Published as a conference paper at ICLR 2024

CoBIT: A CONTRASTIVE BI-DIRECTIONAL IMAGE-
TEXT GENERATION MODEL

Haoxuan You', Mandy Guo? , Zhecan Wang!, Kai-Wei Chang?, Jason Baldridge?, Jiahui Yu?
!Columbia University, 2Google Research, *UCLA

haoxuan.you@cs.columbia.edu, {xyguo, jasonbaldridge, jiahuiyu}@google.com

Zero-shot Bi-directional Generation (T2l and I12T) Results: Input: A bunny rabbit _Generated:
Input: A racoon Generated. Input: Analien  Generated: octopus ~delivering letters door illustration of a
(" 1mama ) | astronautunder helmet rocket raccoon  octopus reading with a green face to door,colorized  rabbit knocking

G Imag? dreaming of stars. as an astronaut  a newspaper. under the sea 1840s photograph at a door

eneration & A
fext AR (§ _coBT 1) {coBm 1)
- A —
S pd - "

Multimodal

e Retrieval ‘

CoBIT

Text + Image
Zero-shot & Fine-tune

Multimodal
N Understanding

Image

g
Image Understanding

Captioning

Figure 1: CoBIT can address a variety of vision and vision-language tasks in zero-shot and fine-
tuning settings. The right-side displays the zero-shot generated images by CoBIT given novel
prompts, and the zero-shot generated captions by CoBIT given the previously generated images
as input.

ABSTRACT

The field of Vision-and-Language (VL) has witnessed a proliferation of pretrained
foundation models. Current techniques typically employ only one type of train-
ing objective, whether it’s (1) contrastive objectives (like CLIP), (2) image-to-
text generative objectives (like PaLlI), or (3) text-to-image generative objectives
(like Parti). However, all these three objectives are mutually relevant and are all
based on image-text pairs. Intuitively, the first two objectives can be considered as
complementary projections between two modalities, and contrastive learning can
preserve global alignment and generations facilitate fine-grained understanding.
Inspired by this, we present a Contrastive Bi-directional Image-Text generation
model (CoBIT) to first time unify the three pre-training objectives in one frame-
work. Specifically, CoBIT employs a novel unicoder-decoder structure consist-
ing of an image unicoder, a text unicoder, and a cross-modal decoder. The im-
age/text unicoders can switch between encoding and decoding in different tasks,
enabling flexibility and shared knowledge that benefits both image-to-text and
text-to-image generations. CoBIT achieves superior performance in image un-
derstanding, image-text understanding (Retrieval, Captioning, VQA, SNLI-VE),
and text-based content creation, particularly in zero-shot scenarios. ||

1 INTRODUCTION

Recently, there has been rising interest in developing multimodal foundation models for vision-
language tasks. By mapping text and image representation in the same space, the models can (1)
generate images from text (Ramesh et al., 2021} [Yu et al., |2022b; |Chang et al.| 20225 2023)), (2)
generate captions from images (Wang et al |2022a; |Chen et al.l [2022; [Wang et al.| [2021}; |Alayrac
et al., 2022), and (3) retrieve images from text and vice verse (Radford et al., 2021} |Yao et al.,
2021; Mu et al.l [2022; [You et al., 2022)). Although these tasks are highly relevant and can be
operationalized on the same set of image-text pairs. They are often considered separately, and
the corresponding foundation models are trained with different pre-training losses designed for the
corresponding task.

T This work was done when Haoxuan was an intern at Google.
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Specifically, there are three pre-training losses that are widely used in the literature: (1) contrastive
objectives, (2) image-to-text generative objectives, and (3) text-to-image generative objectives. Most
models are trained with only one of these objectives, while some are trained with two. For example,
CoCa (Yu et al)|2022a) combines contrastive learning and image-to-text generation. OFA (Wang
et al., |2022b) and UnifiedIO (Lu et al., 2022) integret image-to-text and text-to-image generation.
However, none of the approaches has considered using all these three losses although they are highly
relevant and can be trained with the same set of image-text pairs.

Intuitively, these pre-training objectives complement each other. Specifically, contrastive learning
drives high-level image-text matching, whereas image/text generation encourages the model to learn
fine-grained image and text representations. Therefore, it is intuitive to utilize them in the same
framework. It is worth noting that these three pre-training losses can share part of the computational
graphs. Therefore, optimizing them jointly does not increase much overhead compared to only
optimizing one.

In this paper, we propose to unify the three commonly used pre-training VL objectives: cross-modal
contrastive learning, image-to-text generation, and text-to-image generation, and consolidate their
strengths in one framework. Our key innovation is a simple and unified Contrastive Bi-directional
Image-Text generation model (CoBIT), which consists of an image unicoder and a text unicoder,
as well as a cross-attention decoder. The proposed image/text unicoder uses the Transformer ar-
chitecture. It alternates between two modes: unimodal image/text encoding and decoding depend-
ing on the pre-training tasks. Importantly, the same set of Transformer parameters are used for
both encoding and decoding, with only the input embedding and attention masks differing. As
shown in Fig. 2| when optimizing contrastive objective, image unicoder, and text unicoder work
as two encoders. When optimizing text/image generation loss, image/text unicoder extracts fea-
tures in encoding mode, and the text/image unicoder works in autoregressive decoding mode, then
the cross-attention decoder will let autoregressive text/image features cross-attend to encoded im-
age/text feature, serving as a fuser and generator. Each unicoder efficiently shares the knowledge
between encoding and decoding and, therefore, can jointly improve both T2I and I2T generation
without increasing the number of parameters, exhibiting excellent parameter efficiency. In such a
way, all three pre-training paradigms are unified in our framework.

Our extensive experiments demonstrate CoBIT’s superior performance, and more importantly, first
time verifies the compatibility of the three objectives. Benefiting from the compatible objectives,
CoBIT subsumes strong zero-shot and transferable capacities of unimodal visual understanding,
image-text matching, image-text understanding, and text-to-image generation. For example, CoBIT
achieves 82.7% accuracy in zero-shot ImageNet classification, 9.37 FID in zero-shot text-to-image
generation, 44.8 CIDEr score in zero-shot image-to-text captioning. After fine-tuning, CoBIT fur-
ther achieves 86.44% linear probing accuracy on ImageNet, 4.62 FID on text-to-image generation,
and 78.3 VQA score.

2 RELATED WORK

Learning Visual Representation from Text. Recent works studied pre-training a visual backbone
supervised by paired text data and produced transferable visual representations. CLIP (Radford
et al., 2021) and ALIGN (Jia et al. 2021) are prominent examples of global contrasting between
image-text pairs. Florence (Yuan et al.l 2021), BASIC (Pham et al., |2021)), and LiT (Zhai et al.,
2022b) further scale both datasets and models. FILIP (Yao et al. |2021) proposes to employ local
token features from images and text for fine-grained contrastive learning. MS-CLIP (You et al.,
2022)) and CLIPPO (Tschannen et al., | 2022)) study sharing the model parameters between vision and
text.

VL Pre-training. Another line of research focuses on learning a solid joint multimodal embedding
through pre-training. Some pre-train with mask-reconstruction loss (Li et al.| 2019 Wang et al.,
2022c} [Li et al.l 2022} |Chen et al., [2019; Shen et al.| 2021} [Li et al., |2021)), i.e., mask partial image
and text tokens in input and require the model to predict the masked tokens. Others pre-train models
by generating text autoregressively (Wang et al.,[2021;|Chen et al.,|2022;|Wang et al., 2022a};|Alayrac
et al., 2022)). Both perform strongly in downstream VL understanding tasks, such as VQA (Antol
et al.,[2015) and captioning.



Published as a conference paper at ICLR 2024

CoBIT: " , Img Generation loss & Text Generation loss
ﬂ — -

v\T-VOGAIN % [ Cross-Modal Decoder ]
mage
Detoke%\izer / ‘\
Image | Unicod Contrastive Text Unicoder
mage Unloder_ 52553

f t
@ﬂﬂ - [s9] s fwo] [eess] [ig] [in] [fea]

Image Tokens Text Tokens
(a) Pre-training Pipeline of CoBIT

. Text Generation loss
Image Generation loss

Contrastive
loss

[ Cross-Modal Decoder Cross-Modal Decoder ]

Cross-Attention

i i
i i
1 1
. : |
i . i
Image Unicoder Text Unicoder | / Cross-Attention : \
( Mode) ( Mode) H . [ Image Unicoder Text Unicoder
! L
i i
i
i
i
i
i

f

Image Unicoder Text Unicoder Mode) (Decoding Mode)
(Decoding Mode) ( Mode)

run !
el el el B e j f e = @ B =
N e 1 5 R | o Toxt Tokens
i i
Downstream: Retrieval; i [mage Tokens e T.Okcns : Downstream Image Captioning;
Image Understanding. | Downstream: Text-to-Image Creation | Vision-Language Understanding

(b) Contrastive Objective in CoBIT ! (¢) T2I Objective in CoBIT ! (d) I2T Objective in CoBIT

Figure 2: (a): Overview of CoBIT pre-training pipeline; (b): When optimizing contrastive objective,
image unicoder and text unicoder work as two encoders; (c) and (d): When optimizing image/text
generation loss, text/image unicoder extracts features in encoding mode and image/text unicoder
works in autoregressive decoding mode, then the cross-attention decoder will let autoregressive
image/text features cross-attend to encoded text/image feature.

Text-to-Image Generation. Text-guided image creation is a challenging problem that has attracted
intense interest in the past two years. Two families of methods are widely studied: diffusion-based
and token-based. Diffusion-based models (Rombach et al., 2022} [Saharia et al.,[2022; [Ramesh et al ]
are based on a process that iteratively adds noise to images and then learns to reverse the nois-
ing process while conditioning on textual descriptions of the image. With token-based methods,
raw images are quantized into image tokens by an image tokenizer; then, given a text input, Trans-
former models predict image tokens autoregressively like machine translation (Ramesh et al., 2021}

2022b)) or by iteratively predicting image tokens in parallel(Chang et al., 2022; [2023).

As these three broad lines of research have demonstrated great transferable ability to various down-
stream tasks, there have been many efforts to unify some of them (Yu et al [2022a; [Wang et al
[2022b};[Lu et al.| 2022} [Zhang et al.} 202Ta; [Kim et al.,[2022} [Huang et al.,[2021). Our work, CoBIT,
serves as the first effort to integrate contrastive loss, image-to-text generation, and text-to-image loss
under one unified pre-training framework.

3 CoBIT

We begin with describing the input processing and then present the model architecture, which in-
cludes a proposed unicoder module that shares the merit of both unimodal encoding and decoding.
Finally, we explain the pre-training of CoBIT and discuss a comparison with other unified models.

3.1 INPUT

To cover various tasks, CoBIT supports three inputs: text tokens, discrete image tokens, and raw
images.

Text Tokens. Following the default process in past works (Raffel et al [2020; Jia et al.l 2021},
2022a), we tokenize text inputs using a SentencePiece model with a 64k vocabulary trained
on the sampled pre-training datasets. The maximum text token length is 64.

Discrete Image Tokens. CoBIT generates images in an autoregressive manner, which requires

tokenizing 2D images into a sequence of image tokens (Ramesh et al}[2021};[Ding et al.,[2021};[2022}

[Gafni et all 2022; [Yu et al., [2022b). Following Parti (Yu et al.l 2022b), we employ a pre-trained
and frozen ViT-VQGAN (Yu et al., 2021) as the tokenizer. Specifically, each 256x256 image is

tokenized into a 32x32 grid of image tokens, with 8192 image token classes in the codebook.
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Model Image Unicoder Text Unicoder Cross-modal Decoder Total Params
Layers Dims Layers Dims Layers Dims

CoBIT-Base 12 768 12 768 18 1024 626M

CoBIT-Large 20 1024 12 1024 30 1024 1082M

Table 1: Size variants of CoBIT.

We append the codebook to the text vocabulary as additional tokens. In inference, to generate
images, we decode the image tokens one-by-one and feed them into the decoder in ViT-VQGAN to
reconstruct the raw image.

Raw Image. For image and image-text understanding tasks, we input raw images, and each image
is divided into non-overlapped patches following the de facto process in ViTs. In default, unless
specified, the image resolution is 288x288, and the patch size is 18x18.

3.2 ARCHITECTURE

As shown in Fig. [2| CoBIT comprises one image unicoder, one text unicoder, and one cross-attention
decoder. We term them unicoders because they can act as either encoders or decoders, depending
on the role they play for each task. The incorporation of text/image unicoder is inspired by |Dong
et al.[(2019); Bao et al.| (2020); |[Zhou et al.|(2020), which demonstrated that one Transformer model
can perform both bidirectional encoding for understanding tasks and autoregressive decoding for
generation tasks. In our scenario, compared with plain image/text encoders, unicoders in decoding
mode can take advantage of the common knowledge shared with encoding to produce unimodal
autoregressive features as a decent prior for cross-modal generative objective. Experimental ablation
also validates that unicoders boost both T2I generation and multimodal understanding.

Image Unicoder. Recently, Vision Transformers (ViT) (Dosovitskiy et al., [2020; Touvron et al.,
2021} |Liu et al.| 2021)) has been established as the strongest approach for image feature encoding.
As decoders, Transformers are used in autoregressive image token generation (Ramesh et al., 2021}
Gafni et al} 2022} [Yu et al., 2022b). We combine these two functionalities into a single image
unicoder. The image unicoder has two working modes: (1) In the encoding mode, following ViT,
each 2D patch in the raw image is projected into a feature vector by a trainable linear projection layer.
Then, the projected feature sequence is input into cascaded Transformer layers to obtain the encoded
image features, where the attention mask is bi-directional. (2) In the decoding mode, firstly, the input
processing is different. As described in Sec. 3.1} we tokenize the raw image into image tokens and
initialize an embedding layer where token embeddings are indexed. Then, the same Transformer
layers in encoding mode are reused in decoding mode to process the features; however, to guarantee
the causal decoding ability, we use causal conv-shaped attention mask (Ramesh et al.,|2021; Yu et al.}
2022b;|Child et al., 2019) instead. Overall, the two modes share the Transformer layers’ parameters,
and only differ in input processing and attention masks. We assume that, compared with the design
of plain image encoders as in previous works (Yu et al., 2022a; Wang et al., [2022a)), the additional
decoding mode can exploit the common knowledge learned in image encoding to generate image
autoregressive features, which we hypothesize should boost the (text-to-)image generation capacity.

Text Unicoder. Similar to the image unicoder mentioned above, the text unicoder also has both
encoding and decoding modes, which reuse the Transformer parameters. In both modes, the same
tokenizer and embedding layer are utilized to obtain token features, given that they share the same
input formats. A causal attention mask is applied in decoding mode. During encoding of text, there
are two options in previous works: bi-directional mask (Devlin et al.l 2018} [Raffel et al., 2020;
Yu et al., [2022b), or causal mask (Brown et al., [2020; [Radford et al.| 2021} |Yao et al., 2021)). We
empirically found that two masks make no difference in performance and use causal masking as the
default in the reported experiments.

Cross-modal Decoder The cross-modal decoder performs as a fusion-and-generation module,
which structure-wise follows the cross-attention decoder (Vaswani et al., 2017; |Yu et al., 2022a).
When generating text, the input is the text autoregressive feature from the text unicoder in decoding
mode; encoded image features will be treated as cross-attention information, i.e., key and value in
cross-attention layers. When generating the image, symmetrically, the image token autoregressive
feature from the image unicoder in decoding mode is input and cross-attends to encoded text fea-
tures. Also, different from text generation, where the plain causal (autoregressive) mask is used in
the cross-modal decoder, image generation employs a conv-shaped masked sparse attention (Ramesh
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et al.| 2021} [Yu et al., [2022b; |Child et al.| 2019)), which can save memory and computation brought
by long sequences of image tokens.

3.3 PRE-TRAINING

The pre-training of CoBIT subsumes three fundamental objectives: image-text contrastive loss, 12T
generation loss and T2I generation loss. Here, we provide details on the losses and also clarify the
scaling and initialization strategy.

Contrastive Loss. We input raw image and text into the image unicoder and the text unicoder,
respectively (both in encoding mode), to get encoded image and text features. For text, as with
CLIP (Radford et al.l 2019) and ALIGN (Jia et al.l [2021), we take the feature vector of the CLS
token appended at the end of the input sequence as the global representation. For images, however,
the unicoder outputs a sequence of features. To aggregate them, following (Yu et al.| [2022a), we
apply an attention pooler, which is a single multi-head attention layer with one learnable query and
unicoder output features as key and value. After obtaining two global features of image and text, a
contrastive loss is applied to optimize the paired image-text against others in the same batch:

N N

1 exp(z] yi/7) exp(y; ©i/7)

Leon = ——= () log + ) log ), (1)
N Z S0y exp(aly;/7) Z S exp(yfw; /)

where z; and y; denote the normalized global embeddings of i-th image and j-th text. 7 is a

learnable temperature for adjusting the scale of the loss.

I2T and T2I Generation Loss. We formulate two generation tasks as token generation problems.
As shown in Fig. |2| by cascading the image unicoder, text unicoder, and cross-modal decoder, we
can perform two tasks seamlessly by only switching the working modes of unicoders. A cross-
entropy loss is applied on top of the cross-modal decoder to maximize the conditional likelihood of
the ground-truth token under the forward autoregressive factorization.

T T

Lot ==Y logPs(yly<s, ), Lrar = = _logPy(i|z<e, T), )

t=1 t=1
where y and x denote text and image tokens respectively.

Classifier-Free Guidance for T2I. Following Yu et al.| (2022b); (Chang et al.| (2023)); [Ramesh
et al.| (2021), we employ classifier-free guidance (CFG) (Ho & Salimans| [2022) in text-to-image
generation. To be more specific, in training, we randomly mask conditioning vectors, i.e., input
text tokens, by certain possibility (10% in our implementation). In inference, we compute two
predictions: conditional one I(z,7T") and unconditional one I(z), which only differ in text input:
conditional prediction I(z, T') has original text tokens as input while the input text of unconditional
prediction I(z) is fully masked. Then we linearly interpolate the I(z, ¢) and I(z) to obtain the final
generated image:

where « is a hyperparameter to adjust the scale of classifier-free guidance, and we set a=2.0 in
default.

Final Loss. In the end, we add those three losses up to optimize the model end-to-end.
Lcopir = AconLcon + AnTLir + Aralra 4)

where Acon, A2T, A1 denote corresponding scalar coefficients for contrastive, I2T and T2I loss. In
default, we set Ato1: Apt: Acon=1:0.2:0.1.

Scaling. As shown in Tab we start from CoBIT-Base, and scale it up, w.r.t. both number of layers
and model dimension, to obtain CoBIT-Large with around 1B parameters.

Initialization. In previous text-to-image generation models (Yu et al.,[2022b; Rombach et al., 2022
Saharia et al., 2022), the text feature extractor is usually initialized by a pre-trained text model.
Correspondingly, in CoBIT, we also initialize the text unicoder with another pre-trained text uni-
modal decoder from CoCa (Yu et al., 2022al), while leaving the image unicoder and cross-modal
decoder trained from scratch. In Sec. we compare it with training all from scratch and find the
initialization indeed helps.



Published as a conference paper at ICLR 2024

3.4 COMPARISON WITH OTHER UNIFIED WORKS

For a clearer comparison with other unified works, we provide a detailed explanation of CoBIT v.s.
recent unified diffusion-based and auto-regressive models, such as Versatile Diffusion (Xu et al.|
2022)), CoDi (Tang et al., 2023), Hu et al.| (2022), UniDiffuser (Bao et al., 2023)), Unified-IO (Lu
et al., 2022), OFA (Wang et al., 2022b)), BEIT-3 (Wang et al.,2022c) and CM3Leon (Yu et al., [2023))

in Appendix [6.3]

4 EXPERIMENTS

In this section, we first describe the pre-training details (Sec. [4.1I). Following, Sec. #.2] and Sec.
[.3] introduce the primary results of zero-shot and fine-tuning evaluation, respectively. Both eval-
uations examine three capacities: (1) visual understanding, (2) image captioning and multimodal
understanding, (3) text-to-image content creation. Lastly, Sec. [4.4] brings ablation.

4.1 PRE-TRAINING DETAILS

Data. CoBIT is designed to be pre-trained with image-text data. For contrastive loss and 12T
loss, we use a mixture of ALIGN dataset (Jia et al.| [2021)), and JFT-4B dataset (Zhai et al., 2022a)
where category names are transformed into texts by prompts as in [Pham et al.| (2021). Differently,
for T2I generation, we found that the short text in JFT-4B is less informative for generating the
image as extensive descriptions of visual details are important. Instead, we replace JFT with WebLI
dataset (Chen et al.} 2022), and mix it with ALIGN for T2I generation loss. We further perform de-
duplication, as inJia et al.|(2021); Zhai et al.[(2022b), to remove the examples close to downstream
tasks. In the end, we obtain 1.1B pairs from ALIGN dataset, 162M pairs from WebLlI dataset, and
4B pairs from JFT-4B dataset.

Optimization. CoBIT is implemented using Pax (Team) [2023), a Jax-based framework. Within
each batch, for optimizing T2I loss, we sample 1,024 image-text pairs from a mixture of ALIGN
and WebLlI datasets, and for optimizing contrastive and I2T losses, we sample 30,720 image-text
pairs from a mixture of ALIGN and JFT datasets. In total, the batch size is 31,744. We use the
Adafactor (Shazeer & Stern), 2018)) optimizer with 5; = 0.9, 85 = 0.96 and a weight decay of 0.045.
As for the learning rate schedule, we warm it up to 4.5e-5 in the first 5,000 steps and then use an
exponential decay starting from the step of 85,000. In total, models are pre-trained for 1M steps and
CoBIT-Base/CoBIT-Large takes around 12 days on 256/512 CloudTPUv4 chips. Then, following
Radford et al.| (2021); Jia et al.| (2021)), we further pre-train our models for 50k steps with 576x576
high-resolution raw images as input in image encoding. The image input to ViIT-VQGAN, i.e., image
for decoding, is kept at 256x256 resolution.

4.2 ZERO-SHOT EVALUATION ON DOWNSTREAM TASKS

We evaluate CoBIT on 5 representative tasks, and compare CoBIT against CLIP (Radford et al.|
2021), ALIGN (Jia et al., [2021), FILIP (Yao et al., [2021)), Florence (Yuan et al., 2021), (Yu et al.,
2022al), ZeroCap (Tewel et al., 2021)), SimVLM (Wang et al.| 2021)), VLKD (Dai et al.| [2022)), Parti
(Yu et al) 2022b), LDM (Stable Diffusion)-1.4B (Rombach et al.| 2022)), Flamingo-3B (Alayrac
et al.} 2022), DALL-E 2 (Ramesh et al., 2022), Versatile Diffusion (Xu et al.} 2022), CoDi (Tang
et al., [2023) and CM3Leon (Yu et al., [2023)).

Zero-shot Image Classification. We follow the standard evaluation protocols as in CLIP, ALIGN,
etc (details in Appendix [6.4.2). As shown in Tab. compared to models with similar scales,
in ImageNet (Russakovsky et al., [2015), CoBIT-Large can achieve 82.7%, outperforming strong
baselines such as CLIP and ALIGN. In practice, we find batch size difference also profoundly affects
models’ performance, which may contribute to the 2% discrepancy between the performance of
CoBIT-Large and CoCa-Large as CoCa’s batch size is 64k while ours is appendixonly.

Zero-shot Image-Text Retrieval. The image and text feature extraction process is the same as
zero-shot image classification. Flick (Plummer et al [2015) and MS-COCO (Lin et al., 2014)) are
used for evaluation. In Tab. 2] within comparable scales, CoBIT-Large can outperform the previous
best model CoCa-Large in 5 out of 8 metrics and is ranked the second best in another two metrics.

Zero-shot Image Captioning. Since CoBIT is already pre-trained with image-to-text generation
loss on noisy image-text data, we directly evaluate it on zero-shot image captioning. As in Tab. 2] in
MS-COCO, CoBIT-Base/CoBIT-Large can achieve 43.0/44.8 CIDEr score, surpassing SimVLM by
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Table 2: Zeroshot Evaluation of CoBIT against previous image-text models. The models in gray
background have >> 1B parameters while others in white background have < 1B parameters. For
models with < 1B parameters, we highlight the best score in bold+underline and the second-best
score in underline. Understd. is the abbreviation of Understanding.

Image Understd. Image-Text Understd. Content Creation
Model ImageNet Flickr Retrieval MS-COCO Retrieval ~ MS-COCO ~ MS-COCO
Classification Image—Text Text—Image Image—Text Text—Image Captioning - T2I Generation
Acc(%) R@l R@5 R@] R@5 R@] R@5 R@l R@5 CIDEr FID ({)

CLIP 76.2 88.0 98.7 687 90.6 584 8l.5 37.8 624 - -
ALIGN 76.4 88.6 98.7 757 93.8 586 83.0 456 69.8 - -
FILIP 78.3 89.8 992 750 934 613 843 459 70.6 - -
Florence 83.7 909 99.1 767 93.6 647 859 472 714 - -
CoCa-Large 84.8 914 992 790 95.1 654 856 50.1 73.8 - -
ZeroCap - - - - - - - - - 14.6 -
SimVLM - - - - - - - - - 322 -
VLKD - - - - - - - - - 58.3" -
Parti-350M - - - - - - - - - - 14.10
Parti-750M - - - - - - - - - - 10.71
LDM (SD)-1.4B - - - - - - - - - - 12.63
Coca-2B 86.3 925 995 804 957 663 862 512 742 - -
Make-A-Scene - - - - - - - - - - 11.84
Versatile Diffusion - - - - - - - - - - 11.10
CoDi - - - - - - - - - - 11.26
DALL-E 2 - - - - - - - - - - 10.39
CM3Leon-7B - - - - - - - - - - 10.82
Parti-20B - - - - - - - - - - 7.23
CoBIT-Base 79.4 89.5 984 765 943 621 835 473 723 43.0 10.35
CoBIT-Large 82.7 915 99.1 799 953 65.1 855 503 742 44.8 9.37

10.8/12.6. It’s noted that the models with T, e. g., Flamingo, VLKD, have much higher scores than
others because they reuse a pre-trained large language model as a decoder that inherits strong text
generation ability.

Zero-shot Text-to-Image Generation. We follow the standard evaluation process as in Parti
and DALL-E (detail in Appendix [6.4.3). As we can see in Tab[2] CoBITs can beat specialized
models with comparable scales, and CoBIT-Large can achieve an impressive FID of 9.37 which
outperforms some models with larger scales by a significant margin, e.g., DALL-E 2/Make-A-Scene
with 3.5B/4B parameters.

4.3 FINE-TUNING ON DOWNSTREAM TASKS

To demonstrate the transferability of CoBIT, we further conduct linear probing or fine-tuning on
multiple downstream tasks. Besides the existing methods we mentioned in the previous section, we
also compare UNITER (Chen et al., |2019), VinVL (Zhang et al., 2021b), CLIP-ViL (Shen et al.,
2021), OFA (Wang et al [2022b)), X-LXMERT (Huang et al., [2021) and PALI (Chen et al., [2022).
The detailed hyperparameters of these tasks are shown in Tab.

Linear Probing on ImageNet. Following CLIP, we linear probe CoBIT by fixing all parameters of
the image unicoder and only training a linear classifier on top for image recognition. CoBIT-Large
can outperform CLIP and ALIGN by around 1%.

Image-Text Understanding. We categorize VQA (Antol et al.,[2015), SNLI-VE (Xie et al., [2019)
and image captioning into tasks requires image-text understanding. We fine-tune all parameters of
CoBIT and evaluate it on the val/test set.

Captioning. In fine-tuning, CoBIT computes caption predictions in the same way as zero-shot
image captioning in Sec. In Tab. |3] we can see the CoBIT can achieve a competitive CIDEr
score against other models. It’s noted that some works (Wang et al.,[2022b) additionally apply task-
specific tricks such as CIDEr optimization, but for a fair comparison, we only present their results
with plain cross-entropy loss.

VQOA. We follow prior works (Wang et al., 2021} |Yu et al.; 2022a) to setup VQA fine-tuning (Detail
in Appendix [6.4.4). As shown in Tab. [3| CoBIT can achieve satisfactory performance compared
with other VLP models.



Published as a conference paper at ICLR 2024

Table 3: Fine-tuning Evaluation of CoBIT against previous image-text models. PT. denotes pre-
trained, and Scratch denotes trained from scratch. TOFA incorporates images and text in its input,
while others only use image one.

Visual Image Understd. Image-Text Understd. Content Creation
Model Backbone  ImageNet VQA SNLI.VE  MS-COCO  MS-COCO T2I
Linear Probing testdev teststd dev  test Captioning (CIDEr) Generation (FIDJ)

CLIP Scratch 854 - - - - - -
ALIGN Scratch 85.5 - - - - - -
UNITER Faster-RCNN - 73.8 740 794 794 - -
VinVL Faster-RCNN - 76.5 76.6 - - 130.8 -
CLIP-ViL CLIP - 76.5 76.7 80.6 802 134.2 -
ALBEF PT. ViT - 75.8 76.0 80.8 809 - -

BLIP PT. ViT - 78.3 78.3 - - 136.7 -
SimVLM PT. ResNet - 80.0 80.3 86.2 86.3 143.3 -

OFA PT. ResNet - 820 820 ¥ i 145.3 10.5
X-LXMERT Faster-RCNN - - - - - 122.6 29.9
Unified-10x.-2.9B Scratch - - 77.9  91.1 - 122.3 -

CoDi CLIP - - - - - 149.9 3.22
CoCa-2.1B Scratch - 80.0 80.3 87.0 87.1 143.3 -
BEIT3-1.9B Scratch - 84.2 84.0 - - 147.6 -
PALI-17B PT. ViT - 84.3 84.3 - - 149.1 -
Parti-20B - - - - - - - 3.22
CoBIT-Base Scratch 83.48 76.3 76.6 854 854 1354 5.06
CoBIT-Large Scratch 86.44 77.9 783 86.2 86.0 139.5 4.62

SNLI-VE. Similar to fine-tuning VQA, we extract the final token output feature of the cross-modal
decoder and apply a linear classifier on top to predict the three relations. As shown in Tab. [3} CoBIT
can outperform strong VLP models and achieve superior performance. Note that other models,
including CoBIT only use image premises as inputs, but OFA incorporates both image and text
premises in its input.

Text-to-Image Generation. Following Parti and DALL-E, we fine-tune CoBIT on MS-COCO
training set and evaluate the FID score on the sampled appendixtest set. Compared with zero-shot
performance, fine-tuning on CoBIT-Base/CoBIT-Large further reduces the FID from 10.35/9.37 to
5.06/4.62, outperforming models of comparable scales.

4.4 ABLATION

This section comprehensively ablates the design choices in CoBIT. Most ablation experiments are
conducted on CoBIT-Base with a reduced batch size and a shrunken training schedule (See detail
in Appendix [6.4.5). We select the following representative tasks: zero-shot ImageNet Classifica-
tion (ZS IN.) for image understanding, VQA (fine-tuned) or zero-shot Captioning (ZS Cap.) for
multimodal understanding, and zero-shot text-to-image generation (ZS IG.) for image generation.

Training Objectives. We ablate the existence of three training objectives: contrastive loss, 12T
loss, and T2I loss, and study how they affect each other. The result is shown in Tab. [Z_f} We
can obtain several interesting observations: (1). By comparing the first and last rows, it is found
cross-modal generation objectives can improve image understanding a bit on top of contrastive
loss. The zero-shot ImageNet accuracy is improved by 0.3%. (2) Comparing the second, third,
and fourth rows, we see two generations losses, i.e., I2T loss and T2I loss, contradict each other
a little bit. But it’s also promising because joint training essentially saves half of the parameters
compared with using an ensemble of two separate models. (3) From the fourth row and fifth row, we
can see contrastive loss improves vision-language understanding while it doesn’t influence image
generation. Overall, we demonstrate the feasibility of harmoniously unifying three fundamental
objectives in one framework.

Loss Weight. Given three objectives, we ablate different weights for them and select the best one
as the default configuration for all experiments. Please see Appendix [6.2]

Unicoder vs. Encoder. In previous Vision-Language works (Wang et al., 2021} |Yu et al.| |2022aj
Chen et al., 2022), encoder-decoder has been a de facto pipeline, where encoder encodes image/text
features and cross-modal decoder fuses them and perform generation. Differently, we propose uni-
coder to replace encoder, which can both encode and decode unimodal representations with shared
parameters. Here, we ablate image and text unicoders against image and text encoders. In the Ap-
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Table 4: Ablation on three objec-

. . . Table 5: Ablation on unicoder vs. . :
tives. Con. is contrastive loss. Table 6: Ablation on

encoder. initialization.
Objectives Evaluation Module Evaluation P——
Cj“' TARTZSIN. VQA ZS1G.- () “jpgge  Text  VQA ZS Cap. ZSIG. (1) from CoCa Scratch
- - 708 - -

v . 126 gn?offr Eﬂcoger 222 gg-g 1133588 ZSIN. 7535  75.02

nicoder ncoder . . .
- v - 68 - Encoder Unicoder 67.8 350  13.67 vQA - 6848 6855
-V v - 654 132 U U 660 370 1331 Z8IG.() 1142 1163
v v v 711 669 133 fucoder Lmeoder ©o. : :

Failure: a rectangular bow! of soup H
reflecting a scenic view of a mount range
in S. '

A panda astronaut walking with ' i A dsir photo of a banana ow. it has cute owl T
swagger on mars in an infinite | ! wings and an adorable owl head with the
universe, synthwave digital art | ! feathered body of a banana

____________________

Figure 3: Qualitative results of zero-shot text-to-image generation from CoBIT-Large with both
good and failed cases.

pendix [6.6] we put a diagram Fig. []to illustrate how the compared encoder-only models work, and
explain the number of parameters of those two designs. As shown in Tab. [3} either image unicoder
or text unicoder can improve over encoders, and applying them together brings the best trade-off for
both image generation and multimodal understanding.

Pre-training Data. The ablation of three different pre-training datasets is detailed in Appendix[6.3}

Train From Scratch.  As mentioned in Sec. [3.3] we initialize the text unicoder with a pre-
trained unimodal text decoder from CoCa. Here, we also attempt to train all from scratch. In this
comparison, all models are trained with non-shrunken batch size to mitigate the possible gap due to
the much larger batch size of CoCa. In Tab. [6] loading pre-trained weight from CoCa improves zero-
shot Imagenet recognition and text-to-image generation by 0.3% and 0.2, which is a small margin.
Also, it doesn’t even improve VQA. This comparison verifies the do-ability of training CoBIT all
from scratch without hurting much performance.

4.5 VISUALIZATION

We visualized good and failed generated images of CoBIT-Large using the prompts from Par-
tiPrompt [2022D). As in Fig. 3] CoBIT can generate high-quality, broadly capable, open-
domain images based on text. As for failed cases, we can see CoBIT misunderstands “A car made
out of Sushi” as “A car with Sushi on top”, also CoBIT fails to generate the reflection of mountains
in the bowl of soup. More visualization and analysis are in Fig. [5]

5 CONCLUSION

We present a VL foundation model, CoBIT, which unifies three objectives: cross-modal contrastive
learning, image-to-text generation, and text-to-image generation. The model is trained on large-
scale noisy web-crawled image-text and image annotation data. CoBIT achieves strong zero-shot
and transferable capacities of unimodal visual understanding, image-text matching, image-text un-
derstanding, and text-to-image content creation.
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ImageNet MS-COCO MS-COCO

Lineaz‘;y Probe VQA | SNLI-VE Captioning T2I Generation
Optimizer SGD Adafacter
Gradient Clip 1.0
LR decay schedule | Cosine Schedule to zero Linear Schedule to zero Exponential Schedule to zero
RandAugment 2,5 1,10 None
Training Step 225k 100k 50k 15k 100k
Warm-Up Step 0 1000 | 1000 500 1000
Batch Size 512 32 128 128 256
Learning Rate 32 le-5 Se-5 Se-6 le-5
Weight Decay 0.0 0.1 0.1 0.01 0.045

Table 7: Hyper-parameters used in the multimodal experiments.

6 APPENDIX

ACKNOWLEDGEMENT

We would like to thank Prof. Shih-Fu Chang, Luowei Zhou, Long Chen for constructive discussion,
Zirui Wang for help with downstream fine-tuning, Huiwen Chang for proofreading, and Laurent El
Shafey for infra support.

6.1 LIMITATIONS & BROADER IMPACT

Limitations. Although CoBIT unifies contrastive loss, text-to-image generation (T2I) loss, and
image-to-text (I2T) generation loss, from ablation experiments, we can find that T2I and I2T objec-
tives contradict each other a little bit. We hypothesize that it’s because two generations require some
fine-grained knowledge that is specific to each modality. We will leave it as a future direction.

Broader Impact. Models such as Stable Diffusion, DALL-E, Parti, CoBIT are trained on large
and noisy image-text datasets that inevitable include potential biases toward people of different
backgrounds. The bias can arise because the dataset’s image and text samples might not be repre-
sentative of the real-world population and could inadvertently promote certain stereotypes. Also,
because the generated images of CoBIT are in high quality, the concern of abusing the model to
create and spread manipulated data (deepfake, political manipulation, etc.) does exist.

6.2 ABLATION ON L0OSS WEIGHT

Table 8: Ablation on weights of three losses. Con. denotes contrastive loss. T2I denotes text-
to-image generation loss. I2T denotes image-to-text generation loss. ZS IN. denotes zero-shot
ImageNet classification. ZS IG. denotes zero-shot text-to-image generation on MS-COCO, which is
evaluated by FID and lower FID is better.

Weights Evaluation
Con. T2I I2T ZSIN. VQA ZSIG.({)
- 0.1 1 - 63.2 13.17
- 0.2 1 - 65.4 13.24
- 1 1 - 67.8 16.33
0.1 02 1 71.1 66.9 13.31
04 02 1 71.2 66.5 13.92

Given three objectives, we ablate different weights for them and select the best one as the default
configuration for all experiments. We start with T2I and I2T first: given the weight of T2I fixed to
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Figure 4: Diagram of three compared models in the ablation of unicoder vs. encoder. Top: Re-
placing both image unicoder and text unicoder with image encoder and text encoder respectively.
Middle: Replacing text unicoder with text encoder while keeping image unicoder. Bottom: Replac-
ing image unicoder with image encoder while keeping text unicoder.

1, we ablate the loss of I2T. Then given T2I and I2T loss both fixed, the weight of contrastive loss
is ablated. As we can see in Tab. [J] a high weight of 12T such as 1 will hurt the image generation
heavily but also improve VQA. On the other hand, a high weight of contrastive loss like 0.4 will
not essentially improve image recognition and hurts both VQA and image generation. Overall, we
chose Con.:T2I:I12T = 0.1:0.2:1 as our default setting, as it achieves a good trade-off between three
losses.

6.3 ABLATION ON PRE-TRAINING DATA

Table 9: Ablation on weights of three pre-training datasets. ZS IN. denotes zero-shot ImageNet
classification. LP. means linear probing. ZS IG. denotes zero-shot text-to-image generation on
MS-COCO, which is evaluated by FID and lower FID is better.

Datasets Evaluation
ZSIN. LP.IN. VQA ZSIG.()

JFT 71.6 81.4 64.8 14.6
ALIGN 70.9 81 67.2 13.8
WebLlI 70.0 80.2 66.2 13.4
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Here we ablate the three pre-training datasets. To make a fair comparison, the batch size is kept
the same, the training is conducted for 200k steps on base model. As we can see in Tab. [9] JFT
is beneficial to classification tasks, focusing on basic and precise semantics of image; WebLlI has
higher-quality image data and is specifically beneficial to text-to-image generation; ALIGN is rela-
tively noisy but covers broad semantics. That’s the reason why we mixed them for a more balanced
training.

6.4 DETAILS OF EXPERIMENTS
6.4.1 HYPERPARAMETERS IN FINE-TUNING

In Tab. [7, we present the hyperparameters we used in fine-tuning/linear probing of CoBIT.

6.4.2 ZERO-SHOT IMAGE CLASSIFICATION

we apply the same set of prompts to transfer labels into sentences, such as “a photo of {class}”. Sim-
ilar to the contrastive loss computed in Sec. [3.3] we input raw image/text into image/text unicoders
in encoding mode to obtain the global image and text features. Then, we compute their similarity to
match images and labels.

6.4.3 ZERO-SHOT TEXT-TO-IMAGE GENERATION

In decoding, we employ Top-K sampling to sample 16 images for each text and use a reranker to
select the best image for evaluation. Following the de facto process, we compute FID score (Heusel
et al.,[2017) on MS-COCO appendixdata (lower FID is better).

6.4.4 VQA FINE-TUNING

we use the VQA v2, and the task is formulated as a classification problem over 3,129 most frequent
answers in the training set. To accomplish this, the raw image is fed into the image unicoder using
encoding mode, while the question is processed by the text unicoder in decoding mode. Subse-
quently, the cross-modal decoder utilizes the text decoding features as input and cross-attends to the
encoded image features. The final token output feature of the cross-modal decoder is considered the
fused global feature. To predict the answer, a linear classifier is trained on top of this feature.

6.4.5 SETUP OF ABLATION TRAINING

Specifically, the total batch size is 4,352, containing 4,096 for contrastive and 12T loss and 256 for
T2I loss, and the total training step is 200k without high-resolution pre-training.

6.5 DETAILED COMPARISON WITH OTHER UNIFIED WORKS.

v.s. Unified Diffusion-based Models. Some recent works utilize diffusion models to jointly learn
text-to-image and image-to-text learning, such as Versatile Diffusion (Xu et al., 2022), CoDi (Tang
et al., 2023), Hu et al.|(2022), UniDiffuser (Bao et al.| [2023)). Although they work well in image
generation, they tend to perform worse in text generation and fail to handle image-text understanding
tasks such as VQA, retrieval, etc. Moreover, they all initialize from Stable Diffusion, while CoBIT
is mostly trained from scratch and learns superior image understanding capability.

v.s. Unified Auto-Regressive Models. Unified-IO (Lu et al.,|2022), OFA (Wang et al.| 2022b) and
CM3Leon (Yu et al., 2023) also train text-to-image and image-to-text jointly. However, they use a
plain decoder or encoder-decoder model without considering the contrastive alignment as in CoBIT.
BEIT-3 (Wang et al.|[2022c)) conducts the image-to-text generation by mask-and-reconstruction with
an encoder model but could not handle the text-to-image generation task.

6.6 ILLUSTRATION OF REPLACING UNICODERS WITH ENCODERS IN COBIT
In Sec.4.4, we ablate Unicoder vs. Encoder and demonstrate the effectiveness of proposed uni-

coders. In Fig. ] we show the diagram of using image and text encoders, image encoder+text uni-
coder, and image unicoder+text encoder. As we can see, encoders can only encode visual or textual
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Figure 5: Qualitative results of zero-shot text-to-image generation from CoBIT-Large with both
good and failed cases.

features while unicoders can perform both encoding and decoding, which shares the knowledge and
boosts the generation result as shown in previous ablation. It’s noted that in pre-training, unicoder
doesn’t add extra parameters compared to encoders because encoding and decoding in unicoder
reuse the same set of parameters; In the finetuning of text-to-image and image-to-text tasks, the uni-
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coder design indeed brings more parameters than encoder. Therefore, we mainly evaluate zero-shot
captioning and zero-shot image generation in this ablation (Tab. [3)) to eliminate the difference of
parameter numbers.

6.7 MORE VISUALIZATION

In Fig. [5] We attach more visualization of CoBIT-Large on zero-shot text-to-image generation with
novel prompts in PartiPrompts [Yu et al.| (2022b). For better visualization when zoom-in, we em-
ploy Sahak et al.| (2023) as the super-resolution module to upsample generated 256x256 images to
1024x1024 images. It’s noted that when computing FID, we still use 256x256 images and the high-
resolution ones are only used for visualization. In failed cases, we find that: (1) CoBIT sometimes
messes up the size attributes of two objects. For example, in the last example, yellow sphere ought
to be smaller. (2) CoBIT sometimes couldn’t render the details of words in text very well. In the
second last example, “DRAWIT” is rendered as “DRAWMI?”. (3) CoBIT occasionally misunder-
stands the text. In the third last example, we expect a geico that looks like a cat whereas CoBIT first
renders “GEICO THAT LOOK” then generates a cat. It’s indeed a new way to interpret the text but
not the desired way of humans.
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