
Geon3D: Benchmarking 3D Shape Bias towards Building
Robust Machine Vision - Supplementary Materials

Yutaro Yamada, Yuval Kluger, Sahand Negahban, Ilker Yildirim

June 8, 2021

Contents
1 Datasheet 2

2 Ethics considerations 3

3 Resubmission discussion 3

4 Additional Results 4
4.1 Adversarial Robustness . 4
4.2 Robustness to Common Corruptions . 4

5 Details of DVR 3D reconstruction training 4

6 Reproducibility: Training details 6

1

1 Datasheet
A line of work in psychophysics of human visual cognition have argued that the visual system exploits
certain types of shape features in inferring 3D structure and geometry. In Geon3D, by treating these
shape features as the dimensions of variation, we model 40 classes of 3D objects, and render them
from random viewpoints, resulting in an image set and their corresponding camera matrices.

Data Preparation We construct each Geon using Blender —an open-source 3D computer graphics
software Blender [2021].

An advantage of Geons over other geometric primitives such as superquadrics Barr [1981] is that
the shape categorization of Geons is qualitative rather than quantitative. Thus, each Geon category
affords a high degree of in-class shape deformation, as long as the four defining features of each
shape class remains the same. Such flexibility allows us to construct a number of different 3D model
instances for each Geon class by expanding or shrinking the object along the x, y, or z-axis. For each
axis, we evenly sample the 11 scaling parameters from the interval [0.5, ..., 1.5] with a step size 0.1,
resulting in 1331 3D model instances for each Geon category.

Rendering and data splits We randomly sample 50 camera positions from a sphere with the
object at the origin. For each model instance, 50 images are rendered using these camera positions
with resolution of 224x224. We then split the data into train/validation/test with ratio 8:1:1 using
model instance ids, where each instance id corresponds to the scaling parameters described above.
We also make sure that all Geon categories are uniformly sampled in each of train/validation/test
sets.

Dataset distribution The full Geon3D-40 (black background) is available for download at https:
//drive.google.com/uc?id=1v5XwO-QrnB_j9XhJJl4c7d7hMQf-v6gq&export=download. Geon3D
is distributed under the CC BY-SA 4.0 license.1 The dataset will be maintained by Yutaro Yamada
for long-term preservation. The authors bear all responsibility in case of violation of rights and
confirmation of the data license. Upon publication, the dataset website will become available, where
we will add structured metadata to a dataset’s meta-data page, a persistent dereferenceable identifier,
and any future updates.

List of 40 Geons In Figure 1, we provide a list of 40 Geons we have constructed. The label for
each Geon class represents the four defining shape features, in the order of “axis”, “cross section”,
“sweep function”, “termination”, as described in the main paper. We put “na” for the termination
when the sweep function is constant. We also distinguish the two termination types “c-inc” and
“c-dec” when the sweep function is monotonic. For instance, “c-inc” means that the curved surface
is at the end of the increasing sweep function, whereas “c-dec” means that the curved surface is at
the end of the decreasing sweep function. As a reference, here is the mapping between the name
and the code of 10 Geons we used in 10-Geon classification: “Arch”: c_s_c_na, “Barrel”: s_c_ec_t,
“Cone”: s_c_m_p, “Cuboid”: s_s_c_na, “Cylinder”: s_c_c_na, “Truncated cone”: s_c_m_t, “Handle”:
c_c_c_na, “Expanded Handle”: c_c_m_t, “Horn”: c_c_m_p, “Truncated pyramid”: s_s_m_t.

1https://creativecommons.org/licenses/by-sa/4.0/legalcode

2

https://drive.google.com/uc?id=1v5XwO-QrnB_j9XhJJl4c7d7hMQf-v6gq&export=download
https://drive.google.com/uc?id=1v5XwO-QrnB_j9XhJJl4c7d7hMQf-v6gq&export=download

c_c_c_na c_c_ce_c c_c_ce_t c_c_ec_c c_c_ec_p c_c_ec_t c_c_m_c-dec c_c_m_c-inc c_c_m_p c_c_m_t

c_s_c_na c_s_ce_c c_s_ce_t c_s_ec_c c_s_ec_p c_s_ec_t c_s_m_c-dec c_s_m_c-inc c_s_m_p c_s_m_t

s_c_c_na s_c_ce_c s_c_ce_t s_c_ec_c s_c_ec_p s_c_ec_t s_c_m_c-dec s_c_m_c-inc s_c_m_p s_c_m_t

s_s_c_na s_s_ce_c s_s_ce_t s_s_ec_c s_s_ec_p s_s_ec_t s_s_m_c-dec s_s_m_c-inc s_s_m_p s_s_m_t

Figure 1: The list of 40 Geons we constructed.

2 Ethics considerations
While not intended to cause any harm, improved shape perception system could be misused to
increase worker surveillance, causing detrimental effect on people’s autonomy and privacy at work.
Furthermore, when combined with face recognition algorithm, improved shape bias of vision models
could further advance unethical use such as distinguishing faces of a certain ethic group from those
of other ethnicity. We should also be cautious about overly relying on a single metric (e.g. shape
bias) to evaluate vision models. For instance, increasing shape bias alone could lead to potential,
unknown vulnerability, which could pose new security concerns.

3 Resubmission discussion
In the previous submission, we did not have results for DVR+AT, and only tested DVR-Last and
DVR. Therefore, previous reviewers questioned the effectiveness of DVR for increasing robustness
in terms of common corruptions and adversarial perturbations. After the retraction, we found that
DVR+AT models consistently outperform vanilla AT in terms of common and adversarial robustness.
Additionally, previous reviewers were concerned about the black background of Geon3D being too
artificial. To address this, we perform experiments where we add texture from real images to the
background. We found that 3D shape bias still helps improve robustness in this setting.

3

4 Additional Results

4.1 Adversarial Robustness
In Figure 2, we provide additional results for adversarial robustness, where we attack AT-L2 using
L∞-PGD. Similar to the case of AT-L∞, we see that 3D pretraining improves robustness over the
vanilla AT models for all background settings.

0.01 0.02 0.03 0.04 0.05
Perturbation budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Black Background)

DVR+AT-L2
AT-L2

0.01 0.02 0.03 0.04 0.05
Perturbation budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Random Textured Background)

DVR+AT-L2
AT-L2

0.002 0.004 0.006 0.008 0.01
Perturbation budget

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
cc

ur
ac

y

L -PGD (Correlated Textured Background)

DVR+AT-L2
AT-L2

Figure 2: Robustness comparison between AT-L2 and DVR+AT-L2 with increasing perturbation
budget ε on three variations of Geon3D-10. We attack our models using L∞-PGD with 100 iterations
and ε/10 to be the stepsize.

4.2 Robustness to Common Corruptions
In this section, we provide additional results for common corruptions. In Table 1, we provide the
results for the black background setting. Here again we see that 3D pretraining further improves
vanilla AT models. In Table 2, we provide more detailed results of distributional shift in the
backgrounds. Even after adding image corruptions, we still see that DVR+AT performs best,
confirming that 3D shape bias from 3D pretraining complements the performance of AT to increase
model robustness.

5 Details of DVR 3D reconstruction training
We provide details of the problem setup of 3D reconstruction, following [Niemeyer et al., 2020].

During training, we render an image, which is then used to minimize the RGB reconstruction
loss. To render a pixel of an image observed by a virtual camera, we need to first find the world
coordinate of the intersection of the camera ray with the object surface, and then map the world
coordinate into a RGB color.

Let u = (u1, u2) be the image coordinate of the pixel we want to render. To find the world
coordinates of the intersection, we first parameterize the points along the camera ray rp0→(u1,u2) by
the distance d to the camera origin p0 as follows:

rp0→(u1,u2)(d) = RT

K−1
u1u2
d

− T


4

Table 1: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 (black backgrounds).

Regular InfoDrop Stylized AT-L2 ATL∞ DVR+AT-L2 DVR+AT-L∞

intact 0.866 0.845 0.822 0.908 0.910 0.912 0.92
pixelate 0.685 0.773 0.781 0.905 0.910 0.911 0.919
defocus blur 0.303 0.247 0.755 0.900 0.909 0.897 0.909
gaussian noise 0.548 0.291 0.803 0.620 0.885 0.914 0.919
impulse noise 0.140 0.190 0.750 0.542 0.100 0.916 0.918
frost 0.151 0.323 0.783 0.140 0.100 0.22 0.3
fog 0.138 0.163 0.764 0.100 0.100 0.119 0.149
elastic 0.612 0.635 0.617 0.628 0.664 0.645 0.655
jpeg 0.799 0.821 0.810 0.905 0.911 0.912 0.92
contrast 0.510 0.180 0.772 0.163 0.258 0.213 0.335
brightness 0.552 0.832 0.818 0.160 0.137 0.385 0.931
zoom blur 0.475 0.462 0.748 0.891 0.917 0.902 0.92

Here, R ∈ R3×3 is a camera rotation matrix, T ∈ R3 is a translation vector, and K ∈ R3×3 is a
camera intrinsic matrix. In the main paper, we denote cex = [R, T], and cin = K. Here, T is the
position of the origin of the world coordinate system with respect to the camera coordinate system.
Therefore, the position of the camera origin p0 (w.r.t. the world coordinate system) is −RTT .

Then we solve the following optimization problem:

argmin d s.t. rp0→(u1,u2)(d) ∈ Ω (1)

where Ω is the set of points p in R3 such that fθ(p) = 0.5.
To solve for d, we start from the camera origin p0 and step along the ray until object surface is

intersected, which we can determine by evaluating the points along the ray via fθ.
To summarize, we are given a set of object images {xi ∈ RH×W×3}ni=1, their corresponding binary

object masks {mi ∈ RH×W }ni=1, and extrinsic/intrinsic camera matrices {ci = (cexi ∈ R3×3×R3, cini ∈
R3×3)}ni=1. Let U0 be a set of pixel points which lie inside the ground truth object mask and where
the model predicts a depth. U1 is a set of points outside the object mask where the model falsely
predicts depth. Finally U2 is a set of points inside the object mask where the model does not predict
any depth. Then the objective is:

argmin
φ,θ,θ′

E
[∑
u∈U0

(||x̂u − xu||1 + λ1Lnormal(p̂u,c|z))

+ λ2
∑
u∈U1

BCE(fθ(p̂u,c|z), 0) + λ3
∑
u∈U2

BCE(fθ(prand(u),c|z), 1)
]

Here, BCE stands for Binary Cross Entropy loss, and p̂u,c = rp0→u(d̂), where d̂ is the predicted depth,
provided as a solution to the optimization problem 1. The value of prand(u),c = rp0→u(drand(u)),
where the value of drand(u) is chosen uniformly randomly on the ray to encourage occupancy for
u ∈ U2. x̂u = rθ′(p̂u,c|z) for u ∈ U0. z = gφ(x

(rand)
i), where we take a random view x

(rand)
i from the

same object instance as xi.

5

Table 2: Accuracy of shape-biased classifiers against common corruptions under unseen views on
Geon3D-10 with textured background swap.

Regular InfoDrop Stylized AT-L2 AT-L∞ DVR+AT-L2 DVR+AT-L∞

intact 0.045 0.121 0.268 0.015 0.311 0.219 0.439
pixelate 0.044 0.096 0.275 0.017 0.306 0.201 0.415
defocus blur 0.044 0.093 0.268 0.024 0.242 0.206 0.338
gaussian noise 0.046 0.160 0.269 0.015 0.320 0.209 0.408
impulse noise 0.058 0.096 0.228 0.015 0.078 0.207 0.147
frost 0.020 0.138 0.255 0.070 0.149 0.144 0.227
fog 0.032 0.114 0.273 0.077 0.099 0.149 0.124
elastic 0.044 0.109 0.260 0.100 0.196 0.176 0.264
jpeg 0.041 0.089 0.264 0.016 0.306 0.206 0.419
contrast 0.055 0.107 0.274 0.066 0.090 0.148 0.126
brightness 0.036 0.127 0.268 0.026 0.270 0.189 0.379
zoom blur 0.081 0.082 0.290 0.032 0.269 0.249 0.375

Lnormal(p|z) is the normal loss, which is a geometric regularizer to encourage smooth object
surface. For a point p ∈ R3 and some object encoding z, the unit normal vector can be calculated by:

nθ(p|z) =
∇pfθ(p|z)
||∇pfθ(p|z)||2

We apply the l2 loss to minimize the difference between the normal vectors at p and p′, where p′ is in
a small neighbourhood around p. Formally,

Lnormal(p|z) = ||nθ(p|z)− nθ(p′|z)||2

for a point p ∈ R3.

6 Reproducibility: Training details
We used GeForce RTX 2080Ti GPUs for all of our experiments. GQN training takes about a week
until convergence on a single GPU. DVR 3D reconstruction training takes roughly about 1.5 days on
a single GPU. The hyperparameters for 10-Geon classification, described in the main paper, were
chosen by monitoring the model convergence on the validation set. All the other results are from a
single training run and a single evaluation run.

DVR We used the code 2 open-sourced by Niemeyer et al. [2020]. We followed the default
hyperparameters recommended by Niemeyer et al. [2020] for 3D reconstruction training, with the
exception of batch size, which we set 32 to fit into a single GPU memory.

Adversarial Training We used the python package 3 to perform adversarial training. For AT(L2),
we use attack steps 7, epsilon 3.0, attack lr 0.5. For AT(L∞), we use attack steps 7, epsilon 0.05,

2https://github.com/autonomousvision/differentiable_volumetric_rendering
3https://github.com/MadryLab/robustness

6

https://github.com/autonomousvision/differentiable_volumetric_rendering

attack lr 0.01. use best (final) PGD step as example. Both models trained for 70 epochs with batch
size 100, which was sufficient for model convergence.

GQN We used the open-source code 4 to implement our GQN. Due to the training instability, we
rescale the image size from 224 x 224 to 64 x 64.

InfoDrop We used the original author’s implementation 5.

Stylized To stylize Geon3D, we used the code 6 introduced by the original author of Stylized-
ImageNet Geirhos et al. [2018].

Dataset For training Geon3D image classifiers, we center and re-scale the color values of Geon3D
with µ = [0.485, 0.456, 0.406] and σ = [0.229, 0.224, 0.225], which is estimated from ImageNet. We
construct the 40 3D model instances as well as the whole training data in Blender. We then normalize
the object bounding box to a unit cube, which is represented as 1.0_1.0_1.0 in the dataset folder.

Background textures We used the following label-to-texture class mapping: {0: ’zigzagged’,
1: ’banded’, 2: ’wrinkled’, 3: ’striped’, 4: ’grid’, 5: ’polka-dotted’, 6: ’chequered’, 7: ’blotchy’, 8:
’lacelike’, 9: ’crystalline’ }. For the distributional shift experiment we used the following mapping: {
0: ’crystalline’, 1: ’zigzagged’, 2: ’banded’, 3: ’wrinkled’, 4: ’striped’, 5: ’grid’, 6: ’polka-dotted’, 7:
’chequered’, 8: ’blotchy’, 9: ’lacelike’, }. The DTD data is licensed under the Creative Commons
Attribution 4.0 License. 7

Evaluation set For all the evaluation sets in the experiment section, we used the same subset of
the test split, where we randomly pick 1000 model instance ids, and randomly sample 1 view out of
50 views for every model instance.

We use the original author’s code 8 to generate common corruptions shown in Figure 3.

References
Barr. Superquadrics and Angle-Preserving Transformations. IEEE Computer Graphics and Applica-

tions, 1(1):11–23, Jan. 1981. ISSN 1558-1756. doi: 10.1109/MCG.1981.1673799.

O. C. Blender. Blender - a 3D modelling and rendering package. Blender Foundation, 2021.

R. Geirhos, P. Rubisch, C. Michaelis, M. Bethge, F. A. Wichmann, and W. Brendel. ImageNet-trained
CNNs are biased towards texture; increasing shape bias improves accuracy and robustness. In
International Conference on Learning Representations, Sept. 2018.

M. Niemeyer, L. Mescheder, M. Oechsle, and A. Geiger. Differentiable Volumetric Rendering:
Learning Implicit 3D Representations Without 3D Supervision. In 2020 IEEE/CVF Conference
on Computer Vision and Pattern Recognition (CVPR), pages 3501–3512, Seattle, WA, USA, June
2020. IEEE. ISBN 978-1-72817-168-5. doi: 10.1109/CVPR42600.2020.00356.

4https://github.com/iShohei220/torch-gqn
5https://github.com/bfshi/InfoDrop
6https://github.com/bethgelab/stylize-datasets
7https://creativecommons.org/licenses/by/4.0/, https://www.tensorflow.org/datasets/catalog/dtd
8https://github.com/hendrycks/robustness

7

Gaussian Noise Defocus BlurImpulse Noise Zoom Blur Frost Fog

Elastic Transform JPEG Compression Pixelate Brightness Contrast

Figure 3: Examples of image corruptions.

Figure 4: Examples of Stylized Geon

8

	Datasheet
	Ethics considerations
	Resubmission discussion
	Additional Results
	Adversarial Robustness
	Robustness to Common Corruptions

	Details of DVR 3D reconstruction training
	Reproducibility: Training details

