done in variants (f) and (g), does not provide gains.

Optimizing usage of training data — As the number of environment steps is constant over all agent
variants evaluated in Table 2, the advantage of the Navigability loss in terms of transferability is
slightly counter-balanced by a disadvantage in data usage: adding the short episodes to the training in
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Table 2: Influence of the navigability loss and short episodes: we compare PPO (Schulman et al., 2017),
BC=Behavior cloning and our Navigability, which constitute a Phase 1 of 50M env steps. 12 environments are
trained in parallel, distributed over the different learning signals. In Phase 2, all of these methods are finetuned
with PPO only for an additional 50M env steps. The best validation checkpoints of phase 2 are chosen and
evaluated on the test set. ”Do S⃝” = short episodes are used by the agent. L⃝=long episodes, S⃝=short episodes.
The agent trained with navigability only has seen only 5% of the visual observations (=2.5M).

Nr. Env Nr. visual Nr. Envs Nr. BC Envs Eval Sim Eval NoisySim
Method steps obs seen Do S⃝ π:PPO π: L⃝ π: S⃝ ρ: S⃝ Success SPL Success SPL

(a) Pure PPO 50M 50M − 12 − − − 89.6 71.7 74.6 55.8
(b) Pure BC L⃝ 50M 50M − − 12 − − 92.0 79.6 76.0 61.7
(c) BC L⃝ S⃝ (data augm.) 50M 50M ✓ − 12 12 − 94.2 80.1 89.6 74.0
(d) Navig. 50M 2.5M ✓ − − − 12 92.9 77.3 86.8 68.8
(e) Navig. + BC L⃝ 50M 25+1.25M ✓ − 12 − 12 95.5 80.3 90.9 73.3
(f) PPO + Navig. 50M 25+1.25M ✓ 6 − − 6 91.5 72.6 85.2 63.8
(g) PPO + Navig. + BC S⃝ 50M 50M ✓ 6 6 − 6 90.3 73.7 83.9 66.0
(h) AUX reconst. + BC L⃝ 50M 50M − − 12 − − 94.9 80.4 76.7 61.2

Table 3: Impact of the hidden state of the main policy
π at transitions between long and short episodes: (c.1)
set to zero (short episodes are data augme.); (c.2) set to
last waypoint (clear separation of short and long ep.);
(c.3) always continue (maximize episode length but
introduce sparse teleportations).
Method Eval Sim Eval NoisySim

Succ SPL Succ SPL
(c.1) Set to zero 90.3 74.5 85.1 64.8
(c.2) Set to last waypoint 88.6 74.2 81.4 63.0
(c.3) Always continue 94.2 80.1 89.6 74.0

Table 4: Communicating with the Mole: Impact of
the choice of connection between representation r and
blind policy ρ for agent (e) of Table 2. (e.1) rt is fed as
“observed” input to ρ at each step; (e.2) as initialization
of ρ’s own hidden state; (e.3) as previous, but 128
additional dimensions are added to the state of ρ.
Method Eval Sim Eval NoisySim

|h| Success SPL Success SPL
(e.1) As observation 512 92.8 77.4 90.9 73.3
(e.2) Copy 512 95.5 80.3 80.7 62.5
(e.3) Copy+extend 640 90.4 76.9 83.3 66.6

variant (d) has two effects: (i) a decrease in the overall length of episodes and therefore of observed
information available to agents; (ii) short episodes are only processed by the blind agent, and this
decreases the amount of visual observations available to ∼5%. Combining Navigability with classical
BC in agent (e) in Table 2 provides the best performance by a large margin. This corroborates the
intuition expressed in Section 3 of the better data exploitation of the hybrid variant.

Is navigability reduced to data augmentation? — a control experiment tests whether the gains in
performance are obtained by the navigability loss, or by the contribution of additional training data in
the form of short episodes, and we again recall, that the number of environment steps is constant over
all experiments. Agent (c) performs classical BC on the same data, i.e. long and short episodes. It is
outperformed by Navigability combined with BC, in particular when subject to the sim2noisy-sim
gap, which confirms our intuition of the better transferability of the Navigability representation.

Continuity of the hidden state — The main agent π maintains a hidden state rt, updated from its
previous hidden state rt−1 and the current observation ot. If this representation is a latent map, then,
similar to a classical SLAM algorithm, the state update needs to take into account the agent dynamics
to perform a prediction step combined with the integration of the observation. When the agent is
trained through BC of the main agent on long and short episodes, as for variants (c) and (e), the
main agent follows a given long episode and it is interrupted by short episodes. How should rt be
updated when the agent “teleports” from the terminal state of a short episode back to the waypoint
on the long trajectory? In Table 3 we explore several variants: setting rt to zero at waypoints is a
clean solution but decreases the effective length of the history of observations seen by the agent.
Saving rt at waypoints and restoring it after each short episode ensures continuity and keeps the
amount of observed scene intact. We lastly explore a variant where the hidden state always continues,
maximizing observed information, but leading to discontinuities as the agent is teleported to new
locations. Interestingly, this variant performs best, which indicates that data is extremely important.
Note that during evaluation, only long episodes are used and no discontinuities are encountered.

Communication with the Mole — in Table 4 we explore different ways of communicating the
representation rt from the main to the aux policy during Phase 1. In variant (e.1), ρ receives rt
as input at each step; in variants (e.2) and (e.3), the hidden GRU state h of ρ is initialized as rt
at the beginning of each short episode, and no observation (other than the subgoal g.) is passed to
it. Variant (e.2) is the best performing in simulation, and we conjecture that this indicates a likely
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GT (a) PPO GT (c.1) BC

GT (c.3) BC GT (e) Ours

Sim NoisySim
Method Reconstr. 2D Nav. Reconstr. 2D Nav.

IoU Succ. Sym-SPL IoU Succ. Sym-SPL
(a) PPO 31.0 37.9 10.1 15.8 18.4 6.1
(c.1) BC L⃝ S⃝ 25.5 45.2 11.0 11.1 16.2 4.6
(c.3) BC L⃝ S⃝ 11.9 13.2 3.5 1.1 0.6 0.3
(e) Navig.+BC 19.8 66.5 14.7 18.0 64.8 13.2

Viewpoints on figures on the left are not comparable as different agents
perform different trajectories. The agent is the blue dot in the center and
5 trajectories out of 10 used for Sym-SPL are plotted. Goal points are
green when reachable (always in GT) and red otherwise.

Figure 6: Probing reconstruction: we estimate how much information on reconstruction is contained in the
learned representations. PPO (a) appears to capture only parts of the map, leading to failures in this navigation
task. Reconstruction by (c.1) exhibits similar characteristics. The (c.3) variant performs poorly on these probing
tasks, and the reconstructed map confirms that. Our approach, (e), estimates less accurately than PPO and (c.1)
the shape of the navigable space, but still appears to capture important geometric aspects of the environment.

ego-centric nature of the latent visual representation rt. Providing it as initialization allows it to
evolve and be updated by the blind agent during navigation. This is further corroborated by the
drop in performance of these variants in NoisySim, as the update of an ego-centry representation
requires odometry, disturbed by noise in the evaluation, and unobserved during training. Adding 128
dimensions to the blind agent hidden state h in variant (e.3) does not seem to have an impact.

Probing the representations — of a blind agent has been previously proposed by Wijmans et al.
(2023). We extend the procedure: for each agent, a dataset of pairs {(ri,M∗

i )}i=1..D is generated
by sampling rollouts. Here, ri is the hidden GRU state and M∗

i is an ego-centric 2D metric GT
map of size 95×95 calculated from the simulator using only information observed by the agent. A
probe ϕ is trained on training scenes to predict Mi = ϕ(ri) minimizing cross-entropy, and tested
on val scenes. Results and example reconstructions on test scenes are shown in Fig. 6. We report
reconstruction performance measured by IoU on unseen test scenes for variants (a), (c) and (e), with
(c) declined into sub-variants (c.1) and (c.3) from Table 3. PPO outperforms the other variants on pure
reconstruction in noiseless setting, but this is not necessarily the goal of an actionable representation.
We propose a new goal-oriented metric directly measuring the usefulness of the representation in
terms of navigation. For each pair (Mi,M

∗
i ) of predicted and GT maps, we sample N=10 reachable

points {pn}n=1..N on the GT map M∗
i . We compute two shortest paths from the agent position to pn:

one on the GT map M∗
i , ℓ∗i,n, and one on the predicted map Mi, ℓi,n. We introduce Symmetric-SPL

as Sym-SPL =
∑D

i=1

∑N
n=1 Si,n min

(
ℓi,n
ℓ∗i,n

,
ℓ∗i,n
ℓi,n

)
, where, similar to SPL, Si,n denotes success of the

episode, but on the predicted map Mi and towards pn. Results in Figure 6 show that representations
learned with Navigability lead to better navigation performance, in particular in NoisySim. While
this study is speculative and it is hard do draw conclusive insights from it, these observations seem to
corroborate the improved transferability of representations learned with Navigability.

Table 5: Map+plan baseline.
Method Noise Succ. SPL
Class. no 95.7 89.9
Ours (e) no 95.5 80.3
Class. yes 27.9 16.3
Ours (e) yes 90.9 73.3

Further comparison with reconstruction — we claim that unnecessar-
ily accurate reconstruction is sub-optimal in presence of high sim2real
gap, and, additional to already discussed robot experiments (Table 1) ,
we compare in simulation with a method supervising reconstruction.
The loss is identical to the probing loss described above, but used to train
the representation during Phase 1, combined with BC. Corresponding
method (h) in Table 2 compares unfavorably with our method (e), in
particular in noisy settings . In Table 5 we also compare with a classical map+plan baseline of Gupta
et al. (2017) and show that under noisy conditions our approach outperforms the classical planner.

6 CONCLUSION

Inspired by Cognitive Maps in biological agents, we have introduced a new technique, which learns
a latent representations from interactions of a blind agent with the environment. We position it
between explicit reconstruction, arguably not the desired when a high sim2real gap is present, and
pure end-to-end training on a downstream task, which is widely argued to provide a weak learning
signal. In experiments on sim2real and sim2noisy-sim evaluations, we have shown that our learned
representation is particularly robust to domain shifts.
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Method Steps Setup Eval Sim Eval NoisySim Eval Real
Success SPL Success SPL Success SPL

DDPO (Wijmans et al., 2019) 2.5G Gibson-2+, SE-ResNetXt101 + 1024-d LSTM 98.0 94.8 N/A N/A N/A N/A
2.5G Gibson-2+, ResNet50 + LSTM-512 - 94.0 N/A N/A N/A N/A

EmbVizNav(Rosano et al., 2021) 2.5G+2.4M Gibson+MP3D+real obs., eval on custom scene, RGB
only

99.1 91.3 N/A N/A 97.0 80.0

VizOdomNav(Partsey & Maksymets, 2021) 2M Gibson (Hab. Challenge 2021) 86.0 66.0 N/A N/A N/A N/A
Robust-Nav (Chattopadhyay et al., 2021) 75M+166k Exhaustive evaluation in sim2noisy-sim Check paper for a broad study w. multiple params
Sadek et al. (Sadek et al., 2022) 100M Real robot, 20 eval episodes only, avg of 2 custom envi-

ronm.
86.4 71.1 N/A N/A 75.0 53.9

S2R Pred (Kadian et al., 2020) 500M Training w. sliding on, no train noise N/A 36.0 N/A N/A N/A 61.0
500M Training w/o sliding, Training noise N/A 36.0 N/A N/A N/A 61.0

Ours 100M Hybrid Navigability+BC followed by PPO, no train
noise

95.5 80.3 90.9 73.3 81.8 45.6

Table 6: Comparison with SOTA — These numbers are not comparable as no clear experimental protocol
exists for sim2real or sim2noisy-sim experiments. The reported experiments feature extreme variations in
setups, training regimes, data, number of test episodes. Several papers report a large number of experiments, we
reproduce only a small number of variants here. Agent Ours is agent (e) in Table 2.

A APPENDIX

A.1 COMPARISON WITH SOTA

Comparisons are difficult, as no clear evaluation protocol exists, in particular when transfer and
sim2real performance is targeted. In Table 6 we attempt to provide a non-exhaustive review of
PointGoal performance targeting transfer situations particularly. However, we need to point out that
the performance numbers are not comparable, as there are very large variations in setups, training
regimes, data, number of test episodes etc.

A.2 ARCHITECTURE OF THE AGENTS

An architecture diagram of the full agent is given in Figure 7. The main agent π uses a standard
architecture from the literature, eg. in (Wijmans et al., 2019) and a large body of follow-up work.
A half-width, 4-channels ResNet18 encodes the RGB-D frames into a 512D vector. A linear layer
encodes the pointgoal information with integrated GPS and compass as a 64D vector. An embedding
layer (a trained LUT) encodes the previous action into a 32D vector. These 3 vectors are then
concatenated to form the input of a GRU, which updates the 512D vector representing the internal
state of the agent after each new observation. The internal state is finally fed to 2 linear layers to
compute the log-probabilities of each action and an estimate of the current state value, respectively.

When a waypoint is reached along the main path, the main agent stores its internal state (see Section
A.5 for implementation details of the training algorithm). The auxiliary agent ρ (a.k.a. the “mole”)
starts exploring subgoals from the waypoint. Its inputs are the internal state of the main agent when it
reached the waypoint, a new “sub-pointgoal” vector pointing towards the currently pursued subgoal,
the previously taken action, and its own auxiliary internal state. The “sub-pointgoal” and the previous
action are encoded through similar linear and embedding layers as the main agent, respectively. It
also has its own GRU, followed by a linear layer producing the action log-probabilities.

As described in the main text and ablated in Table 4 , we tested a few different ways to connect the
internal state of the main agent to the auxiliary one: 1. Concatenate it with the other features before
feeding it as an input to the auxiliary GRU; 2. Use it to initialize the auxiliary internal state; 3. Use it
to initialize part of the auxiliary internal state while keeping some room for values dedicated to the
subgoal exploration task.

A.3 PROBING EXPERIMENTS

A.3.1 ARCHITECTURE OF THE PROBING AGENT

The probing network’s architecture is inspired by the approach proposed in (Wijmans, 2022; Wijmans
et al., 2023). It processes the 512D vector ri, representing the GRU memory after pre-training
(Phase 1 in Section 5) with a 2-layer MLP with 256 hidden dimensions to produce an output
vector of dimension 1600. This vector is reshaped into a 3D tensor of size [64, 5, 5] and processed
by a Coordinate Convolution (CoordConv) layer (Liu et al., 2018), followed by four CoordConv-
CoordUpConv (Coordinate Up-Convolution) blocks. Each such block is composed of:
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Figure 7: Architecture of the encoder f , the main agent π and the auxiliary agent ρ

2D Dropout layer with dropout probability 0.05;
CoordConv layer with kernel size = 3, padding = 1, stride = 1, that reduces the channel size by

half while keeping the other dimensions intact;
CoordUpConv layer with kernel size = 3, padding = 0, stride = 2, that maintains the channel

dimension and doubles the spatial dimensions of the feature map;
ReLU activation , except for the last block where it is removed.

This stack produces a feature map of dimension [4, 95, 95] that is processed by a 1×1-Convolution
layer to create the output of size [2, 95, 95], that represents the unnormalized logits of each map pixel
being navigable and non-navigable.

For each agent tested, we create a training dataset by running the agent on a subset of 150 episodes
for each of the 72 scenes of the Gibson PointGoal training split for a total of 10,800 episodes. We
evenly sample each trajectory to obtain approximately 20 observations for each episode, so that we
collect training sets of about 200,000 samples. Using the same procedure we also collect a validation
dataset from 14 Gibson scenes comprising approximately 20,000 samples, and a test dataset built
using the Gibson Pointgoal val split also comprising 20,000 samples.

The probing network is trained with a batch size of 64 using the AdamW optimizer (Loshchilov &
Hutter, 2018) with learning rate 10−3 and weight decay 10−5 to minimize the cross-entropy loss
LCE between groundtruth and reconstructed occupancy maps. The validation dataset is used to
perform early-stopping, which in probing experiments is particularly important to avoid that scene
structure gets its way into the parameters of the probing network.

A.3.2 ADDITIONAL PROBING EXPERIMENTS

As discussed in the main text, we visualize the probing results for four agent variants: (a), (c) and (e)
from Table 1 and Table 2 from the main text, with (c) declined into sub-variants (c.1) and (c.3) in
Table 3. The reconstructed maps are shown in Figures 8 and 9. As a reminder, (a) is a standard PPO
agent, while (c) variants are trained using behaviour cloning.

Figure 8 shows examples of reconstructed occupancy maps for the four agents in the Sim envi-
ronment without noise. PPO estimates reasonably well the shape of the navigable space, but it
is somewhat conservative and captures well only parts of the map, leading to frequent navigation
failures. Reconstructions provided by (c.1) exhibit similar characteristics. The (c.3) variant performs
poorly according to all quantitative probing metrics, and the reconstructed maps visually confirm that.
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Method GT Pred. GT Pred. GT Pred.

(a) PPO

(c.1) BC

(c.3) BC

(e) Ours

Figure 8: Additional probing results: Sim setting without noise. Three pairs of groundtruth and predicted
navigable maps (in gray) for the four agents (a), (c.1), (c.3) and (e). The agent is in the center (blue dot), and 5 of
the 10 trajectories used to compute the Symmetric-SPL are plotted with light blue lines. Trajectories terminate
with green goal points when the target is reachable, while target points are red when not reachable, and no
trajectory leads to them.

Method GT Pred. GT Pred. GT Pred.

(a) PPO

(c.1) BC

(c.3) BC

(e) Ours

Figure 9: Additional probing results: NoisySim setting. Three pairs of groundtruth and predicted navigable
maps with shortest path trajectories for agents (a), (c.1), (c.3) and (e).

Teleportation seems to severely compromise the representation for the probing task. The proposed
approach, agent (e), estimates less accurately than PPO and variant (c.1) the shape of the navigable
space, but captures reasonably well the geometry of the environment, especially in the vicinity of the
agent.

Figure 9 displays qualitative evaluations on the NoisySim environment. In this regime the proposed
approach outperforms alternative methods, producing predictions comparable to the noiseless setting,
while other methods’ predictions degrade significantly.
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While the results of the probing experiments only allow to speculate about the nature of the represen-
tations learned by the different methods, these observations seem to corroborate that representations
learned in the pre-training phase with Navigability are more robust and transferable than those of
alternative approaches tested in the paper.

A.4 DETAILS OF THE NOISYSIM EVAL ENVIRONMENT

Complementary to our evaluation experiments on the real Locobot, our evaluation experiments
in simulation were conducted in, both, not-noisy and noisy simulated environments. Our noisy
environment is largely based on the noise settings of the CVPR Habitat challenge (Kadian et al.,
2019), more specifically Gaussian noise on the RGB image, Redwood noise on the Depth image and
Proportional Controller noise on the actuators.

However, we have applied some adjustments, motivated by the different objectives of our work, which
is to transfer agents from simulation to the target domain with zero domain adaptation to evaluate the
transferability of the learned representation. We have observed that in the Habitat implementation of
the depth noise model, a depth D above a given threshold T was set to zero1, i.e.

if (D > T ) (8)
D = 0,

which is the inverse behavior of the noiseless setting, ie.

if (D > T ) (9)
D = T,

We argue that this extremely strong discrepancy does not fall into the category of noise but rather to a
change in the nature of the sensor, messes up transfer and does not allow a sound evaluation — we
therefore replaced (8) by the thresholding process of the standard variant (9).

Secondly, since the original Redwood noise was designed for 640 × 480 images (Teichman et al.,
2013), applying it to arbitrarily size depth image caused the appearance of black borders2. We have
extended this by setting depth on the borders to their original values.

A.5 DETAILS ON THE IMPLEMENTATION OF NAVIGABILITY

Figure 10 illustrates the implementation of the navigability loss in an example showing two long
episodes, the first going from A1 to B1, the second from A2 to B2. Each episode has one waypoint
each and several sub-goals and short episodes branching out from the waypoints, shown in Figure
10a. As in PPO, learning is implemented with a rollout buffer, which stores a sub sequence of the
episode. The rollout buffer of length 128 steps in our implementation can hold one or several long
sequences, or only a part of one or more sequences.

As mentioned in the paper, and as is custom in the literature, we train with multiple parallel environ-
ments. We strictly separate between two types of environments, and maintain separate rollout buffers
for these two types:

PPO Environments — are classical environments trained with RL (the PPO variant). As classically
done, the rollout buffer is filled in the collection step and used for policy updates in the
update step. No short sequences are used, and the trajectories are the ones taken by the
agent.

BC Environments — are either trained with classical behavior cloning (BC) or with our Navigability
loss or with a combination of these two. In this case, as shown in Figure 10b, we flatten
the hierarchical structure of long and short episodes into a single sequence, with the agent
navigating between waypoints, at each waypoint going through the different short episodes,
and then resuming at the waypoint again. The hidden state of the agent is stored at waypoints
and restored if necessary, according to the choices ablated in Table 3.

1
https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/

habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L73
2
https://github.com/facebookresearch/habitat-sim/blob/d3d150c62f7d47c4350dd64d798017b2f47e66a9/

habitat_sim/sensors/noise_models/redwood_depth_noise_model.py#L83
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Figure 10: Illustration of the implementation of the navigability loss. (a) An example showing two long episodes,
first going from A1 to B1, second from A2 to B2. Each episode has one waypoint each and several sub-goals
and short episodes branching out from the waypoints. (b) As in PPO, learning is implemented with a rollout
buffer, which stores a sub sequence. (c) The computation graph of an agent only trained on the navigability loss.
The hidden state of the representation f is collected on long episodes (Green) and the hidden state of auxiliary
agent ρ is collected on short episodes (Blue).

Both types of environments are combined into a single unique batch for gradient updates.

Figure 10c illustrates how the rollout buffer of Figure 10b is mapped to the computation graph of the
full agent combining the representation predictor f , main policy π and the auxiliary policy ρ, when
everything is trained with the navigability loss only. Vertical time instants of Figures 10a and 10b are
aligned and correspond to each other. In its purest form, ie. agent variant (d) of Table 2, only the
navigability loss is used for training. In this case, the hidden state of the representation f is collected
on long episodes (Green) and the hidden state of auxiliary agent ρ is collected on short episodes
(Blue).

A.6 DETAILS ON MAPPING PREDICTED DISCRETE ACTIONS TO VELOCITY LOCOBOT ACTIONS

In the experiments involving simulation only, all actions were discrete, and as stated in the main paper,
were taken from the alphabet {MOVE FORWARD 25cm, TURN LEFT, TURN RIGHT and STOP}. The
experiments on the real robot (the Locobot) required mapping the predictions of these discrete actions
to velocity commands. A widely used closed-loop strategy executes each action by a closed-loop
controller until the discrete action is terminated, then pauses to collect sensor readings, performs
a prediction by the neural agent, and repeats. This strategy leads to slow executation and delays
between discrete actions.

We have opted for a handcrafted 0-order hold, open-loop velocity command, which led to a speed-up
of a factor of around 3×-4×. We map each discrete action to an equivalent velocity command v to
be sent to the Kobuki driver of the LoCoBot through ROS for execution. Then, we wait for a fixed
waiting time ∆t to collect the observations (RGB-D and pose). Here, v is either linear velocity vl or
angular velocity va depending on the action taken. We empirically, found that setting vl to 0.25m/sec
and va to ± 60deg/sec for a fixed waiting (∆t = 2 seconds) was the best setup to execute the required
discrete actions.
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