
1134 Table of Contents
1135
1136

A MIKASA-Robo Implementation Details 271137

B MIKASA-Robo Datasets for Offline RL 281138

C MIKASA-Base Implementation Details 281139

D MIKASA-Robo setup for VLA baselines 281140

E Memory Mechanisms in RL 291141

F Classic baselines performance on the MIKASA-Robo benchmark 291142

G Experiments Reproducing and Compute Resources 321143

H MIKASA-Robo Detailed Tasks Description 321144

H.1 ShellGame-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 341145

H.2 RememberColor-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 351146

H.3 RememberShape-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361147

H.4 RememberShapeAndColor-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . 371148

H.5 Intercept-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 381149

H.6 InterceptGrab-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391150

H.7 RotateLenient-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401151

H.8 RotateStrict-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411152

H.9 TakeItBack-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 421153

H.10 SeqOfColors-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431154

H.11 BunchOfColors-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 441155

H.12 ChainOfColors-v0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 451156

I MIKASA-Base Benchmark Tasks Description 461157

I.1 Memory Cards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461158

I.2 Numpad . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 461159

I.3 BSuite MemoryLength . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471160

I.4 Minigrid-Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471161

I.5 Ballet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471162

I.6 Passive T-Maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471163

I.7 ViZDoom-Two-Colors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471164

I.8 Memory Maze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471165

I.9 MemoryGym Mortar Mayhem . . . . . . . . . . . . . . . . . . . . . . . . . . 481166

I.10 MemoryGym Mystery Path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481167

I.11 POPGym environments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 481168

1169
11701171

26



A MIKASA-Robo Implementation Details1172

An example of running the environment from the MIKASA-Robo benchmark is shown1173

in Code 1. For ease of debugging, we also added various wrappers (found in1174

mikasa_robo_suite/utils/wrappers/) that display useful information about the episode1175

on the video (Code 2). Thus, RenderStepInfoWrapper() displays the current step in the envi-1176

ronment; DebugRewardWrapper() displays information about the full reward at the current step1177

in the environment; DebugRewardWrapper() displays information about each component that1178

generates the reward function at the current step. In addition, we also added task-specific wrappers1179

for each environment. For example, RememberColorInfoWrapper() displays the target color1180

of the cube in the RememberColor-v0 task, and ShellGameRenderCupInfoWrapper()1181

displays which mug the ball is actually under in the ShellGame-v0 task.1182

Code 1: Getting started with MIKASA-Robo using the RememberColor9-v0 environment. �
1183

# pip install mikasa_robo_suite1184

import mikasa_robo_suite1185

from mikasa_robo_suite.utils.wrappers import1186

↪→ StateOnlyTensorToDictWrapper1187

from tqdm.notebook import tqdm1188

import torch1189

import gymnasium as gym1190

1191

# Create the environment via gym.make()1192

# obs_mode="rgb" for modes "RGB", "RGB+joint", "RGB+oracle" etc.1193

# obs_mode="state" for mode "state"1194

episode_timeout = 901195

env = gym.make("RememberColor9-v0", num_envs=512 obs_mode="rgb",1196

↪→ render_mode="all")1197

env = StateOnlyTensorToDictWrapper(env) # * always use this wrapper!1198

1199

obs, _ = env.reset(seed=42)1200

print(obs.keys())1201

for i in tqdm(range(episode_timeout)):1202

action = torch.from_numpy(env.action_space.sample())1203

obs, reward, terminated, truncated, info = env.step(action)1204

1205

env.close()1206 
� �1207

Code 2: MIKASA-Robo wrappers system. �
1208

import mikasa_robo_suite, torch1209

from mikasa_robo_suite.dataset_collectors.get_mikasa_robo_datasets1210

↪→ import env_info1211

import gymnasium as gym1212

from mani_skill.utils.wrappers import RecordEpisode1213

from IPython.display import Video1214

1215

env = gym.make("RememberColor9-v0", num_envs=512, obs_mode="rgb",1216

↪→ render_mode="all")1217

state_wrappers_list, episode_timeout = env_info("RememberColor9-v0")1218

for wrapper_class, wrapper_kwargs in state_wrappers_list:1219

env = wrapper_class(env, **wrapper_kwargs)1220

env = RecordEpisode(env, f"./videos", max_steps_per_video=1221

↪→ episode_timeout)1222

1223

obs, _ = env.reset(seed=42)1224

for i in range(episode_timeout):1225

action = torch.from_numpy(env.action_space.sample())1226

obs, reward, terminated, truncated, info = env.step(action)1227

1228

Video(f"./videos/0.mp4", embed=True, width=640)1229

env.close()1230 
� �1231

27



B MIKASA-Robo Datasets for Offline RL1232

To train Offline RL baselines on camera images (in “RGB” mode) with sparse rewards (success1233

condition), we collected datasets for each of the 32 MIKASA-Robo tasks. Datasets were collected1234

using a PPO-MLP agent trained to SR=100% in “state” mode (i.e., with full information about the1235

task being solved) with sparse rewards (success condition). Thus, each dataset is represented by 10001236

successful trajectories, where each trajectory consists of:1237

1. “rgb” (shape: (T, 128, 128, 6)) - two RGB images (view from above and from the gripper)1238

2. “joints” (shape: (T, 25)) - Tool Center Point (TCP) position and rotation, and joint positions1239

and velocities1240

3. “action” (shape: (T, 8)) - action (8-dimensional vector)1241

4. “reward” (shape: (T, )) - (dense) reward for each step1242

5. “success” (shape: (T,)) - (sparse) success flag for each step1243

6. “done” (shape: (T,)) - done flag for each step1244

These datasets are available for download from the project website. We have also published the1245

weights of the PPO-MLP agent used to collect the dataset, as well as scripts for collecting datasets of1246

any size, to our repository.1247

C MIKASA-Base Implementation Details1248

An example of running an environment from the MIKASA-Base benchmark is shown in Code 3.1249

MIKASA-Base supports the standard Gymnasium API and is fully compatible with all its1250

wrappers. This allows users to leverage various functionalities, including parallelization using1251

AsyncVectorEnv. MIKASA-Base provides a predefined set of environments with different levels1252

of difficulty. However, users can customize the environment parameters by passing specific arguments1253

(see Code 3).1254

Code 3: Example code for running MemoryLength-v0 environment. �
1255

import mikasa_base1256

import gymnasium as gym1257

1258

# use pre-defined env1259

# env_id = "MemoryLengthEasy-v0"1260

# env_kwargs = None1261

1262

# create env using custom parameters1263

env_id = "MemoryLength-v0"1264

env_kwargs = {"memory_length": 10, "num_bits": 1}1265

seed = 1231266

1267

env = gym.make(env_id, env_kwargs)1268

1269

obs, _ = env.reset(seed=seed)1270

1271

for i in range(11):1272

action = env.action_space.sample()1273

next_obs, reward, terminations, truncations, infos = env.step(1274

↪→ action)1275

env.close()1276 
� �1277

D MIKASA-Robo setup for VLA baselines1278

For experiments involving Vision-Language-Action (VLA) models, we focused on a representative1279

subset of spatial and object memory tasks from MIKASA-Robo. For each task, we generated a1280

dataset of 250 episodes using an oracle PPO policy with full access to the environment state. At1281

28



Table 5: Tasks configurations for fine-tuning VLA models. The table lists the task ID, number of
evaluation steps (T), and the associated language instruction

Task T Language instruction

RememberColor3/5/9-v0 60 Remember the color of the cube and then pick the matching one
ShellGameTouch-v0 90 Memorize the position of the cup covering the ball, then pick that cup
InterceptMedium-v0 90 Track the ball’s movement, estimate its velocity, then aim the ball at the target

every timestep, the policy recorded two synchronized RGB frames (one from the static “base” camera1282

and one from the robot’s wrist camera) along with the corresponding end-effector control actions1283

( pd_ee_delta_pose controller from [87]). Each task was also paired with a concise language1284

instruction (see Table 5).1285

All VLA baselines were trained for 50000 iterations and evaluated independently on each task. Com-1286

plete training/evaluation scripts, language instruction templates, and detailed model hyperparameter1287

settings are provided in the accompanying supplementary code.1288

E Memory Mechanisms in RL1289

In RL, memory mechanisms are techniques or models used to enable agents to retain and recall1290

information from past interactions with the environment.1291

There are several approaches to incorporating memory into RL, including recurrent neural networks1292

(RNNs) [76, 37, 14] which uses hidden states to store information from previous steps [93, 34],1293

state-space models (SSMs) [28, 83, 27] which uses system state to store historical information [31,1294

77], transformers [92] which uses attention mechanism to capture sequential dependencies inside1295

the context window [72, 54, 68], graph neural networks (GNNs) [98] which uses graphs to store1296

information [99, 44] etc. Popular agents with memory mechanisms are summarized in Table 2.1297

F Classic baselines performance on the MIKASA-Robo benchmark1298

In this section, we present a comprehensive evaluation of PPO-MLP and PPO-LSTM baselines on1299

our MIKASA-Robo benchmark. Our experiments with PPO-MLP in state mode using dense1300

rewards demonstrate perfect performance across all tasks, consistently achieving 100% success rate,1301

as shown in Figure 7 and Figure 8. This remarkable performance serves as a crucial validation1302

of our benchmark design: when an agent has access to complete state information and receives1303

dense rewards, it can master these tasks completely. Therefore, any performance degradation in1304

RGB+joints mode observed with other algorithms or training configurations must stem from1305

the algorithmic limitations or learning challenges rather than any inherent flaws in the task design.1306

This empirical evidence confirms that our environments are well-calibrated and properly designed,1307

establishing a solid foundation for evaluating memory-enhanced algorithms. All results are presented1308

as mean ± standard error of the mean (SEM), where the mean is computed across three independent1309

training runs, and each trained agent is evaluated on 16 different random seeds to ensure robust1310

performance assessment.1311

The performance evaluation of PPO-MLP and PPO-LSTM with dense rewards in the RGB+joints1312

mode is presented in Figure 9. This mode specifically tests the agents’ memory capabilities, as it1313

requires remembering and utilizing historical information to solve the tasks. Our results demonstrate1314

a clear distinction between memory-less and memory-enhanced architectures, while also revealing1315

the limitations of conventional memory mechanisms.1316

Consider the RememberColor-v0 environment as an illustrative example. In its simplest config-1317

uration with three cubes, the memory-less PPO-MLP achieves only 25% success rate. In contrast,1318

PPO-LSTM, leveraging its memory mechanism, achieves perfect performance with 100% success rate.1319

However, as task complexity increases to five or nine cubes, even the LSTM’s memory capabilities1320

prove insufficient, with performance degrading significantly.1321

These results validate two key aspects of our benchmark: first, its effectiveness in distinguishing1322

between memory-less and memory-enhanced architectures, and second, its ability to challenge1323

even sophisticated memory mechanisms as task complexity increases. This demonstrates that1324

29



MIKASA-Robo provides a competitive yet meaningful evaluation framework for developing and1325

testing advanced memory-enhanced agents.1326

Our evaluation of PPO-MLP and PPO-LSTM baselines under sparse reward conditions in1327

RGB+joints mode reveals the true challenge of our benchmark tasks. As shown in Figure 10,1328

both architectures – even the memory-enhanced LSTM – consistently fail to achieve any meaningful1329

success rate across nearly all considered environments. This striking result underscores the extreme1330

difficulty of memory-intensive manipulation tasks when only terminal rewards are available, high-1331

lighting the substantial gap between current algorithms and the level of memory capabilities required1332

for real-world robotic applications.1333

0 1
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGameTouch

state

0 5
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00
S

uc
ce

ss
 R

at
e

ShellGamePush

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGamePick

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptSlow

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptMedium

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptFast

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabSlow

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabMedium

state

0 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabFast

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor3

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor5

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor9

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape3

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape5

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape9

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x2

state

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x3

state

0 5
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor5x3

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPos

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPosNeg

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateStrictPos

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateStrictPosNeg

state

0 1
Training Steps 1e8

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

TakeItBack

state

Figure 7: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when trained with
oracle-level state information. In this learning mode, MDP problem formulation is considered, i.e.
memory is not required for successful problem solving. At the same time, the obtained results show
that it is possible to solve these problems and obtain 100% Success Rate.

30



0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

SeqOfColors3

state

0 5
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

SeqOfColors5

state

0.0 0.5 1.0
Training Steps 1e8

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

SeqOfColors7

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

BunchOfColors3

state

0 5
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

BunchOfColors5

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

BunchOfColors7

state

0 2 4
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ChainOfColors3

state

0 5
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ChainOfColors5

state

0.0 0.5 1.0
Training Steps 1e8

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ChainOfColors7

state

Figure 8: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when
trained with oracle-level state information. Results are shown for memory capac-
ity (SeqOfColors[3,5,7]-v0, BunchOfColors[3,5,7]-v0) and sequential memory
(ChainOfColors[3,5,7]-v0).

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

RememberColor3-v0
PPO-MLP
TDMPC2
SAC-MLP
PPO-LSTM

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

RememberColor5-v0
PPO-MLP
TDMPC2
SAC-MLP
PPO-LSTM

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

RememberColor9-v0
PPO-MLP
TDMPC2
SAC-MLP
PPO-LSTM

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

TakeItBack

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptSlow

LSTM
MLP

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

InterceptMedium-v0
PPO-MLP
TDMPC2
SAC-MLP
PPO-LSTM

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptGrabMedium

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape3

LSTM
MLP

0.0 0.5 1.0
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x2

LSTM
MLP

0.0 2.5 5.0
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

R
et

ur
n

ShellGameTouch-v0

PPO-MLP
TDMPC2
SAC-MLP
PPO-LSTM

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPos

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPosNeg

LSTM
MLP

Figure 9: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” training mode with dense reward function, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). The results demonstrate that numerous tasks pose significant challenges
even for PPO-LSTM agents with memory, establishing these environments as effective benchmarks
for evaluating advanced memory-enhanced architectures.

31



0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor3

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor5

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberColor9

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

InterceptMedium

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShape3

LSTM
MLP

0 2 4
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RememberShapeAndColor3x2

LSTM
MLP

0 1 2
Training Steps 1e7

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

RotateLenientPosNeg

LSTM
MLP

0 5
Training Steps 1e6

0.00

0.25

0.50

0.75

1.00

S
uc

ce
ss

 R
at

e

ShellGameTouch

LSTM
MLP

Figure 10: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” with sparse reward function training mode, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). This training mode with sparse reward function causes even more
difficulty for the agent to learn, making this mode even more challenging for memory-enhanced
agents.

G Experiments Reproducing and Compute Resources1334

All baselines were trained and evaluated under a reproducible standardized setup. Training for every1335

algorithm was performed on a single NVIDIA A100 GPU. For evaluation, each task was run for 1001336

independent episodes, with environment and agent random seeds ranging from 1 to 100. We report1337

performance metrics as the mean success rate ± the standard error of the mean (SEM) over these 1001338

trials.1339

H MIKASA-Robo Detailed Tasks Description1340

In this section, we provide comprehensive descriptions of the 32 memory-intensive tasks that comprise1341

the MIKASA-Robo benchmark. Each task is designed to evaluate specific aspects of memory1342

capabilities in robotic manipulation, ranging from object tracking and spatial memory to sequential1343

decision-making. For each task, we detail its objective, memory requirements, observation space,1344

reward structure, and success criteria. Additionally, we explain how task complexity increases across1345

different variants and discuss the specific memory challenges they present. The following subsections1346

describe each task category and its variants in detail.1347

Each of the proposed environment supports multiple observation modes:1348

• State: Full state information including ball position1349

• RGB+joints: Two camera views (top-down and gripper) plus robot joint states1350

• RGB: Only visual information from two cameras1351

In the case of RotateLenient-v0 and RotateStrict-v0, the prompt information available1352

at each step is additionally added to each observation.1353

32



Table 6: Results for Offline RL baselines. The table shows comparison of transformer-based
baselines (RATE, DT), behavior cloning (BC), classic Offline RL baselines (CQL), and Diffusion
Policy (DP) on all 32 tasks from the MIKASA-Robo benchmark. Results are presented as mean ±
sem across the three runs, where each run is averaged over 100 episodes and sem is the standard
error of the mean. Training was performed using only RGB observations (two cameras: top view and
gripper view) and using sparse rewards (success once condition). The results show that even models
with memory (RATE, DT) are not able to solve most of the benchmark problems, which makes it
challenging and promising for further validation of the algorithm.

# Environment RATE DT BC CQL DP
1 ShellGameTouch-v0 0.92±0.01 0.53±0.07 0.28±0.01 0.16±0.04 0.18±0.02
2 ShellGamePush-v0 0.78±0.06 0.62±0.14 0.27±0.01 0.25±0.01 0.22±0.03
3 ShellGamePick-v0 0.02±0.01 0.00±0.00 0.01±0.01 0.00±0.00 0.01±0.00
4 InterceptSlow-v0 0.23±0.02 0.40±0.02 0.37±0.06 0.25±0.01 0.33±0.05
5 InterceptMedium-v0 0.32±0.02 0.56±0.01 0.31±0.14 0.03±0.01 0.68±0.02
6 InterceptFast-v0 0.30±0.04 0.36±0.04 0.03±0.02 0.02±0.02 0.21±0.05
7 InterceptGrabSlow-v0 0.09±0.03 0.00±0.00 0.28±0.18 0.03±0.00 0.03±0.01
8 InterceptGrabMedium-v0 0.09±0.03 0.00±0.00 0.11±0.02 0.08±0.04 0.03±0.01
9 InterceptGrabFast-v0 0.14±0.03 0.11±0.03 0.09±0.02 0.08±0.03 0.18±0.02

10 RotateLenientPos-v0 0.11±0.04 0.01±0.01 0.15±0.03 0.16±0.02 0.11±0.02
11 RotateLenientPosNeg-v0 0.29±0.03 0.05±0.02 0.22±0.01 0.12±0.02 0.14±0.05
12 RotateStrictPos-v0 0.03±0.02 0.05±0.04 0.01±0.00 0.03±0.01 0.06±0.02
13 RotateStrictPosNeg-v0 0.08±0.01 0.05±0.03 0.04±0.02 0.04±0.02 0.15±0.01
14 TakeItBack-v0 0.42±0.24 0.08±0.04 0.33±0.10 0.04±0.01 0.05±0.02
15 RememberColor3-v0 0.65±0.04 0.01±0.01 0.27±0.03 0.29±0.01 0.32±0.01
16 RememberColor5-v0 0.13±0.03 0.07±0.05 0.12±0.01 0.15±0.02 0.10±0.02
17 RememberColor9-v0 0.09±0.02 0.01±0.01 0.12±0.02 0.15±0.01 0.17±0.01
18 RememberShape3-v0 0.21±0.04 0.05±0.04 0.31±0.04 0.20±0.10 0.32±0.05
19 RememberShape5-v0 0.17±0.04 0.04±0.04 0.18±0.01 0.15±0.00 0.21±0.04
20 RememberShape9-v0 0.05±0.00 0.05±0.02 0.10±0.02 0.14±0.01 0.11±0.02
21 RememberShapeAndColor3x2-v0 0.14±0.02 0.04±0.02 0.13±0.02 0.11±0.05 0.14±0.02
22 RememberShapeAndColor3x3-v0 0.08±0.03 0.06±0.06 0.09±0.02 0.09±0.02 0.16±0.01
23 RememberShapeAndColor5x3-v0 0.07±0.02 0.01±0.01 0.09±0.01 0.09±0.02 0.11±0.03
24 BunchOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
25 BunchOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
26 BunchOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
27 SeqOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
28 SeqOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
29 SeqOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
30 ChainOfColors3-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
31 ChainOfColors5-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00
32 ChainOfColors7-v0 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00 0.00±0.00

1354

33



Figure 11: ShellGameTouch-v0: The robot observes a ball in front of it. next, this ball is covered
by a mug and then the robot has to touch the mug with the ball underneath.

H.1 ShellGame-v01355

The ShellGame-v0 task (Figure 11) is inspired by a simplified version of the classic shell game,1356

which tests a person’s ability to remember object locations when they become occluded. This task1357

evaluates an agent’s capacity for object permanence and spatial memory, crucial skills for real-world1358

robotic manipulation where objects frequently become temporarily hidden from view.1359

Environment Description The environment consists of three identical mugs placed on a table and1360

a red ball. The task proceeds in three phases:1361

1. Observation Phase (steps 0-4): The ball is placed at one of three positions, and the agent1362

can observe its location.1363

2. Occlusion Phase (step 5): The ball and positions are covered by three identical mugs.1364

3. Action Phase (steps 6+): The agent must interact with the mug covering the ball’s location.1365

The type of target interaction depends on the selected mode: Touch, Push and Pick.1366

Task Modes The task includes three variants of increasing difficulty:1367

• Touch: The agent only needs to touch the correct mug1368

• Push: The agent must push the correct mug to a designated area1369

• Pick: The agent must pick and lift the correct mug above a specified height1370

Success Criteria Success is determined by:1371

• Touch: Contact between the gripper and the correct mug1372

• Push: Moving forward the correct mug to the target zone1373

• Pick: Elevating the correct mug above 0.1m1374

Reward Structure The environment provides both sparse and dense reward variants:1375

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1376

• Dense: Continuous reward based on:1377

– Distance between gripper and target mug1378

– Robot’s motion smoothness (static reward based on joint velocities)1379

– Task completion status (additional reward when the task is solved)1380

34



Figure 12: RememberColor9-v0: The robot observes a colored cube in front of it, then this cube
disappears and an empty table is shown. Then 9 cubes appear on the table, and the agent must touch
a cube of the same color as the one it observed at the beginning of the episode.

H.2 RememberColor-v01381

The RememberColor-v0 task (Figure 12) tests an agent’s ability to remember and identify objects1382

based on their visual properties. This capability is essential for real-world robotics applications where1383

agents must recall and match object characteristics across time intervals.1384

Environment Description The environment presents a sequence of colored cubes on a table. The1385

task proceeds in three phases:1386

1. Observation Phase (steps 0-4): A cube of a specific color is displayed, and the agent must1387

memorize its color.1388

2. Delay Phase (steps 5-9): The cube disappears, leaving an empty table.1389

3. Selection Phase (steps 10+): Multiple cubes of different colors appear (3, 5, or 9 depending1390

on difficulty), and the agent must identify and interact with the cube matching the original1391

color.1392

Task Modes The task includes three complexity levels:1393

• 3 (easy): Choose from 3 different colors (red, lime, blue)1394

• 5 (Medium): Choose from 5 different colors (red, lime, blue, yellow, magenta)1395

• 9 (Hard): Choose from 9 different colors (red, lime, blue, yellow, magenta, cyan, maroon,1396

olive, teal)1397

Success Criteria Success is determined by:1398

• Correctly identifying and touching the cube that matches the color shown in the observation1399

phase1400

• Maintaining contact with the correct cube for at least 0.1 seconds1401

Reward Structure The environment provides both sparse and dense reward variants:1402

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1403

• Dense: Continuous reward based on:1404

– Distance between gripper and target cube1405

– Robot’s motion smoothness (static reward based on joint velocities)1406

– Additional reward for robot being static while touching the correct cube1407

– Task completion status (additional reward when the task is solved)1408

35



Figure 13: RememberShape9-v0: The robot observes an object with specific shape in front of it,
then the object disappears and an empty table appears. Then 9 objects of different shapes appear on
the table, and the agent must touch an object of the same shape as the one it observed at the beginning
of the episode.

H.3 RememberShape-v01409

The RememberShape-v0 task (Figure 13) evaluates an agent’s ability to remember and identify1410

objects based on their geometric properties. This capability is crucial for robotic applications where1411

shape recognition and recall are essential for successful manipulation.1412

Environment Description The environment presents a sequence of geometric shapes on a table.1413

The task proceeds in three phases:1414

1. Observation Phase (steps 0-4): A shape (cube, sphere, cylinder, etc.) is displayed, and the1415

agent must memorize its geometry.1416

2. Delay Phase (steps 5-9): The shape disappears, leaving an empty table.1417

3. Selection Phase (steps 10+): Multiple shapes appear (3, 5, or 9 depending on difficulty),1418

and the agent must identify and interact with the shape matching the original geometry.1419

Task Modes The task includes three complexity levels:1420

• 3 (Easy): Choose from 3 different shapes (cube, sphere, cylinder)1421

• 5 (Medium): Choose from 5 different shapes (cube, sphere, cylinder cross, torus)1422

• 9 (Hard): Choose from 9 different shapes (cube, sphere, cylinder cross, torus, star, pyramid,1423

t-shape, crescent)1424

Success Criteria Success is determined by:1425

• Correctly identifying and touching the object with the same shape shown in the observation1426

phase1427

• Maintaining contact with the correct shape for at least 0.1 seconds1428

Reward Structure The environment provides both sparse and dense reward variants:1429

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1430

• Dense: Continuous reward based on:1431

– Distance between gripper and target object1432

– Robot’s motion smoothness (static reward based on joint velocities)1433

– Additional reward for maintaining static position when touching correct object1434

– Task completion status (additional reward when the task is solved)1435

36



Figure 14: RememberShapeAndColor5x3-v0: An object of a certain shape and color appears
in front of the agent. Then the object disappears and the agent sees an empty table. Then objects of 5
different shapes and 3 different colors appear on the table and the agent has to touch what it observed
at the beginning of the episode.

H.4 RememberShapeAndColor-v01436

The RememberShapeAndColor-v0 task (Figure 14) evaluates an agent’s ability to remember1437

and identify objects based on multiple visual properties simultaneously. This task combines shape1438

and color recognition, testing the agent’s capacity to maintain and match multiple object features1439

across time intervals.1440

Environment Description The environment presents a sequence of colored geometric shapes on a1441

table. The task proceeds in three phases:1442

1. Observation Phase (steps 0-4): An object with specific shape and color is displayed, and1443

the agent must memorize both properties.1444

2. Delay Phase (steps 5-9): The object disappears, leaving an empty table.1445

3. Selection Phase (steps 10+): Multiple objects with different combinations of shapes and1446

colors appear, and the agent must identify and interact with the object matching both the1447

original shape and color.1448

Task Modes The task includes three complexity levels based on the number of shape-color combi-1449

nations:1450

• 3x2 (Easy): Choose from 6 objects (3 shapes × 2 colors); shapes: cube, sphere, t-shape;1451

colors: red, green1452

• 3x3 (Medium): Choose from 9 objects (3 shapes × 3 colors); shapes: cube, sphere, t-shape;1453

colors: red, green, blue1454

• 5x3 (Hard): Choose from 15 objects (5 shapes × 3 colors); shapes: cube, sphere, t-shape,1455

cross, torus; colors: red, green, blue1456

Success Criteria Success is determined by:1457

• Correctly identifying and touching the object that matches both the shape and color shown1458

in the observation phase1459

• Maintaining contact with the correct object for at least 0.1 seconds1460

Reward Structure The environment provides both sparse and dense reward variants:1461

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1462

• Dense: Continuous reward based on:1463

– Distance between gripper and target object1464

– Robot’s motion smoothness (static reward based on joint velocities)1465

– Additional reward for maintaining static position while touching correct object1466

– Task completion status (additional reward when the task is solved)1467

37



Figure 15: InterceptMedium-v0: A ball rolls on the table in front of the agent with a random
initial velocity, and the agent’s task is to intercept this ball and direct it at the target zone.

H.5 Intercept-v01468

The Intercept-v0 task (Figure 16) evaluates an agent’s ability to predict and intercept a moving1469

object based on its initial trajectory. This task tests the agent’s capacity for motion prediction and1470

spatial-temporal reasoning, which are essential skills for dynamic manipulation tasks in robotics.1471

Environment Description The environment consists of a red ball moving across a table and a1472

target zone. The task requires the agent to:1473

1. Observe the ball’s initial position and velocity1474

2. Predict the ball’s trajectory1475

3. Guide the ball to reach a designated target zone1476

Task Modes The task includes three variants with increasing ball velocities:1477

• Slow: Ball velocity range of 0.25-0.5 m/s1478

• Medium: Ball velocity range of 0.5-0.75 m/s1479

• Fast: Ball velocity range of 0.75-1.0 m/s1480

Success Criteria Success is determined by:1481

• Guiding the ball to enter the target zone1482

• The ball must come to rest within the target area (radius 0.1m)1483

Reward Structure The environment provides both sparse and dense reward variants:1484

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1485

• Dense: Continuous reward based on:1486

– Distance between gripper and ball1487

– Distance between ball and target zone1488

– Robot’s motion smoothness (static reward based on joint velocities)1489

– Task completion status (additional reward when the task is solved)1490

38



Figure 16: InterceptGrabMedium-v0: A ball rolls on the table in front of the agent with a
random initial velocity, and the agent’s task is to intercept this ball with a gripper and lift it up.

H.6 InterceptGrab-v01491

The InterceptGrab-v0 task (Figure 16) extends the Intercept-v0 task by requiring the1492

agent to not only predict the trajectory of a moving object but also grasp it while in motion. This1493

task evaluates the agent’s ability to combine motion prediction with precise manipulation timing,1494

simulating real-world scenarios where robots must catch or intercept moving objects.1495

Environment Description The environment consists of a red ball moving across a table. The task1496

requires the agent to:1497

1. Observe the ball’s initial position and velocity1498

2. Predict the ball’s trajectory1499

3. Position the gripper to intercept the ball’s path1500

4. Time the grasping action correctly to catch the ball1501

5. Maintain a stable grasp while bringing the ball to rest1502

Task Modes The task includes three variants with increasing ball velocities:1503

• Slow: Ball velocity range of 0.25-0.5 m/s1504

• Medium: Ball velocity range of 0.5-0.75 m/s1505

• Fast: Ball velocity range of 0.75-1.0 m/s1506

Success Criteria Success is determined by:1507

• Successfully grasping the moving ball1508

• Maintaining a stable grasp until the ball comes to rest1509

• The robot must be static with the ball firmly grasped1510

Reward Structure The environment provides both sparse and dense reward variants:1511

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1512

• Dense: Continuous reward based on:1513

– Distance between gripper and ball1514

– Grasping reward1515

– Robot’s motion smoothness (static reward based on joint velocities)1516

– Task completion status (additional reward when the task is solved)1517

39



Figure 17: RotateLenientPos-v0: A randomly oriented peg is placed in front of the agent.
The agent’s task is to rotate this peg by a certain angle (the center of the peg can be shifted).

H.7 RotateLenient-v01518

The RotateLenient-v0 task (Figure 17) evaluates an agent’s ability to remember and execute1519

specific rotational movements. This task tests the agent’s capacity to maintain and reproduce angular1520

information, which is crucial for manipulation tasks requiring precise orientation control. This task1521

tests the agent’s ability to hold information in memory about how far peg has already rotated at the1522

current step relative to its initial position.1523

Environment Description The environment consists of a blue-colored peg on a table that must be1524

rotated by a specified angle. The task proceeds in one phase, but the static prompt information about1525

the target angle is available to the agent at each timestep:1526

1. Action Phase: The agent must rotate the peg to match the target angle1527

Task Modes The task includes two variants with different rotation requirements:1528

• Pos: Rotate by a positive angle between 0 and π/21529

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/41530

Success Criteria Success is determined by:1531

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle1532

• Maintaining the final orientation in a stable position1533

• The robot must be static with the peg at the correct orientation1534

Reward Structure The environment provides both sparse and dense reward variants:1535

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1536

• Dense: Continuous reward based on:1537

– Distance between gripper and peg1538

– Angular distance to target rotation1539

– Stability of the peg’s orientation1540

– Robot’s motion smoothness (static reward based on joint velocities)1541

– Task completion status (additional reward when the task is solved)1542

40



Figure 18: RotateStrictPos-v0: A randomly oriented peg is placed in front of the agent. The
agent’s task is to rotate this peg by a certain angle (it is not allowed to move the center of the peg)

H.8 RotateStrict-v01543

The RotateStrict-v0 task (Figure 18) extends the RotateLenient-v0 task with more1544

stringent requirements for precise rotational control.1545

Environment Description The environment consists of a blue-colored peg on a table that must be1546

rotated by a specified angle while maintaining its position. The task proceeds in one phase, but the1547

static prompt information about the target angle is available to the agent at each timestep:1548

1. Action Phase: The agent must rotate the peg to match the target angle while keeping it1549

centered1550

Task Modes The task includes two variants with different rotation requirements:1551

• Pos: Rotate by a positive angle between 0 and π/21552

• PosNeg: Rotate by either positive or negative angle between −π/4 and π/41553

Success Criteria Success is determined by:1554

• Rotating the peg to within the angle threshold (±0.1 radians) of the target angle1555

• Maintaining the peg’s position within 5cm of its initial XY coordinates1556

• The robot must be static with the peg at the correct orientation1557

• No significant deviation in other rotation axes1558

Reward Structure The environment provides both sparse and dense reward variants:1559

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1560

• Dense: Continuous reward based on:1561

– Distance between gripper and peg1562

– Angular distance to target rotation1563

– Position deviation from initial location1564

– Stability of the peg’s orientation1565

– Robot’s motion smoothness (static reward based on joint velocities)1566

– Task completion status (additional reward when the task is solved)1567

41



Figure 19: TakeItBack-v0: The agent observes a green cube in front of him. The agent’s task
is to move the green cube to the red target, and as soon as it lights up violet, return the cube to its
original position (the agent does not observes the original position of the cube).

H.9 TakeItBack-v01568

The TakeItBack-v0 task (Figure 19) assesses the agent’s ability to perform sequential tasks and1569

memorize the starting position. This task tests the agent’s capacity for sequential memory and spatial1570

reasoning, requiring it to maintain information about past locations and achievements while executing1571

a multi-step plan.1572

Environment Description The environment consists of a green cube and two target regions (initial1573

and goal) on a table. The task proceeds in two phases:1574

1. First Phase: The agent must move the cube from its initial position to a goal region1575

2. Second Phase: After reaching the goal, goal region change it’s color from red to magenta,1576

and the agent must return the cube to its original position (marked by the initial region and1577

invisible for the agent)1578

Success Criteria Success is determined by:1579

• First reaching the goal region with the cube1580

• Then returning the cube to the initial region1581

• Both goals must be achieved in sequence1582

Reward Structure The environment provides both sparse and dense reward variants:1583

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1584

• Dense: Continuous reward based on:1585

– Distance between gripper and cube1586

– Distance to current target region1587

– Progress through the task sequence1588

– Stability of cube manipulation1589

– Robot’s motion smoothness (static reward based on joint velocities)1590

– Task completion status (additional reward when the task is solved)1591

42



Figure 20: SeqOfColors7-v0: In front of the agent, 7 cubes of different colors appear sequentially.
After the last cube is shown, the agent observes an empty table. Then 9 cubes of different colors
appear on the table and the agent has to touch the cubes that were shown at the beginning of the
episode in any order.

H.10 SeqOfColors-v01592

The SeqOfColors-v0 task (Figure 20) evaluates an agent’s ability to remember and reproduce an1593

unordered sequence of colors. This task tests memory capacity capabilities essential for robotic tasks1594

that require following specific patterns or sequences.1595

Environment Description The environment presents a sequence of colored cubes that must be1596

reproduced in any order. The task proceeds in two phases:1597

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a1598

time, with each cube visible for 5 steps.1599

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear1600

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must1601

identify and touch all previously shown cubes in any order1602

Task Modes The task includes three complexity levels:1603

• 3 (Easy): Remember 3 colors demonstrated sequentially1604

• 5 (Medium): Remember 5 colors demonstrated sequentially1605

• 7 (Hard): Remember 7 colors demonstrated sequentially1606

Success Criteria Success is determined by:1607

• Correctly identifying and touching all cubes from the observation phase1608

• Order of selection doesn’t matter1609

• Each cube must be touched for at least 0.1 seconds1610

• The demonstrated set must be touched without any mistakes1611

Reward Structure The environment provides both sparse and dense reward variants:1612

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1613

• Dense: Continuous reward based on:1614

– Distance between gripper and next target cube1615

– Number of correctly identified cubes1616

– Static reward for stable contact1617

– Robot’s motion smoothness (static reward based on joint velocities)1618

– Task completion status (additional reward when the task is solved)1619

43



Figure 21: BunchOfColors7-v0: 7 cubes of different colors appear simultaneously in front of
the agent. After the agent observes an empty table. Then, 9 cubes of different colors appear on the
table and the agent has to touch the cubes that were shown at the beginning of the episode in any
order.

H.11 BunchOfColors-v01620

The BunchOfColors-v0 task (Figure 21) tests an agent’s memory capacity by requiring it to1621

remember multiple objects simultaneously. This capability is crucial for tasks requiring parallel1622

processing of multiple items.1623

Environment Description The environment presents multiple colored cubes simultaneously. The1624

task proceeds in three phases:1625

1. Observation Phase (steps 0-4): Multiple colored cubes are displayed simultaneously1626

2. Delay Phase (steps 5-9): All cubes disappear1627

3. Selection Phase (steps 10+): A larger set of cubes appears, and the agent must identify and1628

touch all previously shown cubes in any order1629

Task Modes The task includes three complexity levels:1630

• 3 (Easy): Remember 3 colors demonstrated simultaneously1631

• 5 (Medium): Remember 5 colors demonstrated simultaneously1632

• 7 (Hard): Remember 7 colors demonstrated simultaneously1633

Success Criteria Success is determined by:1634

• Correctly identifying and touching all cubes from the observation phase1635

• Order of selection doesn’t matter1636

• Each cube must be touched for at least 0.1 seconds1637

• The demonstrated set must be touched without any mistakes1638

Reward Structure The environment provides both sparse and dense reward variants:1639

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1640

• Dense: Continuous reward based on:1641

– Distance between gripper and next target cube1642

– Static reward for stable contact1643

– Number of correctly touched cubes1644

– Robot’s motion smoothness (static reward based on joint velocities)1645

– Task completion status (additional reward when the task is solved)1646

44



Figure 22: ChainOfColors7-v0: In front of the agent, 7 cubes of different colors appear
sequentially. After the last cube is shown, the agent sees an empty table. Then 9 cubes of different
colors appear on the table and the agent must unmistakably touch the cubes that were shown at the
beginning of the episode, in the same strict order.

H.12 ChainOfColors-v01647

The ChainOfColors-v0 task (Figure 22) evaluates the agent’s ability to store and retrieve ordered1648

information. This task simulates scenarios where the agent must track changing relationships between1649

objects over time.1650

Environment Description The environment presents am ordered sequence (chain) of colored cubes1651

that must be followed. The task proceeds in multiple phases:1652

1. Observation Phase (steps 0-(5N − 1)): A sequence of N colored cubes is shown one at a1653

time, with each cube visible for 5 steps.1654

2. Delay Phase (steps (5N )-(5N + 4)): All cubes disappear1655

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must1656

identify and touch all previously shown cubes in the exact order as demonstrated1657

Task Modes The task includes three complexity levels:1658

• 3 (Easy): Remember 3 colors demonstrated sequentially1659

• 5 (Medium): Remember 5 colors demonstrated sequentially1660

• 7 (Hard): Remember 7 colors demonstrated sequentially1661

Success Criteria Success is determined by:1662

• Correctly identifying and touching all cubes from the observation phase in the exact order1663

• Each cube must be touched for at least 0.1 seconds1664

• The demonstrated set must be touched without any mistakes1665

Reward Structure The environment provides both sparse and dense reward variants:1666

• Sparse: Binary reward (1.0 for success, 0.0 otherwise)1667

• Dense: Continuous reward based on:1668

– Distance between gripper and next target cube1669

– Static reward for stable contact1670

– Number of correctly touched cubes1671

– Robot’s motion smoothness (static reward based on joint velocities)1672

– Task completion status (additional reward when the task is solved)1673

45



Table 7: Classification of environments from the MIKASA-Base benchmark according to the sug-
gested memory-intensive tasks classification from the Subsection 4.2.

Environment Memory Task Brief description of the task Observation Space Action Space

Memory Cards Capacity Memorize the positions of revealed cards and correctly match pairs while minimizing
incorrect guesses.

vector discrete

Numpad Sequential Memorize the sequence of movements and navigate the rolling ball on a 3×3 grid by
following the correct order while avoiding mistakes.

image, vector discrete, continuous

BSuite Memory Length Object Memorize the initial context signal and recall it after a given number of steps to take
the correct action.

vector discrete

Minigrid-Memory Object Memorize the object in the starting room and use this information to select the
correct path at the junction.

image discrete

Ballet Sequential,
Object

Memorize the sequence of movements performed by each uniquely colored and
shaped dancer, then identify and approach the dancer who executed the given pattern.

image discrete

Passive Visual Match Object Memorize the target color displayed on the wall during the initial phase. After a
brief distractor phase, identify and select the target color among the distractors by
stepping on the corresponding ground pad.

image discrete

Passive-T-Maze Object Memorize the goal’s location upon initial observation, navigate through the maze
with limited sensory input, and select the correct path at the junction.

vector discrete

ViZDoom-two-colors Object Memorize the color of the briefly appearing pillar (green or red) and collect items of
the same color to survive in the acid-filled room.

image discrete

Memory Maze Spatial Memorize the locations of objects and the maze structure using visual clues, then
navigate efficiently to find objects of a specific color and score points.

image discrete

MemoryGym Mortar Mayhem Capacity,
Sequential

Memorize a sequence of movement commands and execute them in the correct order. image discrete

MemoryGym Mystery Path Capacity,
Spatial

Memorize the invisible path and navigate it without stepping off. image discrete

POPGym Repeat First Object Memorize the initial value presented at the first step and recall it correctly after
receiving a sequence of random values.

vector discrete

POPGym Repeat Previous Sequential,
Object

Memorize the value observed at each step and recall the value from k steps earlier
when required.

vector discrete

POPGym Autoencode Sequential Memorize the sequence of cards presented at the beginning and reproduce them in
the same order when required.

vector discrete

POPGym Count Recall Object,
Capacity

Memorize unique values encountered and count how many times a specific value
has appeared.

vector discrete

POPGym vectorless Cartpole Sequential Memorize velocity data over time and integrate it to infer the position of the pole for
balance control.

vector continuous

POPGym vectorless Pendulum Sequential Memorize angular velocity over time and integrate it to infer the pendulum’s position
for successful swing-up control.

vector continuous

POPGym Multiarmed Bandit Object, Capacity Memorize the reward probabilities of different slot machines by exploring them and
identify the one with the highest expected reward.

vector discrete

POPGym Concentration Capacity Memorize the positions of revealed cards and match them with previously seen cards
to find all matching pairs.

vector discrete

POPGym Battleship Spatial Memorize the coordinates of previous shots and their HIT or MISS feedback to build
an internal representation of the board, avoid repeat shots, and strategically target
ships for maximum rewards.

vector discrete

POPGym Mine Sweeper Spatial Memorize revealed grid information and use numerical clues to infer safe tiles while
avoiding mines.

vector discrete

POPGym Labyrinth Explore Spatial Memorize previously visited cells and navigate the maze efficiently to discover new,
unexplored areas and maximize rewards.

vector discrete

POPGym Labyrinth Escape Spatial Memorize the maze layout while exploring and navigate efficiently to find the exit
and receive a reward.

vector discrete

POPGym Higher Lower Object,
Sequential

Memorize previously revealed card ranks and predict whether the next card will
be higher or lower, updating the reference card after each prediction to maximize
rewards.

vector discrete

I MIKASA-Base Benchmark Tasks Description1674

This section provides a detailed description of all environments included in the MIKASA-Base1675

benchmark Section 5. Understanding the characteristics and challenges of these environments is1676

crucial for evaluating RL algorithms. Each environment presents unique tasks, offering diverse1677

scenarios to test the memory abilities of RL agents.1678

I.1 Memory Cards1679

The Memory Cards environment [19] is a memory game environment with 5 randomly shuffled pairs1680

of hidden cards. At each step, the agent sees one revealed card and must find its matching pair. A1681

correct guess removes both cards; otherwise, the card is hidden again, and a new one is revealed. The1682

game continues until all pairs are removed.1683

I.2 Numpad1684

The Numpad environment [38] consists of an N ×N grid of tiles. The agent controls a ball that rolls1685

between tiles. At the beginning of an episode, a random sequence of n neighboring tiles (excluding1686

diagonals) is selected, and the agent must follow this sequence in the correct order. The environment1687

is structured so that pressing the correct tile lights it up, while pressing an incorrect tile resets progress.1688

A reward of +1 is given for the first press of each correct tile after a reset. The episode ends after a1689

fixed number of steps. To succeed, the agent must memorize the sequence and navigate it correctly1690

without mistakes. The ability to “jump” over tiles is not available.1691

46



I.3 BSuite MemoryLength1692

The MemoryLength environment [70] represents a sequence of observations, where at each step, the1693

observation takes a value of either +1 or -1. The environment is structured so that a reward is given1694

only at the final step if the agent correctly predicts the i-th value from the initial observation vector1695

obs. The index of this i-th value is specified at the last step observation vector in obs[1]. To succeed,1696

the agent must remember the sequence of observations and use this information to make an accurate1697

prediction at the final step.1698

I.4 Minigrid-Memory1699

Minigrid-Memory [12] is a two-dimensional grid-based environment that features a T-shaped maze1700

with a small room at the beginning of the corridor, containing an object. The agent starts at a random1701

position within the corridor. Its task is to reach the room, observe and memorize the object, then1702

proceed to the junction at the maze’s end and turn towards the direction where an identical object is1703

located. The reward function is defined as Rt = 1− 0.9× t
T for a successful attempt; otherwise, the1704

agent receives zero reward. The episode terminates when the agent makes a choice at the junction or1705

exceeds a time limit of steps.1706

I.5 Ballet1707

In the Ballet environment [54] tasks take place in an 11× 11 tiled room, consisting of a 9× 9 central1708

area surrounded by a one-tile-wide wall. Each tile is upsampled to 9 pixels, resulting in a 99× 991709

pixel input image. The agent is initially placed at the center of the room, while dancers are randomly1710

positioned in one of 8 possible locations around it. Each dancer has a distinct shape and color,1711

selected from 15 possible shapes and 19 colors, ensuring uniqueness. These visual features serve1712

only for identification and do not influence behavior. The agent itself is always represented as a white1713

square. The agent receives egocentric visual observations, meaning its view is centered on its own1714

position, which has been shown to enhance generalization.1715

I.6 Passive T-Maze1716

The Passive T-Maze environment [68] consists of a corridor leading to a junction that connects two1717

possible goal states. The agent starts at a designated position and can move in four directions: left,1718

right, up, or down. At the beginning of each episode, one of the two goal states is randomly assigned1719

as the correct destination. The agent observes this goal location before starting its movement. The1720

agent stays in place if it attempts to move into a wall. To succeed, the agent must navigate to the1721

correct goal based on its initial observation. The optimal strategy involves moving through the1722

corridor towards the junction and then selecting the correct path.1723

I.7 ViZDoom-Two-Colors1724

The ViZDoom-Two-Colors [84] is an environment where an agent is placed in a room with constantly1725

depleting health. The room contains red and green objects, one of which restores health (+1 reward),1726

while the other reduces it (-1 reward). The beneficial color is randomly assigned at the beginning1727

of each episode and indicated by a column. The environment is structured so that the agent must1728

memorize the column’s color to collect the correct items. Initially, the column remains visible, but in1729

a harder variant, it disappears after 45 steps, increasing the memory requirement. To succeed, the1730

agent must maximize survival by collecting beneficial objects while avoiding harmful ones.1731

I.8 Memory Maze1732

The Memory Maze environment [73] is a procedurally generated 3D maze. Each episode, the agent1733

spawns in a new maze with multiple colored objects placed in fixed locations. The agent receives a1734

first-person view and a prompt indicating the color of the target object. It must navigate the maze,1735

memorize object positions, and return to them efficiently. The agent receives a reward of 1 for1736

reaching the correct object and no reward for incorrect objects.1737

47



I.9 MemoryGym Mortar Mayhem1738

Mortar Mayhem [75] is a grid-based environment where the agent must memorize and execute a1739

sequence of commands in the correct order. The environment consists of a finite grid, where the agent1740

initially observes a series of movement instructions and then attempts to reproduce them accurately.1741

Commands include movements to adjacent tiles or remaining in place. The challenge lies in the1742

agent’s ability to recall and execute a growing sequence of instructions, with failure resulting in1743

episode termination. A reward of +0.1 is given for each correctly executed command1744

I.10 MemoryGym Mystery Path1745

Mystery Path [75] presents an invisible pathway that the agent must traverse without deviating. If1746

the agent steps off the path, it is returned to the starting position, forcing it to remember the correct1747

trajectory. The path is procedurally generated, meaning each episode introduces a new configuration.1748

Success in this environment requires the agent to accurately recall previous steps and missteps to1749

avoid repeating errors. The agent is rewarded +0.1 for progressing onto a previously unvisited tile1750

I.11 POPGym environments1751

The following environments are included from the POPGym benchmark [65], which is designed1752

to evaluate RL agents in partially observable settings. POPGym provides a diverse collection of1753

lightweight vectorized environments with varying difficulty levels.1754

I.11.1 POPGym Autoencode1755

The environment consists of a deck of cards that is shuffled and sequentially shown to the agent1756

during the watch phase. While observing the cards, a watch indicator is active, but it disappears1757

when the last card is revealed. Afterward, the agent must reproduce the sequence of cards in the1758

correct order. The environment is structured to evaluate the agent’s ability to encode a sequence of1759

observations into an internal representation and later reconstruct the sequence one observation at a1760

time.1761

I.11.2 POPGym Concentration1762

The environment represents a classic memory game where a shuffled deck of cards is placed face-1763

down. The agent sequentially flips two cards and earns a reward if the revealed cards form a matching1764

pair. The environment is designed in such a way that the agent must remember previously revealed1765

cards to maximize its success rate.1766

I.11.3 POPGym Repeat First1767

The environment presents the agent with an initial value from a set of four possible values, along with1768

an indicator signaling that this is the first value. In subsequent steps, the agent continues to receive1769

random values from the same set but without the initial indicator. The structure requires the agent to1770

retain the first received value in memory and recall it accurately to receive a reward.1771

I.11.4 POPGym Repeat Previous1772

The environment consists of a sequence of observations, where each observation can take one of four1773

possible values at each timestep. The agent is tasked with recalling and outputting the value that1774

appeared a specified number of steps in the past.1775

I.11.5 POPGym Stateless Cartpole1776

This is a modified version of the traditional Cartpole environment [6] where angular and linear1777

position information is removed from observations. Instead, the agent only receives velocity-based1778

data and must infer positional states by integrating this information over time to successfully balance1779

the pole.1780

48



I.11.6 POPGym Stateless Pendulum1781

In this variation of the swing-up pendulum environment [18], angular position data is omitted from1782

the agent’s observations. The agent must infer the pendulum’s position by processing velocity1783

information and use this estimate to determine appropriate control actions.1784

I.11.7 POPGym Noisy Stateless Cartpole1785

This environment builds upon Stateless Cartpole by introducing Gaussian noise into the observations.1786

The agent must still infer positional states from velocity information while filtering out the added1787

noise to maintain control of the pole.1788

I.11.8 POPGym Noisy Stateless Pendulum1789

This variation extends the Stateless Pendulum environment by incorporating Gaussian noise into1790

the observations. The agent must manage this uncertainty while using velocity data to estimate the1791

pendulum’s position and swing it up effectively.1792

I.11.9 POPGym Multiarmed Bandit1793

The Multiarmed Bandit environment is an episodic formulation of the multiarmed bandit problem [82],1794

where a set of bandits is randomly initialized at the start of each episode. Unlike conventional1795

multiarmed bandit tasks, where reward probabilities remain fixed across episodes, this structure resets1796

them every time. The agent must dynamically adjust its exploration and exploitation strategies to1797

maximize long-term rewards.1798

I.11.10 POPGym Higher Lower1799

Inspired by the higher-lower card game, this environment presents the agent with a sequence of cards.1800

At each step, the agent must predict whether the next card will have a higher or lower rank than the1801

current one. Upon making a guess, the next card is revealed and becomes the new reference. The1802

agent can enhance its performance by employing card counting strategies to estimate the probability1803

of future values.1804

I.11.11 POPGym Count Recall1805

At each timestep, the agent is presented with two values: a next value and a query value. The agent1806

must determine and output how many times the query value has appeared so far. To succeed, the1807

agent must maintain an accurate count of past occurrences and retrieve the correct number upon1808

request.1809

I.11.12 POPGym Battleship1810

A partially observable variation of the game Battleship, where the agent does not have access to1811

the full board. Instead, it receives feedback on its previous shot, indicating whether it was a HIT or1812

MISS, along with the shot’s location. The agent earns rewards for hitting ships, receives no reward1813

for missing, and incurs a penalty for targeting the same location more than once. The environment1814

challenges the agent to construct an internal representation of the board and update its strategy based1815

on past observations.1816

I.11.13 POPGym Mine Sweeper1817

A partially observable version of the computer game Mine Sweeper, where the agent lacks direct1818

visibility of the board. Observations include the coordinates of the most recently clicked tile and1819

the number of adjacent mines. Clicking on a mined tile results in a negative reward and ends the1820

game. To succeed, the agent must track previous selections and deduce mine locations based on the1821

numerical clues, ensuring it avoids mines while uncovering safe tiles.1822

49



I.11.14 POPGym Labyrinth Explore1823

The environment consists of a procedurally generated 2D maze in which the agent earns rewards1824

for reaching new, unexplored tiles. Observations are limited to adjacent tiles, requiring the agent to1825

infer the larger maze layout through exploration. A small penalty per timestep incentivizes efficient1826

navigation and discovery strategies.1827

I.11.15 POPGym Labyrinth Escape1828

This variation of Labyrinth Explore challenges the agent to find an exit rather than merely exploring1829

the maze. The agent retains the same restricted observation space, seeing only nearby tiles. Rewards1830

are only given upon successfully reaching the exit, making it a sparse reward environment where the1831

agent must navigate strategically to achieve its goal.1832

1833

50


	 -30pt
	MIKASA-Robo Implementation Details
	MIKASA-Robo Datasets for Offline RL
	MIKASA-Base Implementation Details
	MIKASA-Robo setup for VLA baselines
	Memory Mechanisms in RL
	Classic baselines performance on the MIKASA-Robo benchmark
	Experiments Reproducing and Compute Resources
	MIKASA-Robo Detailed Tasks Description
	ShellGame-v0
	RememberColor-v0
	RememberShape-v0
	RememberShapeAndColor-v0
	Intercept-v0
	InterceptGrab-v0
	RotateLenient-v0
	RotateStrict-v0
	TakeItBack-v0
	SeqOfColors-v0
	BunchOfColors-v0
	ChainOfColors-v0

	MIKASA-Base Benchmark Tasks Description
	Memory Cards
	Numpad
	BSuite MemoryLength
	Minigrid-Memory
	Ballet
	Passive T-Maze
	ViZDoom-Two-Colors
	Memory Maze
	MemoryGym Mortar Mayhem
	MemoryGym Mystery Path
	POPGym environments
	POPGym Autoencode
	POPGym Concentration
	POPGym Repeat First
	POPGym Repeat Previous
	POPGym Stateless Cartpole
	POPGym Stateless Pendulum
	POPGym Noisy Stateless Cartpole
	POPGym Noisy Stateless Pendulum
	POPGym Multiarmed Bandit
	POPGym Higher Lower
	POPGym Count Recall
	POPGym Battleship
	POPGym Mine Sweeper
	POPGym Labyrinth Explore
	POPGym Labyrinth Escape




