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A MIKASA-Robo Implementation Details

An example of running the environment from the MIKASA-Robo benchmark is shown
in Code 1. For ease of debugging, we also added various wrappers (found in
mikasa_robo_suite/utils/wrappers/) that display useful information about the episode
on the video (Code 2). Thus, RenderStepInfoWrapper () displays the current step in the envi-
ronment; DebugRewardWrapper () displays information about the full reward at the current step
in the environment; DebugRewardWrapper () displays information about each component that
generates the reward function at the current step. In addition, we also added task-specific wrappers
for each environment. For example, RememberColorInfoWrapper () displays the target color
of the cube in the RememberColor—-v0 task, and ShellGameRenderCupInfoWrapper ()
displays which mug the ball is actually under in the Shel1Game-v0 task.

Code 1: Getting started with MIKASA-Robo using the RememberColor9-v0 environment.

# pip 1 211 m

import mikasa_robo_suite

from mikasa_robo_suite.utils.wrappers import
<~ StateOnlyTensorToDictWrapper

from tgdm.notebook import tgdm

import torch

import gymnasium as gym

episode_timeout

env = gym.make ("RememberColor9-v0", num_envs=512 obs_mode="rgb",
< render_mode="all")

env = StateOnlyTensorToDictWrapper (env) # * alw

obs, _ = env.reset (seed=42)
print (obs.keys ())
for i in tgdm(range (episode_timeout)) :
action = torch.from_numpy (env.action_space.sample())
obs, reward, terminated, truncated, info = env.step(action)

env.close ()
N

Code 2: MIKASA-Robo wrappers system.

import mikasa_robo_suite, torch

from mikasa_robo_suite.dataset_collectors.get_mikasa_robo_datasets
— import env_info

import gymnasium as gym

from mani_skill.utils.wrappers import RecordEpisode

from IPython.display import Video

env = gym.make ("RememberColor9-v0", num_envs=512, obs_mode="rgb",
< render_mode="all")
state_wrappers_list, episode_timeout = env_info ("RememberColor9-v0")
for wrapper_class, wrapper_kwargs in state_wrappers_list:
env = wrapper_class (env, xxwrapper_kwargs)
env = RecordEpisode(env, f"./vid ;"", max_steps_per_video=
— episode_timeout)

obs, _ = env.reset (seed=42)
for i in range (episode_timeout) :
action = torch.from_numpy (env.action_space.sample())
obs, reward, terminated, truncated, info = env.step(action)

Video (f"./vide
env.close ()

/0.mp4d", embed=True, width=640)

-
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B MIKASA-Robo Datasets for Offline RL

To train Offline RL baselines on camera images (in “RGB” mode) with sparse rewards (success
condition), we collected datasets for each of the 32 MIKASA-Robo tasks. Datasets were collected
using a PPO-MLP agent trained to SR=100% in “state” mode (i.e., with full information about the
task being solved) with sparse rewards (success condition). Thus, each dataset is represented by 1000
successful trajectories, where each trajectory consists of:

1. “rgb” (shape: (T, 128,128, 6)) - two RGB images (view from above and from the gripper)

2. “joints” (shape: (T, 25)) - Tool Center Point (TCP) position and rotation, and joint positions
and velocities

3. “action” (shape: (T, 8)) - action (8-dimensional vector)

4. “reward” (shape: (7)) - (dense) reward for each step

5. “success” (shape: (1',)) - (sparse) success flag for each step

6. “done” (shape: (7)) - done flag for each step

These datasets are available for download from the project website. We have also published the
weights of the PPO-MLP agent used to collect the dataset, as well as scripts for collecting datasets of
any size, to our repository.

C MIKASA-Base Implementation Details

An example of running an environment from the MIKASA-Base benchmark is shown in Code 3.
MIKASA-Base supports the standard Gymnasium API and is fully compatible with all its
wrappers. This allows users to leverage various functionalities, including parallelization using
AsyncVectorEnv. MIKASA-Base provides a predefined set of environments with different levels
of difficulty. However, users can customize the environment parameters by passing specific arguments
(see Code 3).

Code 3: Example code for running MemoryLength—-v0 environment.

import mikasa_base
import gymnasium as gym

env_id =

env_kwargs = { . 10, : 1}
seed = 123

env = gym.make (env_id, env_kwargs)

obs, _ = env.reset (seed=seed)

for i in range(1l1l):
action = env.action_space.sample ()
next_obs, reward, terminations, truncations, infos = env.step(
<~ action)

env.close ()
.

D MIKASA-Robo setup for VLA baselines

For experiments involving Vision-Language-Action (VLA) models, we focused on a representative
subset of spatial and object memory tasks from MIKASA-Robo. For each task, we generated a
dataset of 250 episodes using an oracle PPO policy with full access to the environment state. At

28




1282
1283
1284
1285

1286
1287
1288

1289

1290
1291

1292
1293
1294
1295
1296
1297

1298

1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311

1312
1313
1314
1315
1316

1317
1318
1319
1320
1321

1322
1328
1324

Table 5: Tasks configurations for fine-tuning VLA models. The table lists the task ID, number of
evaluation steps (T), and the associated language instruction

Task T Language instruction

RememberColor3/5/9-v0 60 Remember the color of the cube and then pick the matching one
ShellGameTouch-v0 90  Memorize the position of the cup covering the ball, then pick that cup
InterceptMedium-vO0 90  Track the ball’s movement, estimate its velocity, then aim the ball at the target

every timestep, the policy recorded two synchronized RGB frames (one from the static “base” camera
and one from the robot’s wrist camera) along with the corresponding end-effector control actions
(pd_ee_delta_pose controller from [87]). Each task was also paired with a concise language
instruction (see Table 5).

All VLA baselines were trained for 50000 iterations and evaluated independently on each task. Com-
plete training/evaluation scripts, language instruction templates, and detailed model hyperparameter
settings are provided in the accompanying supplementary code.

E Memory Mechanisms in RL

In RL, memory mechanisms are techniques or models used to enable agents to retain and recall
information from past interactions with the environment.

There are several approaches to incorporating memory into RL, including recurrent neural networks
(RNNs) [76, 37, 14] which uses hidden states to store information from previous steps [93, 34],
state-space models (SSMs) [28, 83, 27] which uses system state to store historical information [31,
77], transformers [92] which uses attention mechanism to capture sequential dependencies inside
the context window [72, 54, 68], graph neural networks (GNNs) [98] which uses graphs to store
information [99, 44] etc. Popular agents with memory mechanisms are summarized in Table 2.

F Classic baselines performance on the MIKASA-Robo benchmark

In this section, we present a comprehensive evaluation of PPO-MLP and PPO-LSTM baselines on
our MIKASA-Robo benchmark. Our experiments with PPO-MLP in state mode using dense
rewards demonstrate perfect performance across all tasks, consistently achieving 100% success rate,
as shown in Figure 7 and Figure 8. This remarkable performance serves as a crucial validation
of our benchmark design: when an agent has access to complete state information and receives
dense rewards, it can master these tasks completely. Therefore, any performance degradation in
RGB+Jjoints mode observed with other algorithms or training configurations must stem from
the algorithmic limitations or learning challenges rather than any inherent flaws in the task design.
This empirical evidence confirms that our environments are well-calibrated and properly designed,
establishing a solid foundation for evaluating memory-enhanced algorithms. All results are presented
as mean = standard error of the mean (SEM), where the mean is computed across three independent
training runs, and each trained agent is evaluated on 16 different random seeds to ensure robust
performance assessment.

The performance evaluation of PPO-MLP and PPO-LSTM with dense rewards in the RGB+joints
mode is presented in Figure 9. This mode specifically tests the agents’ memory capabilities, as it
requires remembering and utilizing historical information to solve the tasks. Our results demonstrate
a clear distinction between memory-less and memory-enhanced architectures, while also revealing
the limitations of conventional memory mechanisms.

Consider the RememberColor-v0 environment as an illustrative example. In its simplest config-
uration with three cubes, the memory-less PPO-MLP achieves only 25% success rate. In contrast,
PPO-LSTM, leveraging its memory mechanism, achieves perfect performance with 100% success rate.
However, as task complexity increases to five or nine cubes, even the LSTM’s memory capabilities
prove insufficient, with performance degrading significantly.

These results validate two key aspects of our benchmark: first, its effectiveness in distinguishing
between memory-less and memory-enhanced architectures, and second, its ability to challenge
even sophisticated memory mechanisms as task complexity increases. This demonstrates that

29



1325
1326

1327
1328
1329
1330
1331
1332
1333

MIKASA-Robo provides a competitive yet meaningful evaluation framework for developing and
testing advanced memory-enhanced agents.

Our evaluation of PPO-MLP and PPO-LSTM baselines under sparse reward conditions in
RGB+joints mode reveals the true challenge of our benchmark tasks. As shown in Figure 10,
both architectures — even the memory-enhanced LSTM — consistently fail to achieve any meaningful
success rate across nearly all considered environments. This striking result underscores the extreme
difficulty of memory-intensive manipulation tasks when only terminal rewards are available, high-
lighting the substantial gap between current algorithms and the level of memory capabilities required
for real-world robotic applications.
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Figure 7: Demonstration of PPO-MLP performance on MIKASA-Robo benchmark when trained with
oracle-level state information. In this learning mode, MDP problem formulation is considered, i.e.
memory is not required for successful problem solving. At the same time, the obtained results show
that it is possible to solve these problems and obtain 100% Success Rate.
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trained with oracle-level state information.
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Figure 9: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” training mode with dense reward function, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). The results demonstrate that numerous tasks pose significant challenges
even for PPO-LSTM agents with memory, establishing these environments as effective benchmarks
for evaluating advanced memory-enhanced architectures.
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Figure 10: Performance evaluation of PPO-MLP and PPO-LSTM on the MIKASA-Robo benchmark
using the “RGB+joints” with sparse reward function training mode, where the agent only receives
images from the camera (from above and from the gripper) and information about the state of the
joints (position and velocity). This training mode with sparse reward function causes even more
difficulty for the agent to learn, making this mode even more challenging for memory-enhanced
agents.

G Experiments Reproducing and Compute Resources

All baselines were trained and evaluated under a reproducible standardized setup. Training for every
algorithm was performed on a single NVIDIA A100 GPU. For evaluation, each task was run for 100
independent episodes, with environment and agent random seeds ranging from 1 to 100. We report
performance metrics as the mean success rate 4 the standard error of the mean (SEM) over these 100
trials.

H MIKASA-Robo Detailed Tasks Description

In this section, we provide comprehensive descriptions of the 32 memory-intensive tasks that comprise
the MIKASA-Robo benchmark. Each task is designed to evaluate specific aspects of memory
capabilities in robotic manipulation, ranging from object tracking and spatial memory to sequential
decision-making. For each task, we detail its objective, memory requirements, observation space,
reward structure, and success criteria. Additionally, we explain how task complexity increases across
different variants and discuss the specific memory challenges they present. The following subsections
describe each task category and its variants in detail.

Each of the proposed environment supports multiple observation modes:

* State: Full state information including ball position
* RGB+joints: Two camera views (top-down and gripper) plus robot joint states
* RGB: Only visual information from two cameras

In the case of RotateLenient-v0 and RotateStrict-vO0, the prompt information available
at each step is additionally added to each observation.
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Table 6: Results for Offline RL baselines. The table shows comparison of transformer-based
baselines (RATE, DT), behavior cloning (BC), classic Offline RL baselines (CQL), and Diffusion
Policy (DP) on all 32 tasks from the MIKASA-Robo benchmark. Results are presented as mean +
sem across the three runs, where each run is averaged over 100 episodes and sem is the standard
error of the mean. Training was performed using only RGB observations (two cameras: top view and
gripper view) and using sparse rewards (success once condition). The results show that even models
with memory (RATE, DT) are not able to solve most of the benchmark problems, which makes it
challenging and promising for further validation of the algorithm.

# Environment RATE DT BC CQL DP
1 ShellGameTouch-v0 0.92+0.01 0.53+0.07 0.28+0.01 0.16+£0.04 0.18+0.02
2 ShellGamePush-v0 0.78+£0.06 0.62+0.14 0.27+0.01 0.25+£0.01 0.22+0.03
3 ShellGamePick-v0 0.02+0.01 0.00+£0.00 0.01+0.01 0.00£0.00 0.01+0.00
4 InterceptSlow-v0 0.23+0.02 0.40£0.02 0.37+0.06 0.25+£0.01 0.33+0.05
5 InterceptMedium-v0 0.32+0.02 0.56+0.01 0.31+0.14 0.03+£0.01 0.68+0.02
6 InterceptFast-v0 0.30+£0.04 0.36+£0.04 0.03+0.02 0.02+£0.02 0.21+0.05
7 InterceptGrabSlow-v0 0.09+0.03 0.00+£0.00 0.28+0.18 0.03+£0.00 0.03+0.01
8 InterceptGrabMedium-v0 0.09+£0.03 0.00£0.00 0.11+0.02 0.08+£0.04 0.03+0.01
9 InterceptGrabFast-v0 0.14+0.03 0.11x0.03 0.09+0.02 0.08+0.03 0.18+0.02
10 RotateLenientPos-v0 0.11£0.04 0.01+£0.01 0.15+0.03 0.16£0.02 0.11+0.02
11 RotateLenientPosNeg-v0 0.29+0.03 0.05+£0.02 0.22+0.01 0.12+0.02 0.14+0.05
12 RotateStrictPos-v0 0.03+£0.02 0.05+£0.04 0.012£0.00 0.03+£0.01 0.06+0.02
13 RotateStrictPosNeg-v0 0.08+0.01 0.05+£0.03 0.04+0.02 0.04+0.02 0.15+0.01
14  TakeltBack-v0 0.42+0.24 0.08+£0.04 0.33+0.10 0.04+0.01 0.05+0.02
15 RememberColor3-v0 0.65+£0.04 0.01£0.01 0.27+0.03 0.29+0.01 0.32+0.01
16 RememberColor5-v0 0.13£0.03 0.07+£0.05 0.12+0.01 0.15£0.02 0.10+0.02
17 RememberColor9-v0 0.09+0.02 0.01+£0.01 0.12+0.02 0.15+£0.01 0.17+0.01
18 RememberShape3-v0 0.21+£0.04 0.05+£0.04 0.31+0.04 0.20£0.10 0.32+0.05
19 RememberShape5-v0 0.17£0.04 0.04+0.04 0.18+0.01 0.15£0.00 0.21+0.04
20 RememberShape9-v0 0.05£0.00 0.05+£0.02 0.10+0.02 0.14+0.01 0.11+0.02
21 RememberShapeAndColor3x2-v0 0.14+£0.02 0.04+0.02 0.13+£0.02 0.11+0.05 0.14+0.02
22 RememberShapeAndColor3x3-v0 0.08+0.03 0.06+0.06 0.09+£0.02 0.09+0.02 0.16+0.01
23 RememberShapeAndColor5x3-v0 0.07+£0.02 0.01+0.01 0.09+0.01 0.09+0.02 0.11+0.03
24  BunchOfColors3-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
25 BunchOfColors5-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
26 BunchOfColors7-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
27 SeqOfColors3-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
28 SeqOfColors5-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
29  SeqOfColors7-v0 0.00£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
30 ChainOfColors3-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
31 ChainOfColors5-v0 0.00+£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
32 ChainOfColors7-v0 0.00£0.00 0.00+£0.00 0.00+0.00 0.00£0.00 0.00+0.00
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Figure 11: ShellGameTouch-v0: The robot observes a ball in front of it. next, this ball is covered
by a mug and then the robot has to touch the mug with the ball underneath.

H.1 ShellGame-v(

The ShellGame—-vO0 task (Figure 11) is inspired by a simplified version of the classic shell game,
which tests a person’s ability to remember object locations when they become occluded. This task
evaluates an agent’s capacity for object permanence and spatial memory, crucial skills for real-world
robotic manipulation where objects frequently become temporarily hidden from view.

Environment Description The environment consists of three identical mugs placed on a table and
ared ball. The task proceeds in three phases:

1. Observation Phase (steps 0-4): The ball is placed at one of three positions, and the agent
can observe its location.
2. Occlusion Phase (step 5): The ball and positions are covered by three identical mugs.

3. Action Phase (steps 6+): The agent must interact with the mug covering the ball’s location.
The type of target interaction depends on the selected mode: Touch, Push and Pick.

Task Modes The task includes three variants of increasing difficulty:

» Touch: The agent only needs to touch the correct mug
» Push: The agent must push the correct mug to a designated area

» Pick: The agent must pick and lift the correct mug above a specified height

Success Criteria Success is determined by:

* Touch: Contact between the gripper and the correct mug
* Push: Moving forward the correct mug to the target zone
* Pick: Elevating the correct mug above 0.1m

Reward Structure The environment provides both sparse and dense reward variants:

» Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

— Distance between gripper and target mug
— Robot’s motion smoothness (static reward based on joint velocities)
— Task completion status (additional reward when the task is solved)
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Figure 12: RememberColor9-v0: The robot observes a colored cube in front of it, then this cube
disappears and an empty table is shown. Then 9 cubes appear on the table, and the agent must touch
a cube of the same color as the one it observed at the beginning of the episode.

H.2 RememberColor-v(

The RememberColor-vO0 task (Figure 12) tests an agent’s ability to remember and identify objects
based on their visual properties. This capability is essential for real-world robotics applications where
agents must recall and match object characteristics across time intervals.

Environment Description The environment presents a sequence of colored cubes on a table. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): A cube of a specific color is displayed, and the agent must
memorize its color.
2. Delay Phase (steps 5-9): The cube disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple cubes of different colors appear (3, 5, or 9 depending
on difficulty), and the agent must identify and interact with the cube matching the original
color.

Task Modes The task includes three complexity levels:

* 3 (easy): Choose from 3 different colors (red, lime, blue)
* 5 (Medium): Choose from 5 different colors (red, lime, blue, yellow, magenta)

* 9 (Hard): Choose from 9 different colors (red, lime, blue, yellow, magenta, cyan, maroon,
olive, teal)

Success Criteria Success is determined by:
* Correctly identifying and touching the cube that matches the color shown in the observation
phase
* Maintaining contact with the correct cube for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

 Sparse: Binary reward (1.0 for success, 0.0 otherwise)
* Dense: Continuous reward based on:

— Distance between gripper and target cube

— Robot’s motion smoothness (static reward based on joint velocities)

— Additional reward for robot being static while touching the correct cube
— Task completion status (additional reward when the task is solved)
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Figure 13: RememberShape9-v0: The robot observes an object with specific shape in front of it,
then the object disappears and an empty table appears. Then 9 objects of different shapes appear on
the table, and the agent must touch an object of the same shape as the one it observed at the beginning
of the episode.

H.3 RememberShape-v(0

The RememberShape-vO0 task (Figure 13) evaluates an agent’s ability to remember and identify
objects based on their geometric properties. This capability is crucial for robotic applications where
shape recognition and recall are essential for successful manipulation.

Environment Description The environment presents a sequence of geometric shapes on a table.
The task proceeds in three phases:

1. Observation Phase (steps 0-4): A shape (cube, sphere, cylinder, etc.) is displayed, and the
agent must memorize its geometry.
2. Delay Phase (steps 5-9): The shape disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple shapes appear (3, 5, or 9 depending on difficulty),
and the agent must identify and interact with the shape matching the original geometry.

Task Modes The task includes three complexity levels:

* 3 (Easy): Choose from 3 different shapes (cube, sphere, cylinder)
* 5 (Medium): Choose from 5 different shapes (cube, sphere, cylinder cross, torus)

* 9 (Hard): Choose from 9 different shapes (cube, sphere, cylinder cross, torus, star, pyramid,
t-shape, crescent)

Success Criteria Success is determined by:
* Correctly identifying and touching the object with the same shape shown in the observation
phase

* Maintaining contact with the correct shape for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

 Sparse: Binary reward (1.0 for success, 0.0 otherwise)
* Dense: Continuous reward based on:

— Distance between gripper and target object

— Robot’s motion smoothness (static reward based on joint velocities)

— Additional reward for maintaining static position when touching correct object
— Task completion status (additional reward when the task is solved)
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Figure 14: RememberShapeAndColor5x3-v0: An object of a certain shape and color appears
in front of the agent. Then the object disappears and the agent sees an empty table. Then objects of 5
different shapes and 3 different colors appear on the table and the agent has to touch what it observed
at the beginning of the episode.

H.4 RememberShapeAndColor-v(

The RememberShapeAndColor-vO0 task (Figure 14) evaluates an agent’s ability to remember
and identify objects based on multiple visual properties simultaneously. This task combines shape
and color recognition, testing the agent’s capacity to maintain and match multiple object features
across time intervals.

Environment Description The environment presents a sequence of colored geometric shapes on a
table. The task proceeds in three phases:

1. Observation Phase (steps 0-4): An object with specific shape and color is displayed, and
the agent must memorize both properties.

2. Delay Phase (steps 5-9): The object disappears, leaving an empty table.

3. Selection Phase (steps 10+): Multiple objects with different combinations of shapes and
colors appear, and the agent must identify and interact with the object matching both the
original shape and color.

Task Modes The task includes three complexity levels based on the number of shape-color combi-
nations:

* 3x2 (Easy): Choose from 6 objects (3 shapes x 2 colors); shapes: cube, sphere, t-shape;
colors: red, green

* 3x3 (Medium): Choose from 9 objects (3 shapes x 3 colors); shapes: cube, sphere, t-shape;
colors: red, green, blue

* 5x3 (Hard): Choose from 15 objects (5 shapes x 3 colors); shapes: cube, sphere, t-shape,
cross, torus; colors: red, green, blue

Success Criteria Success is determined by:
* Correctly identifying and touching the object that matches both the shape and color shown
in the observation phase
* Maintaining contact with the correct object for at least 0.1 seconds

Reward Structure The environment provides both sparse and dense reward variants:

» Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

— Distance between gripper and target object

— Robot’s motion smoothness (static reward based on joint velocities)

— Additional reward for maintaining static position while touching correct object
— Task completion status (additional reward when the task is solved)
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Figure 15: InterceptMedium-v0: A ball rolls on the table in front of the agent with a random
initial velocity, and the agent’s task is to intercept this ball and direct it at the target zone.

H.5 Intercept-v0

The Intercept-vO0 task (Figure 16) evaluates an agent’s ability to predict and intercept a moving
object based on its initial trajectory. This task tests the agent’s capacity for motion prediction and
spatial-temporal reasoning, which are essential skills for dynamic manipulation tasks in robotics.

Environment Description The environment consists of a red ball moving across a table and a
target zone. The task requires the agent to:

1. Observe the ball’s initial position and velocity

2. Predict the ball’s trajectory

3. Guide the ball to reach a designated target zone

Task Modes The task includes three variants with increasing ball velocities:

* Slow: Ball velocity range of 0.25-0.5 m/s
e Medium: Ball velocity range of 0.5-0.75 m/s
* Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

* Guiding the ball to enter the target zone
* The ball must come to rest within the target area (radius 0.1m)

Reward Structure The environment provides both sparse and dense reward variants:

» Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

— Distance between gripper and ball

— Distance between ball and target zone

— Robot’s motion smoothness (static reward based on joint velocities)
— Task completion status (additional reward when the task is solved)
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Figure 16: InterceptGrabMedium—-v0: A ball rolls on the table in front of the agent with a
random initial velocity, and the agent’s task is to intercept this ball with a gripper and lift it up.

H.6 InterceptGrab-v(

The InterceptGrab-vO0 task (Figure 16) extends the Intercept-vO0 task by requiring the
agent to not only predict the trajectory of a moving object but also grasp it while in motion. This
task evaluates the agent’s ability to combine motion prediction with precise manipulation timing,
simulating real-world scenarios where robots must catch or intercept moving objects.

Environment Description The environment consists of a red ball moving across a table. The task
requires the agent to:

. Observe the ball’s initial position and velocity

. Predict the ball’s trajectory

. Position the gripper to intercept the ball’s path

. Time the grasping action correctly to catch the ball

WD AW N =

. Maintain a stable grasp while bringing the ball to rest

Task Modes The task includes three variants with increasing ball velocities:

* Slow: Ball velocity range of 0.25-0.5 m/s
e Medium: Ball velocity range of 0.5-0.75 m/s
* Fast: Ball velocity range of 0.75-1.0 m/s

Success Criteria Success is determined by:

* Successfully grasping the moving ball
* Maintaining a stable grasp until the ball comes to rest

 The robot must be static with the ball firmly grasped

Reward Structure The environment provides both sparse and dense reward variants:

 Sparse: Binary reward (1.0 for success, 0.0 otherwise)

* Dense: Continuous reward based on:

Distance between gripper and ball

Grasping reward

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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Figure 17: RotateLenientPos~-v0: A randomly oriented peg is placed in front of the agent.
The agent’s task is to rotate this peg by a certain angle (the center of the peg can be shifted).

H.7 RotateLenient-v(

The RotatelLenient-vO0 task (Figure 17) evaluates an agent’s ability to remember and execute
specific rotational movements. This task tests the agent’s capacity to maintain and reproduce angular
information, which is crucial for manipulation tasks requiring precise orientation control. This task
tests the agent’s ability to hold information in memory about how far peg has already rotated at the
current step relative to its initial position.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle. The task proceeds in one phase, but the static prompt information about
the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle

Task Modes The task includes two variants with different rotation requirements:

* Pos: Rotate by a positive angle between 0 and 7 /2

* PosNeg: Rotate by either positive or negative angle between — /4 and 7 /4

Success Criteria Success is determined by:

* Rotating the peg to within the angle threshold (+0.1 radians) of the target angle
* Maintaining the final orientation in a stable position
* The robot must be static with the peg at the correct orientation

Reward Structure The environment provides both sparse and dense reward variants:

* Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

Distance between gripper and peg

Angular distance to target rotation

Stability of the peg’s orientation

Robot’s motion smoothness (static reward based on joint velocities)
— Task completion status (additional reward when the task is solved)
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Figure 18: RotateStrictPos-v0: A randomly oriented peg is placed in front of the agent. The
agent’s task is to rotate this peg by a certain angle (it is not allowed to move the center of the peg)

H.8 RotateStrict-v(Q

The RotateStrict-vO0 task (Figure 18) extends the RotateLenient-v0 task with more
stringent requirements for precise rotational control.

Environment Description The environment consists of a blue-colored peg on a table that must be
rotated by a specified angle while maintaining its position. The task proceeds in one phase, but the
static prompt information about the target angle is available to the agent at each timestep:

1. Action Phase: The agent must rotate the peg to match the target angle while keeping it
centered

Task Modes The task includes two variants with different rotation requirements:

* Pos: Rotate by a positive angle between 0 and 7 /2

* PosNeg: Rotate by either positive or negative angle between —7 /4 and 7 /4

Success Criteria Success is determined by:

* Rotating the peg to within the angle threshold (£0.1 radians) of the target angle
* Maintaining the peg’s position within Scm of its initial XY coordinates

 The robot must be static with the peg at the correct orientation

* No significant deviation in other rotation axes

Reward Structure The environment provides both sparse and dense reward variants:

» Sparse: Binary reward (1.0 for success, 0.0 otherwise)

¢ Dense: Continuous reward based on:

Distance between gripper and peg

Angular distance to target rotation

Position deviation from initial location

Stability of the peg’s orientation

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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Figure 19: TakeItBack-vO0: The agent observes a green cube in front of him. The agent’s task
is to move the green cube to the red target, and as soon as it lights up violet, return the cube to its
original position (the agent does not observes the original position of the cube).

H.9 TakeltBack-v0

The TakeItBack-vO0 task (Figure 19) assesses the agent’s ability to perform sequential tasks and
memorize the starting position. This task tests the agent’s capacity for sequential memory and spatial
reasoning, requiring it to maintain information about past locations and achievements while executing
a multi-step plan.

Environment Description The environment consists of a green cube and two target regions (initial
and goal) on a table. The task proceeds in two phases:
1. First Phase: The agent must move the cube from its initial position to a goal region

2. Second Phase: After reaching the goal, goal region change it’s color from red to magenta,
and the agent must return the cube to its original position (marked by the initial region and
invisible for the agent)

Success Criteria Success is determined by:

* First reaching the goal region with the cube
 Then returning the cube to the initial region

* Both goals must be achieved in sequence

Reward Structure The environment provides both sparse and dense reward variants:

* Sparse: Binary reward (1.0 for success, 0.0 otherwise)
* Dense: Continuous reward based on:

Distance between gripper and cube

Distance to current target region

Progress through the task sequence

Stability of cube manipulation

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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Figure 20: SeqOfColors7-vO0: In front of the agent, 7 cubes of different colors appear sequentially.
After the last cube is shown, the agent observes an empty table. Then 9 cubes of different colors
appear on the table and the agent has to touch the cubes that were shown at the beginning of the
episode in any order.

H.10 SeqOfColors-v0

The SeqOfColors-vO0 task (Figure 20) evaluates an agent’s ability to remember and reproduce an
unordered sequence of colors. This task tests memory capacity capabilities essential for robotic tasks
that require following specific patterns or sequences.

Environment Description The environment presents a sequence of colored cubes that must be
reproduced in any order. The task proceeds in two phases:

1. Observation Phase (steps 0-(5/N — 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.
2. Delay Phase (steps (5N)-(5N + 4)): All cubes disappear

3. Selection Phase (steps (5N + 5)+): A larger set of cubes appears, and the agent must
identify and touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

* 3 (Easy): Remember 3 colors demonstrated sequentially
* 5 (Medium): Remember 5 colors demonstrated sequentially

* 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

* Correctly identifying and touching all cubes from the observation phase
* Order of selection doesn’t matter

* Each cube must be touched for at least 0.1 seconds

* The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

* Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

— Distance between gripper and next target cube

Number of correctly identified cubes

Static reward for stable contact

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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Figure 21: BunchOfColors7-v0: 7 cubes of different colors appear simultaneously in front of
the agent. After the agent observes an empty table. Then, 9 cubes of different colors appear on the
table and the agent has to touch the cubes that were shown at the beginning of the episode in any
order.

H.11 BunchOfColors-v(

The BunchOfColors-vO0 task (Figure 21) tests an agent’s memory capacity by requiring it to
remember multiple objects simultaneously. This capability is crucial for tasks requiring parallel
processing of multiple items.

Environment Description The environment presents multiple colored cubes simultaneously. The
task proceeds in three phases:

1. Observation Phase (steps 0-4): Multiple colored cubes are displayed simultaneously

2. Delay Phase (steps 5-9): All cubes disappear

3. Selection Phase (steps 10+): A larger set of cubes appears, and the agent must identify and
touch all previously shown cubes in any order

Task Modes The task includes three complexity levels:

* 3 (Easy): Remember 3 colors demonstrated simultaneously
* 5 (Medium): Remember 5 colors demonstrated simultaneously

* 7 (Hard): Remember 7 colors demonstrated simultaneously

Success Criteria Success is determined by:

* Correctly identifying and touching all cubes from the observation phase
¢ Order of selection doesn’t matter
¢ Each cube must be touched for at least 0.1 seconds

* The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

* Sparse: Binary reward (1.0 for success, 0.0 otherwise)
* Dense: Continuous reward based on:

Distance between gripper and next target cube

Static reward for stable contact

Number of correctly touched cubes

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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sequentially. After the last cube is shown, the agent sees an empty table. Then 9 cubes of different
colors appear on the table and the agent must unmistakably touch the cubes that were shown at the
beginning of the episode, in the same strict order.

H.12 ChainOfColors-v0

The ChainOfColors-vO0 task (Figure 22) evaluates the agent’s ability to store and retrieve ordered
information. This task simulates scenarios where the agent must track changing relationships between
objects over time.

Environment Description The environment presents am ordered sequence (chain) of colored cubes
that must be followed. The task proceeds in multiple phases:

1. Observation Phase (steps 0-(5/N — 1)): A sequence of N colored cubes is shown one at a
time, with each cube visible for 5 steps.
2. Delay Phase (steps (5N)-(5N + 4)): All cubes disappear

3. Selection Phase (steps (5/V + 5)+): A larger set of cubes appears, and the agent must
identify and touch all previously shown cubes in the exact order as demonstrated

Task Modes The task includes three complexity levels:

* 3 (Easy): Remember 3 colors demonstrated sequentially
* 5 (Medium): Remember 5 colors demonstrated sequentially

* 7 (Hard): Remember 7 colors demonstrated sequentially

Success Criteria Success is determined by:

* Correctly identifying and touching all cubes from the observation phase in the exact order
* Each cube must be touched for at least 0.1 seconds
* The demonstrated set must be touched without any mistakes

Reward Structure The environment provides both sparse and dense reward variants:

* Sparse: Binary reward (1.0 for success, 0.0 otherwise)
¢ Dense: Continuous reward based on:

Distance between gripper and next target cube

Static reward for stable contact

Number of correctly touched cubes

Robot’s motion smoothness (static reward based on joint velocities)
Task completion status (additional reward when the task is solved)
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Table 7: Classification of environments from the MIKASA-Base benchmark according to the sug-
gested memory-intensive tasks classification from the Subsection 4.2,

Environment Memory Task  Brief description of the task Observation Space Action Space

Memory Cards Capacity Memorize the positions of revealed cards and correctly match pairs while minimizing vector discrete
incorrect guesses.

Numpad Sequential Memorize the sequence of movements and navigate the rolling ball on a 3x3 grid by image, vector discrete, continuous
following the correct order while avoiding mistakes.

BSuite Memory Length Object Memorize the initial context signal and recall it after a given number of steps to take vector discrete
the correct action.

Minigrid-Memory Object Memorize the object in the starting room and use this information to select the image discrete
correct path at the junction.

Ballet Sequential, Memorize the sequence of movements performed by each uniquely colored and image discrete

Object shaped dancer, then identify and approach the dancer who executed the given pattern.
Passive Visual Match Object Memorize the target color displayed on the wall during the initial phase. After a image discrete

brief distractor phase, identify and select the target color among the distractors by
stepping on the corresponding ground pad.

Passive-T-Maze Object Memorize the goal’s location upon initial observation, navigate through the maze vector discrete
with limited sensory input, and select the correct path at the junction.
ViZDoom-two-colors Object Memorize the color of the briefly appearing pillar (green or red) and collect items of image discrete
the same color to survive in the acid-filled room.
Memory Maze Spatial Memorize the locations of objects and the maze structure using visual clues, then image discrete
navigate efficiently to find objects of a specific color and score points.
MemoryGym Mortar Mayhem Capacity, Memorize a sequence of movement commands and execute them in the correct order. image discrete
Sequential
MemoryGym Mystery Path Capacity, Memorize the invisible path and navigate it without stepping off. image discrete
Spatial
POPGym Repeat First Object Memorize the initial value presented at the first step and recall it correctly after vector discrete
receiving a sequence of random values.
POPGym Repeat Previous Sequential, Memorize the value observed at each step and recall the value from k steps earlier vector discrete
Object when required.
POPGym Autoencode Sequential Memorize the sequence of cards presented at the beginning and reproduce them in vector discrete
the same order when required.
POPGym Count Recall Object, Memorize unique values encountered and count how many times a specific value vector discrete
Capacity has appeared.
POPGym vectorless Cartpole ~ Sequential Memorize velocity data over time and integrate it to infer the position of the pole for vector continuous
balance control.
POPGym vectorless Pendulum Sequential Memorize angular velocity over time and integrate it to infer the pendulum’s position vector continuous
for successful swing-up control.
POPGym Multiarmed Bandit  Object, Capacity Memorize the reward probabilities of different slot machines by exploring them and vector discrete
identify the one with the highest expected reward.
POPGym Concentration Capacity Memorize the positions of revealed cards and match them with previously seen cards vector discrete
to find all matching pairs.
POPGym Battleship Spatial Memorize the coordinates of previous shots and their HIT or MISS feedback to build vector discrete

an internal representation of the board, avoid repeat shots, and strategically target
ships for maximum rewards.

POPGym Mine Sweeper Spatial Memorize revealed grid information and use numerical clues to infer safe tiles while vector discrete
avoiding mines.

POPGym Labyrinth Explore  Spatial Memorize previously visited cells and navigate the maze efficiently to discover new, vector discrete
unexplored areas and maximize rewards.

POPGym Labyrinth Escape  Spatial Memorize the maze layout while exploring and navigate efficiently to find the exit vector discrete
and receive a reward.

POPGym Higher Lower Object, Memorize previously revealed card ranks and predict whether the next card will vector discrete

Sequential be higher or lower, updating the reference card after each prediction to maximize

rewards.

I MIKASA-Base Benchmark Tasks Description

This section provides a detailed description of all environments included in the MIKASA-Base
benchmark Section 5. Understanding the characteristics and challenges of these environments is
crucial for evaluating RL algorithms. Each environment presents unique tasks, offering diverse
scenarios to test the memory abilities of RL agents.

L1 Memory Cards

The Memory Cards environment [19] is a memory game environment with 5 randomly shuffled pairs
of hidden cards. At each step, the agent sees one revealed card and must find its matching pair. A
correct guess removes both cards; otherwise, the card is hidden again, and a new one is revealed. The
game continues until all pairs are removed.

.2 Numpad

The Numpad environment [38] consists of an N x N grid of tiles. The agent controls a ball that rolls
between tiles. At the beginning of an episode, a random sequence of n neighboring tiles (excluding
diagonals) is selected, and the agent must follow this sequence in the correct order. The environment
is structured so that pressing the correct tile lights it up, while pressing an incorrect tile resets progress.
A reward of +1 is given for the first press of each correct tile after a reset. The episode ends after a
fixed number of steps. To succeed, the agent must memorize the sequence and navigate it correctly
without mistakes. The ability to “jump” over tiles is not available.
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I.3 BSuite MemoryLength

The MemoryLength environment [70] represents a sequence of observations, where at each step, the
observation takes a value of either +1 or -1. The environment is structured so that a reward is given
only at the final step if the agent correctly predicts the ¢-th value from the initial observation vector
obs. The index of this i-th value is specified at the last step observation vector in obs[1]. To succeed,
the agent must remember the sequence of observations and use this information to make an accurate
prediction at the final step.

I.4 Minigrid-Memory

Minigrid-Memory [12] is a two-dimensional grid-based environment that features a T-shaped maze
with a small room at the beginning of the corridor, containing an object. The agent starts at a random
position within the corridor. Its task is to reach the room, observe and memorize the object, then
proceed to the junction at the maze’s end and turn towards the direction where an identical object is
located. The reward function is defined as R; = 1 — 0.9 x % for a successful attempt; otherwise, the
agent receives zero reward. The episode terminates when the agent makes a choice at the junction or

exceeds a time limit of steps.

1.5 Ballet

In the Ballet environment [54] tasks take place in an 11 x 11 tiled room, consisting of a 9 x 9 central
area surrounded by a one-tile-wide wall. Each tile is upsampled to 9 pixels, resulting in a 99 x 99
pixel input image. The agent is initially placed at the center of the room, while dancers are randomly
positioned in one of 8 possible locations around it. Each dancer has a distinct shape and color,
selected from 15 possible shapes and 19 colors, ensuring uniqueness. These visual features serve
only for identification and do not influence behavior. The agent itself is always represented as a white
square. The agent receives egocentric visual observations, meaning its view is centered on its own
position, which has been shown to enhance generalization.

1.6 Passive T-Maze

The Passive T-Maze environment [68] consists of a corridor leading to a junction that connects two
possible goal states. The agent starts at a designated position and can move in four directions: left,
right, up, or down. At the beginning of each episode, one of the two goal states is randomly assigned
as the correct destination. The agent observes this goal location before starting its movement. The
agent stays in place if it attempts to move into a wall. To succeed, the agent must navigate to the
correct goal based on its initial observation. The optimal strategy involves moving through the
corridor towards the junction and then selecting the correct path.

1.7 ViZDoom-Two-Colors

The ViZDoom-Two-Colors [84] is an environment where an agent is placed in a room with constantly
depleting health. The room contains red and green objects, one of which restores health (+1 reward),
while the other reduces it (-1 reward). The beneficial color is randomly assigned at the beginning
of each episode and indicated by a column. The environment is structured so that the agent must
memorize the column’s color to collect the correct items. Initially, the column remains visible, but in
a harder variant, it disappears after 45 steps, increasing the memory requirement. To succeed, the
agent must maximize survival by collecting beneficial objects while avoiding harmful ones.

1.8 Memory Maze

The Memory Maze environment [73] is a procedurally generated 3D maze. Each episode, the agent
spawns in a new maze with multiple colored objects placed in fixed locations. The agent receives a
first-person view and a prompt indicating the color of the target object. It must navigate the maze,
memorize object positions, and return to them efficiently. The agent receives a reward of 1 for
reaching the correct object and no reward for incorrect objects.
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.9 MemoryGym Mortar Mayhem

Mortar Mayhem [75] is a grid-based environment where the agent must memorize and execute a
sequence of commands in the correct order. The environment consists of a finite grid, where the agent
initially observes a series of movement instructions and then attempts to reproduce them accurately.
Commands include movements to adjacent tiles or remaining in place. The challenge lies in the
agent’s ability to recall and execute a growing sequence of instructions, with failure resulting in
episode termination. A reward of +0.1 is given for each correctly executed command

L10 MemoryGym Mystery Path

Mystery Path [75] presents an invisible pathway that the agent must traverse without deviating. If
the agent steps off the path, it is returned to the starting position, forcing it to remember the correct
trajectory. The path is procedurally generated, meaning each episode introduces a new configuration.
Success in this environment requires the agent to accurately recall previous steps and missteps to
avoid repeating errors. The agent is rewarded +0.1 for progressing onto a previously unvisited tile

.11 POPGym environments

The following environments are included from the POPGym benchmark [65], which is designed
to evaluate RL agents in partially observable settings. POPGym provides a diverse collection of
lightweight vectorized environments with varying difficulty levels.

L11.1 POPGym Autoencode

The environment consists of a deck of cards that is shuffled and sequentially shown to the agent
during the watch phase. While observing the cards, a watch indicator is active, but it disappears
when the last card is revealed. Afterward, the agent must reproduce the sequence of cards in the
correct order. The environment is structured to evaluate the agent’s ability to encode a sequence of
observations into an internal representation and later reconstruct the sequence one observation at a
time.

L11.2 POPGym Concentration

The environment represents a classic memory game where a shuffled deck of cards is placed face-
down. The agent sequentially flips two cards and earns a reward if the revealed cards form a matching
pair. The environment is designed in such a way that the agent must remember previously revealed
cards to maximize its success rate.

1.11.3 POPGym Repeat First

The environment presents the agent with an initial value from a set of four possible values, along with
an indicator signaling that this is the first value. In subsequent steps, the agent continues to receive
random values from the same set but without the initial indicator. The structure requires the agent to
retain the first received value in memory and recall it accurately to receive a reward.

1.114 POPGym Repeat Previous

The environment consists of a sequence of observations, where each observation can take one of four
possible values at each timestep. The agent is tasked with recalling and outputting the value that
appeared a specified number of steps in the past.

L.11.5 POPGym Stateless Cartpole

This is a modified version of the traditional Cartpole environment [6] where angular and linear
position information is removed from observations. Instead, the agent only receives velocity-based
data and must infer positional states by integrating this information over time to successfully balance
the pole.
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I.11.6 POPGym Stateless Pendulum

In this variation of the swing-up pendulum environment [ 18], angular position data is omitted from
the agent’s observations. The agent must infer the pendulum’s position by processing velocity
information and use this estimate to determine appropriate control actions.

L11.7 POPGym Noisy Stateless Cartpole

This environment builds upon Stateless Cartpole by introducing Gaussian noise into the observations.
The agent must still infer positional states from velocity information while filtering out the added
noise to maintain control of the pole.

1.11.8 POPGym Noisy Stateless Pendulum

This variation extends the Stateless Pendulum environment by incorporating Gaussian noise into
the observations. The agent must manage this uncertainty while using velocity data to estimate the
pendulum’s position and swing it up effectively.

L11.9 POPGym Multiarmed Bandit

The Multiarmed Bandit environment is an episodic formulation of the multiarmed bandit problem [82],
where a set of bandits is randomly initialized at the start of each episode. Unlike conventional
multiarmed bandit tasks, where reward probabilities remain fixed across episodes, this structure resets
them every time. The agent must dynamically adjust its exploration and exploitation strategies to
maximize long-term rewards.

1.11.10 POPGym Higher Lower

Inspired by the higher-lower card game, this environment presents the agent with a sequence of cards.
At each step, the agent must predict whether the next card will have a higher or lower rank than the
current one. Upon making a guess, the next card is revealed and becomes the new reference. The
agent can enhance its performance by employing card counting strategies to estimate the probability
of future values.

L11.11 POPGym Count Recall

At each timestep, the agent is presented with two values: a next value and a query value. The agent
must determine and output how many times the query value has appeared so far. To succeed, the
agent must maintain an accurate count of past occurrences and retrieve the correct number upon
request.

I.11.12 POPGym Battleship

A partially observable variation of the game Battleship, where the agent does not have access to
the full board. Instead, it receives feedback on its previous shot, indicating whether it was a HIT or
MISS, along with the shot’s location. The agent earns rewards for hitting ships, receives no reward
for missing, and incurs a penalty for targeting the same location more than once. The environment
challenges the agent to construct an internal representation of the board and update its strategy based
on past observations.

I.11.13 POPGym Mine Sweeper

A partially observable version of the computer game Mine Sweeper, where the agent lacks direct
visibility of the board. Observations include the coordinates of the most recently clicked tile and
the number of adjacent mines. Clicking on a mined tile results in a negative reward and ends the
game. To succeed, the agent must track previous selections and deduce mine locations based on the
numerical clues, ensuring it avoids mines while uncovering safe tiles.
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I.11.14 POPGym Labyrinth Explore

The environment consists of a procedurally generated 2D maze in which the agent earns rewards
for reaching new, unexplored tiles. Observations are limited to adjacent tiles, requiring the agent to
infer the larger maze layout through exploration. A small penalty per timestep incentivizes efficient
navigation and discovery strategies.

L[.11.15 POPGym Labyrinth Escape

This variation of Labyrinth Explore challenges the agent to find an exit rather than merely exploring
the maze. The agent retains the same restricted observation space, seeing only nearby tiles. Rewards
are only given upon successfully reaching the exit, making it a sparse reward environment where the
agent must navigate strategically to achieve its goal.
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