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A PROOF OF PROPOSITION 2.1

We first prove the following lemma:

Lemma A.1. If Φ is linear, then the Fisher ratio is decreased (or equal) and the optimal linear
classification error is increased (or equal).

If Φ is linear, then it is a matrix ∈ Rp×d. We assume that Φ has rank p (and thus p ≤ d) for the sake
of simplicity. By applying a polar decomposition on ΦΣ

1
2

W , we can write

Φ = UPΣ
− 1

2

W ,

where U ∈ Rp×p is symmetric positive-definite and P ∈ Rp×d verifies PPT = Id. The within-
class covariance and class means of Φx are given by

ΣW = ΦΣWΦT = U2 ,

µc = Φµc = UPΣ
− 1

2

W µc .

The Fisher ratio of Φx is thus:
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2
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c
‖PΣ
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‖Σ−
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W µc‖
2

= C−1 Tr(Σ−1W ΣB),

so Φ decreases the Fisher ratio. Besides, if (W, b) is the optimal linear classifier on Φx, then (WΦ, b)
is a linear classifier on x, and thus has a larger (or equal) error than the optimal linear classifier on
x.

Now, if Φ has a linear inverse Φ−1, we apply the Lemma A.1 to x′ = Φx and Φ′ = Φ−1 (so that
Φ′x′ = x), which concludes the proof.

Additionally, we can see from the proof of the lemma that a linear Φ preserves the Fisher ratio if
and only if ‖PΣ

− 1
2

W µc‖ = ‖Σ−
1
2

W µc‖ for all c. This happens when Σ
− 1

2

W µc is in the orthogonal of

KerP = KerUP = Ker ΦΣ
1
2

W , which means that Σ−1W µc is in the orthogonal of Ker Φ. When Φ
is an orthogonal projector, the orthogonal of Ker Φ is the range of Φ.

B PROOF OF THEOREM 2.2

We begin by proving (3). Since Tr(ΣW ) = Avec Tr(Σc) with Tr(Σc) = E(‖xc − µc‖2) and xc is
a mixture of N (µc,k, σ

2Id) we get that Tr(Σc) = Tr(ΣM ) + d σ2 with

Tr(ΣM ) = C−1
∑
k

πc,k ‖µc,k − µc‖2,

which verifies (3).

The inequalities (4) and (5) of Theorem 2.2 are derived from the following lemma which is mostly
a consequence of a theorem proved by Donoho & Johnstone (1994) on soft-thresholding estimators.

Lemma B.1. Let x be a d dimensional Gaussian vector whose distribution is N (µ, σ2Id) with
|µ(r)| ∼ r−s. For all d ≥ 4 and λ = σ

√
2 log d,

E(‖ρt(x)− µ‖2) = O(σ2−1/s log d). (9)

Each class xc is a mixture of several xc,k whose distributions are N (µc,k, σ
2Id). We first prove the

theorem by applying this lemma to each xc,k, and we shall then prove the lemma.
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We apply (9) to x = Fxc,k, µ = Fµc,k = {〈µc,k, fm〉}m, and Φ = FT ρF . Since F is orthogonal

E(‖Φ(xc,k)− µc,k‖2) = E(‖ρtFxc,k − Fµc,k‖2) = O(σ2−1/s log d). (10)

Let µc = E(Φ(xc)) and µc,k = E(Φ(xc,k)). As we have the decomposition

E(‖Φ(xc,k)− µc,k‖2) = E(‖Φ(xc,k)− µc,k‖2) + ‖µc,k − µc,k‖2,

equation (10) implies that
‖µc,k − µc,k‖2 = O(σ2−1/s log d) (11)

and
E(‖Φ(xc,k)− µc,k‖2) = O(σ2−1/s log d). (12)

We first prove (5) by observing that

‖µc − µc‖2 = ‖
∑
k

πc,k(µc,k − µc,k)‖2 ≤
(∑

k

πc,k‖µc,k − µc,k‖
)2

It results from (11) that
‖µc − µc‖2 = O(σ2−1/s log d)

which proves (5).

As in the proof of (3), we verify that

Tr(ΣW ) = Tr(ΣM ) + C−1
∑
c,k

πc,k E(‖Φ(xc,k)− µc,k‖2),

with
Tr(ΣM ) = C−1

∑
c,k

πc,k ‖µc,k − µc‖2.

Inserting (12) gives
Tr(ΣW ) = Tr(ΣM ) +O(σ2−1/s log d). (13)

By decomposing and inserting (11) we get

Tr(ΣM ) ≤ C−1
∑
c,k

πc,k

(
‖µc,k − µc,k‖+ ‖µc,k − µc‖+ ‖µc − µc‖

)2
= C−1

∑
c,k

πc,k

(
‖µc,k − µc‖+O(σ1−1/(2s) log1/2 d)

)2
= C−1

∑
c,k

πc,k 2
(
‖µc,k − µc‖2 +O(σ2−1/s log d)

)
= 2 Tr(ΣM ) +O(σ2−1/s log d).

Inserting this inequality in (13) proves that

Tr(ΣW ) = 2 Tr(ΣM ) +O(σ2−1/s log d)

which proves (4).

We now prove Lemma B.1. Donoho & Johnstone (1994) proved that for all d ≥ 4,

E(‖ρt(x)− µ‖2) ≤ (2 log d+ 1) (σ2 +

d∑
m=1

min(µ[m]2, σ2)). (14)

We are now going to prove that if |µ(r)| ∼ r−s then

d∑
m=1

min(µ[m]2, σ2) = O(σ2−1/s).
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Let us first observe that
d∑

m=1

min(µ[m]2, σ2) =

d∑
r=M+1

|µ(r)|2 +Mσ2 (15)

with |µ(M)| ≥ σ > |µ(M+1)|.

Since |µ(r)| ∼ r−s,
d∑

m=1

min(µ[m]2, σ2) ∼
d∑

r=M+1

r−2s +Mσ2 ∼M1−2s +Mσ2.

Since σ ∼ |µ(M)| ∼M−s, we conclude

d∑
m=1

min(µ[m]2, σ2) = O(σ2−1/s).

Inserting this result in (14) finishes the proof of the lemma.

C PROOF OF THEOREM 2.3

We choose x = ru with u ∼ U(Sd−1) and r ∈]0, 1] to be determined, with r and u independent.
Let us fix p ≥ d, F ∈ Rp×d, W ∈ R1×p and b ∈ R. With g(x) = WρrtFx+ b, we have:

g(x) =

p∑
m=1

wmρr(r〈u, fm〉 − λ) + b

= r

p∑
m=1

wmρr(〈u, fm〉 − λ/r) + b .

If λ = 0, this gives g(x) = rWρr(Fu) + b which is an affine function of r. Therefore, its sign can
change at most once. We choose h(x) = cos(2π‖x‖) so that:

sgn(h(x)) =

{
+1 r < 1

4 or 3
4 < r

−1 1
4 < r < 3

4

Now g(x) is an affine function of r, so at least one of the following must occur:
sgn(g(x)) = −1 r < 1

4

sgn(g(x)) = +1 1
4 < r < 3

4

sgn(g(x)) = −1 3
4 < r

We finally choose r ∼ U(0, 1) and so we conclude that:

P[sgn(g(x)) 6= sgn(h(x))] ≥ 1

4
.

If λ > 0, then when r ≤ λ, we have 〈u, fm〉 ≤ ‖u‖‖fm‖ ≤ 1 ≤ λ/r, which means that g(x) = b is
constant. We thus choose r ∼ U(0, λ), h(x) = cos(π/λ‖x‖) and so we conclude that:

P[sgn(g(x)) 6= sgn(h(x))] =
1

2
≥ 1

4
.

D IMPLEMENTATION AND NETWORK DIMENSIONS

All networks are trained with SGD with a momentum of 0.9 and a weight decay of 10−4 for the
classifier weights, with no weight decay being applied to tight frames. The learning rate is set to
0.01 for all networks, with a Parseval regularization parameter α = 0.0005. The batch size is 128 for
all experiments. The scattering transform is based on the Kymatio package (Andreux et al., 2020).
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Table 4: Number of parameters of scattering architectures on ImageNet. They are dominated by the
size of the 1× 1 orthogonal projectors Pj . Indeed, the wavelet tight frame Fw has a redundancy of
(L + 1/4), whereas in ResNet strided convolutions have a redundancy of 1/2. This is due to the
fact that Fw is not learned. However, Fw comes with a known structure across channels, which is
beneficial for the analysis of the projectors Pj .

Φ ST SP SC ResNet-18

ImageNet Parameters 25.9M 27.6M 31.2M 11.7M

Standard data augmentation was used on CIFAR and ImageNet: horizontal flips and random crops
for CIFAR, and random resized crops of size 224 and horizontal flips for ImageNet. Classification
error on ImageNet validation set is computed on a single center-crop of size 224.

Non-linearity thresholds are set to λ = 1.5
√
d/p for the soft-thresholding ρt, and λ =

√
d/p for

the thresholded rectifier ρrt. Here d and p represent the dimension of the patches the convolutional
operators F and FT act on. To ensure that the fixed threshold is well adapted to the scale of the input
x, we normalize all its patches so that they have a norm of

√
d. For 1× 1 convolutional operators as

in SC , this amounts to normalizing the channel vectors at each spatial location in x.

Two-layer networks When learning a frame contraction directly on the input image, F is a con-
volutional operator over image patches of size k× k with a stride of k/2, where k = 14 for MNIST
(d = k2 = 196) and k = 8 for CIFAR (d = 3k2 = 192). The frame F has p output channels, where
p = 2048 for MNIST and p = 8192 for CIFAR. It thus maps each patch of dimension d to a channel
vector of size p ≥ d. Training lasts for 300 epochs, the learning rate being divided by 10 every 70
epochs.

Scattering tree We use J = 3 for MNIST and CIFAR and J = 4 for ImageNet. Each Fw uses
L = 8 angles. It is followed by a standardization which sets the mean and variance of every channel
to 0 and 1. We then learn a 1 × 1 convolutional orthogonal projector PJ to reduce the number
of channels to d = 512. We finally apply a 1 × 1 spatial normalization, as before a tight frame
thresholding. Training lasts for 300 epochs for MNIST and CIFAR (200 epochs for ImageNet), the
learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Learned scattering We use J = 4 for CIFAR and J = 6 for ImageNet. Each Fw uses L = 8
angles. Each Pj is an orthogonal projector which is a 1 × 1 convolution. It reduces the number of
channels to dj with d1 = 64, d2 = 128, d3 = 256 and d4 = 512. For ImageNet, we also have
d5 = d6 = 512. It is followed by a normalization which sets the norm across channels of each
spatial position to

√
dj . Fj is a 1 × 1 convolutional tight frame with pj output channels, where

p1 = 1024, p2 = 2048, p3 = 4096 and p4 = 8192 for CIFAR, p1 = 512, p2 = p3 = 1024 and
p4 = p5 = p6 = 2048 for ImageNet. Training lasts for 300 epochs for CIFAR (200 epochs for
ImageNet), the learning rate being divided by 10 every 70 epochs (60 epochs for ImageNet).

Fisher ratios Fisher ratios (eq. (1)) were computed using estimations of ΣW and µc on the vali-
dation set. These estimations are unstable when the dimension d becomes large with respect to the
number of data samples. To mitigate this, the Fisher ratios across layers from Table 3 were com-
puted on the train set. Fisher ratios on ImageNet from Table 2 were computed only across channels,
by considering each pixel as a distinct sample of the same class, in order to reduce dimensionality.
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Figure 1: Examples of filters fm from the convolutional tight frame F learned directly on the input
x for CIFAR-10, using an absolute value non-linearity ρa. They resemble wavelet filters.
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