
A Appendix
A.1 Dataset licenses
We list the different licenses of the dataset curated in CHEMIXHUB below:

• Miscible Solvent: CC BY-NC 4.0
• IlThermo: CC BY 4.0
• NIST TRC SOURCE Zenodo archive: CC BY 4.0
• Drug solubility: CC BY 4.0
• Solid polymer electrolyte: MIT
• Motor Octane Number: CC BY 4.0
• Olfactory Similarity: CC BY 4.0

A.2 Additional statistics on molecules for each of the 11 tasks in CheMixHub

Table 6: Additional statistics on molecules for each of the 11 tasks in CheMixHub.

Dataset Tasks Avg. #
Atoms/Mol

Max #
Atoms/Mol

Min #
Atoms/Mol

Avg #
Fragments

Max #
Fragments

Avg
Molecular

Weight

Avg #
Rotatable

Bonds

Avg
Components

Mixture

Miscible solvents
ω

8.28±3.17 18 3 1.0±0.0 1 123.73±43.96 3.40±3.17 3.72±1.08!Hmix

!Hvap

IlThermo ln(ε) 15.80±9.28 77 1 1.76±0.54 4 250.91±145.56 5.12±6.13 2.21±0.41
ln(ϑ) 17.33±10.73 62 1 1.85±0.59 4 280.30±174.57 5.76±6.51 2.40±0.49

NIST Viscosity ln(ϑNIST→full) 12.90±8.98 95 1 1.50±0.70 8 203.98±135.28 4.00±5.60 1.88±0.33
ln(ϑNIST) 9.12±4.71 63 1 1.0±0.0 1 140.52±73.17 3.14±3.79 1.92±0.28

Drug solubility ln(S) 14.48±9.16 51 1 1.11±0.33 3 212.40±128.17 2.37±2.45 1.91±0.29

Solid Polymer Electrolyte ln(ε) 30.86±47.75 676 2 1.24±0.44 3 473.36±738.30 18.11±33.19 2.24±0.67

Olfactory mixtures Perceptual similarity 9.53±3.43 21 3 1.0±0.0 1 135.67±45.03 2.72±2.29 13.30±10.51

Fuel mixtures MON 7.93±1.94 12 2 1.0±0.0 1 110.66±26.19 1.71±1.69 5.69±14.24

A.3 IlThermo Dataset curation details
We use the ILTHERMOPY package to retrieve IlThermo entries, selecting entries that are either binary
or ternary mixtures and corresponding to our property of choice (for the scope of this paper, we
limit ourselves to viscosity and ionic conductivity properties) [26]. We remove mixture that exhibits
multiple phases behavior and are not liquid at the indicated temperature. We apply a natural logarithm
transformation to the viscosity and ionic conductivity values present in IlThermo to make the range
of values easier to learn. We also constrain the pressure range to be near the standard value of 1 atm
or 101.325 kPa by applying a ±2kPa threshold on pressure values.
We then standardize the mixture composition metric to mole fraction by converting as many entries as
possible into that format. Data points which have the mixture composition expressed using molarity
are discarded, as the conversion would require making assumption about the component densities.
Assuming a binary mixture of component A and B with a given mole ratio rA:B = nA

nB
where nA

and nB are the number of moles of A and B, respectively, the mole fractions ϖA and ϖB can be
calculated using:

ϖA =
nA

nA + nB
=

rA:B

rA:B + 1
(2)

ϖB = 1→ ϖA (3)

Similarly, assuming a ternary mixture of component A, B and C with given mole ratios rA:B = nA
nB

and rA:C = nA
nC

, the mole fractions ϖA, ϖB and ϖC can be retrieved using:

ϖA =
nA

nA + nB + nC
=

rA:B

rA:B + rA:B
rA:C

+ 1
(4)

ϖB =
nB

nA + nB + nC
=

1
rA:B

1
rA:B

+ 1
rA:C

+ 1
(5)
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ϖC =
1

rA:C

1
rA:B

+ 1
rA:C

+ 1
(6)

Assuming a binary mixture of component A and B, and given the mass ratio rA:B = mA
mB

where mA

and mB are the mass of A and B in g, respectively and the molecular weights MWA and MWB , to
retrieve the mole fractions ϖA and ϖB , we first calculate mass fractions ϱA and ϱB using:

ϱA =
ma

ma +mb
=

rA:B

rA:B + 1
(7)

ϱB = 1→ ϱA (8)

then assuming mtot = mA +mB = 1g, we use mA = ϱAmtot and mB = ϱBmtot to obtain

nA =
mA

MWA
(9)

nB =
mB

MWB
(10)

ntot = nA + nB (11)

ϖA =
nA

ntot
(12)

ϖB = 1→ ϖA (13)

The same process is naturally extended for ternary mixtures, assuming rC:B = mC
mB

and MWC are
given.
Assuming a binary mixture of component A and B, and given the molarity MA = nA

mB
where mB is

the mass of B in kg and nA the number of moles of A and the molecular weights MA and MB , to
retrieve the mole fractions ϖA and ϖB , we assume mB = 1kg so MA = nA and use nB = mB

MWB
to

obtain:

ϖA =
nA

nA + nB
=

MA

MA + 1000
MWB

(14)

ϖB = 1→ ϖA (15)

where a factor of 1000 is introduced since MA and MB are expressed in g/mol. The same process is
naturally extended for ternary mixtures, assuming MC = nC

mB
and MWC are given.

Assuming a binary mixture of component A and B, and given the weight fraction ϱA and the molecular
weights MA and MB , to retrieve the mole fractions ϖA and ϖB , we assume mtot = mA +mB = 1g
and use mA = ϱAmtot and mB = ϱBmtot to obtain:

nA =
mA

MWA
=

ϱA

MWA
(16)

nB =
mB

MWB
=

ϱB

MWB
=

1→ ϱA

MWB
(17)

ϖA =
nA

nA + nB
(18)

ϖB = 1→ ϖA (19)

The same process is naturally extended for ternary mixtures, assuming ϱC and MWC are given.
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A.4 Details of molecular graph representation
The GNN takes in molecular graphs derived from the SMILES representations of molecules. Each
graph, written as G = (U, V,E), consists of a special global vertex U connected to all other vertices
V , and a set of edges E. The global vertex U encodes overall properties of the molecule and is
initialized with 200 normalized RDKIT descriptors obtained from DESCRIPTASTORUS [29]. The
atoms of the molecules are the vertices (nodes), with node vectors V = {vi}Nv

i=1 for a molecule with
Nv atoms, where vi are feature vectors encoding atomic properties. Covalent bonds between atoms
are represented as edges E = {(ek, rk, sk)}Ne

k=1 for a molecule with Ne bonds, where ek are feature
vectors of edge properties, and rk, sk ↑ [1, . . . , Nv] are indices of the two atoms that the bond joins
together. Note rk ↓= sk, since bonds must be between two different atoms
The node features used in the molecular graph representation as input to the GNN are 85-dimensional
one-hot encoding vectors, encoding categorical information about the atoms. The edge features
encode the categorical information about the bonds as 14-dimensional one-hot encoding vectors. The
molecular information for the features are shown in Table 7.

Table 7: Features for node and edge features of molecular graphs
All categories are one-hot encoded and stacked to give a singular bit vector. UNK stands for "unknown",
and is a catch-all category.

Node features Categories

Atomic number 1 (hydrogen) to 54 (iodine), UNK
Atom degree 0, 1, 2, 3, 4, 5, UNK
Formal charge -2, -1, 0, 1, 2, UNK
Chirality unspecified, CW, CCW, other, UNK
Number of hydrogens 0, 1, 2, 3, 4, 5, 6, 7, 8, UNK
Hybridization sp, sp2, sp3, sp3d, sp3d2, UNK
Aromatic True/False

Edge features Categories

Bond type single, double, triple, aromatic, UNK
Is conjugated True/False
In ring True/False
Stereo-configuration none, Z, E, cis, trans, any, UNK

As mentioned in Section 3.3, polymers and salts are present in the dataset and this probes important
modeling considerations when employing GNNs. For polymers, we decided to restrict our modeling
consideration to passing their monomeric units to the GNN. For salts, we conducted a chemical
analysis to determine the impact of modeling the cation and anion as one disconnected graph. The
details of it can be found in Section A.12.

A.5 Compute resources details
All model training/validation was conducted on a single A100 40GB NVDIA GPU.

A.6 Training details
Each run was performed for 500 epochs using the Adam optimizer [30], with a batch size set to 1024.
Early stopping was implemented with patience set to 100. Two different learning rates were used
to train the models end-to-end, one for the molecular-level model and one for the rest of the model.
The splits used are specified in Section 3.4, further details on hyperparameter tuning can be found in
Section A.7.

A.7 Hyperparameter search
For each task, the search was performed using Weights & Biases [5] with the BOHB algorithm [20]
and a budget of 160 runs. 80 runs were allocated to the GNN-based molecular representations and 80
to CLMs and descriptors runs. Each run was performed for 500 epochs with early stopping patience
set to 100. The search was conducted using the first split of the 5-fold random CV splits (70/10/20
training/validation/test split). The search space is defined as follows

• Molecular featurization: ["custom molecular graphs", "molt5 embeddings", "rdkit2d normalized
features"]
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• General hyper-parameters:
– Loss type: ["mae", "mse"]
– Dropout rate: [0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5]
– Learning rate (molecular level): [8e-5, 5e-5, 1e-4, 5e-4, 8e-4, 1e-3, 5e-3, 1e-2]
– Learning rate (mixture level and head): [8e-5, 5e-5, 1e-4, 5e-4, 8e-4, 1e-3, 5e-3, 1e-2]

• Molecular-level hyper-parameters:
– Molecular context aggregation type: ["concatenate", "multiply", "film"]
– FiLM layer activation function: ["sigmoid", "relu"]

• Mixture-level hyper-parameters:
– Mixture interaction module: ["self attention", "deepset"]
– MLP head in self-attention: ["True", "False"]
– Embedding dimension: [32, 64, 96, 128]
– Number of layers: [0, 1, 2, 3]
– Aggregation type: ["mean", "max", "pna", "scaled pna", "attention", "set2set"]
– Number of attention heads: [1, 4, 8, 16]
– Output dimension: [96, 128, 256]
– Mixture context aggregation type: ["concatenate", "film"]
– FiLM layer activation function (mixture context): ["sigmoid", "relu"]

• Predictive head hyper-parameters:
– Embedding dimension: [64, 128, 192, 256, 320]
– Number of layers: [1, 2, 3]

For runs where the molecular featurization used GNNs, the following additional parameters were
added to the search space:

• GNN hyper-parameters:
– Embedding dimension: [64, 128, 192, 256, 320]
– Number of layers: [2, 3, 4]

A.8 XGBOOST modeling
The XGBOOST model was given a maximum of 1,000 estimators and tree depth of 1,000 except for
the NIST-full task, where a maximum of 250 estimators and a tree depth of 250 was used. To ensure
the model does not overfit, we use the validation set for early stopping, with a patience of 25 epochs.
The model is trained with mean squared error, with a learning rate of 0.01.
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A.9 Additional metrics for performances across tasks
In addition to the MAE results reported in Section 4.2, we report the results compiled from the CV
splits for all models evaluated in terms of Pearson correlation coefficient ω and Kendall ranking
coefficient ς in Table 8 and 9, respectively.

Table 8: Model performances across CHEMIXHUB tasks Reported Pearson correlation coefficient
ω (↔) on 5-fold random CV splits. The mean and standard deviation are reported.

Molecular
rep.

Mixture
rep.

Miscible Solvents Drug Solubility SPE NIST-full

ω !Hmix !Hvap ln(S) ln(ε) ln(ϑ)

GNN Attention 0.948 ± 0.076 0.974 ± 0.003 0.998 ± 0.000 0.993 ± 0.001 0.970 ± 0.004 0.980 ± 0.002
Deepsets 0.999 ± 0.000 0.974 ± 0.004 0.851 ± 0.296 0.996 ± 0.001 0.969 ± 0.010 0.981 ± 0.002

MolT5
XGB 0.992 ± 0.001 0.924 ± 0.005 0.987 ± 0.001 0.999 ± 0.000 0.976 ± 0.001 0.989 ± 0.001

Attention 0.998 ± 0.001 0.976 ± 0.003 0.997 ± 0.004 0.992 ± 0.005 0.973 ± 0.001 0.975 ± 0.038
Deepsets 0.997 ± 0.001 0.976 ± 0.003 0.999 ± 0.000 0.983 ± 0.003 0.967 ± 0.002 0.977 ± 0.002

RDKit
XGB 0.992 ± 0.000 0.945 ± 0.007 0.986 ± 0.001 0.999 ± 0.000 0.977 ± 0.001 0.992 ± 0.000

Attention 0.997 ± 0.001 0.972 ± 0.003 0.991 ± 0.003 0.996 ± 0.001 0.947 ± 0.008 0.995 ± 0.000
Deepsets 0.996 ± 0.001 0.954 ± 0.005 0.999 ± 0.000 0.973 ± 0.004 0.963 ± 0.003 0.970 ± 0.002

Molecular
rep.

Mixture
rep.

IlThermo MON NIST Olfaction

ln(ε) ln(ϑ) MON ln(ϑ) Mixture similarity

GNN Attention 0.986 ± 0.008 0.975 ± 0.012 0.360 ± 0.300 0.990 ± 0.002 0.447 ± 0.120
Deepsets 0.989 ± 0.002 0.939 ± 0.060 0.820 ± 0.087 0.990 ± 0.002 0.132 ± 0.103

MolT5
XGB 0.997 ± 0.000 0.995 ± 0.001 0.860 ± 0.032 0.950 ± 0.003 0.432 ± 0.047

Attention 0.988 ± 0.001 0.993 ± 0.003 0.893 ± 0.028 0.991 ± 0.001 0.559 ± 0.040
Deepsets 0.993 ± 0.002 0.986 ± 0.002 0.880 ± 0.036 0.981 ± 0.001 0.548 ± 0.025

RDKit
XGB 0.997 ± 0.001 0.995 ± 0.001 0.913 ± 0.019 0.957 ± 0.003 0.476 ± 0.062

Attention 0.987 ± 0.003 0.981 ± 0.003 0.197 ± 0.351 0.977 ± 0.024 0.056 ± 0.130
Deepsets 0.991 ± 0.002 0.992 ± 0.001 0.752 ± 0.155 0.980 ± 0.002 -0.091 ± 0.050

Table 9: Model performances across CHEMIXHUB tasks Reported Kendall ranking coefficient ς
(↔) on 5-fold random CV splits. The mean and standard deviation are reported.

Molecular
rep.

Mixture
rep.

Miscible Solvents Drug Solubility SPE NIST-full

ω !Hmix !Hvap ln(S) ln(ε) ln(ϑ)

GNN Attention 0.910 ± 0.091 0.835 ± 0.004 0.969 ± 0.002 0.932 ± 0.003 0.868 ± 0.016 0.904 ± 0.007
Deepsets 0.973 ± 0.000 0.833 ± 0.003 0.816 ± 0.318 0.949 ± 0.004 0.869 ± 0.023 0.905 ± 0.002

MolT5
XGB 0.924 ± 0.00 0.730 ± 0.008 0.897 ± 0.003 0.978 ± 0.001 0.899 ± 0.003 0.950 ± 0.000

Attention 0.963 ± 0.006 0.835 ± 0.002 0.955 ± 0.034 0.935 ± 0.022 0.881 ± 0.003 0.956 ± 0.003
Deepsets 0.966 ± 0.002 0.835 ± 0.002 0.976 ± 0.001 0.893 ± 0.010 0.861 ± 0.004 0.910 ± 0.004

RDKit
XGB 0.929 ± 0.002 0.773 ± 0.005 0.898 ± 0.003 0.978 ± 0.001 0.899 ± 0.004 0.966 ± 0.000

Attention 0.961 ± 0.003 0.829 ± 0.003 0.944 ± 0.012 0.948 ± 0.006 0.840 ± 0.014 0.957 ± 0.003
Deepsets 0.956 ± 0.001 0.788 ± 0.008 0.973 ± 0.002 0.856 ± 0.009 0.855 ± 0.007 0.921 ± 0.002

Molecular
rep.

Mixture
rep.

IlThermo MON NIST Olfaction

ln(ε) ln(ϑ) MON ln(ϑ) Mixture similarity

GNN Attention 0.923 ± 0.021 0.941 ± 0.029 0.348 ± 0.203 0.940 ± 0.007 0.312 ± 0.073
Deepsets 0.930 ± 0.006 0.863 ± 0.103 0.687 ± 0.093 0.942 ± 0.009 0.166 ± 0.067

MolT5
XGB 0.974 ± 0.000 0.967 ± 0.001 0.756 ± 0.038 0.863 ± 0.002 0.319 ± 0.047

Attention 0.930 ± 0.004 0.967 ± 0.010 0.768 ± 0.033 0.939 ± 0.001 0.377 ± 0.042
Deepsets 0.942 ± 0.004 0.945 ± 0.002 0.714 ± 0.012 0.896 ± 0.001 0.390 ± 0.011

RDKit
XGB 0.973 ± 0.001 0.968 ± 0.001 0.781 ± 0.029 0.883 ± 0.003 0.342 ± 0.040

Attention 0.924 ± 0.015 0.957 ± 0.000 0.164 ± 0.266 0.916 ± 0.029 0.036 ± 0.065
Deepsets 0.928 ± 0.005 0.956 ± 0.002 0.583 ± 0.121 0.897 ± 0.005 -0.048 ± 0.035

A.10 Additional transfer-learning benchmark
We evaluated transfer learning capabilities of two models trained on different datasets and tasks: the
best deep learning model trained on the Miscible Solvent !Hvap task and the other one trained on
the Motor Octane Number (MON) task (according to Section 4.2). We compare these fine-tuned
models to the best performing models for these tasks found in Section 4.2 (see Table 2).
We observe a simple fine-tuning approach of the best Deep Learning models for each task on another
task from a different dataset does not yield good performance, especially compared to "in-dataset"
finetuning results above, which could suggest the models are overfitting to their respective tasks.
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An interesting experimental set up to further answer this questions would be to evaluate multi-task
learning capabilities of these models across datasets, which should be easily implementable thanks to
our unified framework.

Table 10: Transfer learning capabilities of models across the Miscible Solvent (MS) !Hvap

task and the MON task. Metrics are reported on 5-fold random CV splits. The mean and standard
deviation are reported. The best model statistics are taken from Section 4.2 and Appendix A.9.

Fine-tuning Dataset Best model
Original Dataset Pearson ω (↔) MAE (↗) Kendall ς (↔)

MON MON 0.913 ± 0.019 4.570 ± 0.348 0.781 ± 0.029
MS-!Hvap 0.160 ± 0.108 33.199 ± 1.606 0.144 ± 0.056

Miscible Solvent !Hvap
MS-!Hvap 0.999 ± 0.000 0.071 ± 0.002 0.976 ± 0.001

MON 0.501 ± 0.095 1.582 ± 0.095 0.296 ± 0.067

A.11 Additional benchmark

Table 11: DiffMix tasks summary. T indicates temperature dependency. Mole Fractions indicates
mole fractions availability. Arrhenius relationship indicates if the task can be modeled using the
Arrhenius equation. Exp. indicates if the data was obtained from wet-lab experiments or simulations.

Tasks Units Datapoints Max #
Components

# Unique
Mixtures

# Unique
Molecules

Mixture
Context

Mole
Fractions

Arrhenius
Relationship Exp.

DiffMix
ε mS/cm 24,822 4 82 8 T ✁ ✁ ✂

!V cm3/mol 1069 2 28 25 T ✁ ✁ ✁
H

E
m kJ/mol 631 2 34 35 T ✁ ✁ ✁

DiffMix (3 tasks) Battery electrolytes—mixtures of salts and solvents—have been optimized to
facilitate ion transport, prevent electron transfer, and stabilize electrode-electrolyte interfaces to
produce energy-dense and durable battery systems [72, 21]. The DiffMix dataset is a collection
of three tasks centered around thermodynamic and transport properties predictions of electrolytes
originally gathered by Zhu et al. [81]. This data is under the CC BY-NC-ND 4.0 license, and we
therefore cannot include it as part of our dataset.

• Excess molar enthalpy H
E
m: The excess molar enthalpy reflects changes in intermolecular

interactions that occur during the mixing of different components [77]. It shows the non-ideality
of the final solution and gives an explanation about enthalpic effects [49]. In particular, differences
in molecular shape, size, and interaction types between components—along with variations in
temperature and pressure—can lead to either an increase or a decrease in excess molar enthalpy
[36, 63]. DiffMix dataset includes 631 H

E
m data points curated from literature, covering 34 unique

mixtures composed of 35 organic compounds across varying compositions. We rescaled the
original range of the DiffMix excess molar enthalpy task from J/mol to kJ/mol to avoid passing
big values to the neural networks.

• Excess molar volume V
E
m : The excess molar volume represents the deviation from ideal mixing

volume. It exhibits a non-linear dependence on mole fraction [10] and temperature [66]—often
showing a U-shaped trend with concentration and a decrease in absolute values as temperature
increases. At higher temperatures, the dependence may shift to an S-shaped profile, making
accurate prediction particularly challenging [71]. DiffMix dataset includes 1069 V

E
m data points

curated from literature, covering 28 unique mixtures composed of 25 organic compounds.

• Ionic conductivity ε: The ionic conductivity of the electrolyte is known as a key parameter to
evaluate the performance of the solution in practical engineering applications. In the context of
batteries, ε changes considerably with the change of the electrolyte concentration [78]. DiffMix
dataset includes 24,822 mixtures of single-salt-ternary-solvent electrolyte solutions generated
using Advanced Electrolyte Model [22], and covering arbitrary combinations of two unique salts
and six organic carbonate solvents at different concentration.
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Table 12: Model performances across CHEMIXHUB tasks on 5-fold random CV splits. The mean
and standard deviation are reported.

(a) MAE (→)

Molecular
rep.

Mixture
rep.

DiffMix

ε V
E
m H

E
m

GNN Attention 0.205 ± 0.061 0.060 ± 0.004 0.029 ± 0.006
Deepsets 0.306 ± 0.054 0.072 ± 0.004 0.062 ± 0.014

MolT5
XGB 0.059 ± 0.002 0.042 ± 0.007 0.042 ± 0.004

Attention 0.167 ± 0.164 0.056 ± 0.005 0.023 ± 0.003
Deepsets 0.046 ± 0.006 0.062 ± 0.005 0.021 ± 0.002

RDKit
XGB 0.050 ± 0.001 0.045 ± 0.00 0.045 ± 0.006

Attention 0.168 ± 0.064 0.079 ± 0.008 0.251 ± 0.123
Deepsets 0.110 ± 0.011 0.074 ± 0.005 0.090 ± 0.065

(b) Pearson ω (↑)

Molecular
rep.

Mixture
rep.

DiffMix

ε V
E
m H

E
m

GNN Attention 0.993 ± 0.004 0.950 ± 0.005 0.996 ± 0.004
Deepsets 0.984 ± 0.007 0.946 ± 0.007 0.982 ± 0.006

MolT5
XGB 0.998 ± 0.000 0.933 ± 0.023 0.989 ± 0.003

Attention 0.994 ± 0.010 0.950 ± 0.008 0.998 ± 0.001
Deepsets 1.000 ± 0.000 0.949 ± 0.009 0.998 ± 0.000

RDKit
XGB 0.999 ± 0.000 0.932 ± 0.026 0.983 ± 0.010

Attention 0.995 ± 0.003 0.944 ± 0.005 0.422 ± 0.378
Deepsets 0.998 ± 0.000 0.945 ± 0.006 0.964 ± 0.052

(c) Kendall ε (↑)

Molecular
rep.

Mixture
rep.

DiffMix

ε V
E
m H

E
m

GNN Attention 0.929 ± 0.019 0.873 ± 0.023 0.928 ± 0.028
Deepsets 0.887 ± 0.013 0.863 ± 0.026 0.852 ± 0.031

MolT5
XGB 0.973 ± 0.002 0.901 ± 0.025 0.909 ± 0.026

Attention 0.948 ± 0.039 0.890 ± 0.022 0.957 ± 0.005
Deepsets 0.983 ± 0.002 0.881 ± 0.023 0.957 ± 0.002

RDKit
XGB 0.980 ± 0.001 0.900 ± 0.025 0.903 ± 0.012

Attention 0.945 ± 0.015 0.838 ± 0.045 0.472 ± 0.257
Deepsets 0.954 ± 0.006 0.850 ± 0.027 0.828 ± 0.098

A.12 Modeling salts
Salts are often present in mixtures, these are non-bonded small molecules that are found in the same
environment as the molecule. To explore how to properly model salts we first look at if they contribute
meaningfully to basic featurizations.
We constructed a 200-dimensional molecular embedding space using RDKIT 2D descriptors obtained
from DESCRIPTASORUS [29], incorporating both salts and fragments for all the tasks in CHEMIXHUB.
The number of unique salts is 824, and the number of fragments is 476. This space was projected
into two dimensions using UMAP to visualize structural relationships, Figure 5. As shown in the
UMAP plot, The resulting plot shows that salts (blue triangles) and fragments (orange circles) broadly
co-localize, with many salts embedded near fragment clusters. To quantify these observations, we
computed cosine distances between each salt and the fragment-only descriptor space. The resulting
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distribution confirms that the vast majority of salts lie within a narrow cosine distance range centered
around 0.04–0.05, with very few exceeding 0.1, Figure 6. In RDKIT descriptor space, such low
distances imply near-identity in structural features. From these, we can observe that most salts appear
to retain descriptor-level similarity to their constituent fragments. However, there is a subset which
introduces structural changes significant enough to shift them away from the fragment space.

Figure 5: The embedding space of salts and fragments in CHEMIXHUB. UMAP projection of the
combined RDKIT 2D descriptor space (200 dimensions) for salts and fragments. The embedding
reveals well-defined structural clusters with apparent separation between salts and fragments, rather
than overlap. Most salts appear in peripheral regions relative to the fragment clusters, suggesting
distinct structural patterns at the descriptor level.

Figure 6: Distribution of cosine distances. The majority of salts fall within a tight cosine distance
range (centered around 0.04–0.05), indicating strong structural similarity at the descriptor level. A
smaller subset of salts shows higher distances, suggesting meaningful deviations from fragment-like
chemistry.

Based on this analysis we conclude that most basic featurizations do not properly model salts. We
think the best way to currently model salts is either as disconnected nodes in a graph. When using a
GRAPHNETS architecture, these disconnected nodes get routed to the globals, so they are roughly
equivalent to learnable salt-specific embeddings at the globals level of the graph.
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