
Under review as a conference paper at ICLR 2021

Appendix

A Preliminaries

Standard notations. For a positive integer n, we define [n] := {1, 2, · · · , n}. For two
integers a  b, we define [a, b] := {a, a+1, · · · , b}, and (a, b) := {a+1, · · · , b� 1}. Similarly
we define [a, b) and (a, b]. For a full rank square matrix A, we use A�1 to denote its true
inverse. We define the big O notation such that f(n) = O(g(n)) means there exists n0 2 N+

and M 2 R such that f(n)  M · g(n) for all n � n0.

Norms. For a matrix A, we use kAk or kAk2 to denote its spectral norm. We use kAkF to
denote its Frobenius norm. We use A> to denote the transpose of A. For a matrix A and
a vector x, we define kxkA :=

p
x>Ax.

Functions. We use � to denote the ReLU activation function, i.e. �(z) = max{z, 0}. For
a function f : R ! R, we use f 0 to denote the derivative of f .

Fast matrix multiplication. We define the notation Tmat(n, d,m) to denote the time
of multiplying an n ⇥ d matrix with another d ⇥ m matrix. Let ! denote the exponent
of matrix multiplication, i.e., Tmat(n, n, n) = n!. The first result shows ! < 3 is Strassen
(1969). The current best ! ⇡ 2.373 due to Williams (2012); Le Gall (2014). The following
fact is well-known in the fast matrix multiplication literature Coppersmith (1982); Strassen
(1991); Bürgisser et al. (1997) : Tmat(a, b, c) = O(Tmat(a, c, b)) = O(Tmat(c, a, b)) for any
positive integers a, b, c.

Kronecker product and vectorization. Given two matrices A 2 Rn1⇥d1 and B 2
Rn2⇥d2 . We use ⌦ to denote the Kronecker product, i.e., for C = A⌦B 2 Rn1n2⇥d1d2 , the
(i1 + (i2 � 1) · n1, j1 + (j2 � 1) · d1)-th entry of C is Ai1,j1Bi2,j2 , 8i1 2 [n1], i2 2 [n2], j1 2
[d1], j2 2 [d2]. For any give matrix H 2 Rd1⇥d2 , we use h = vec(H) 2 Rd1d2 to denote the
vector such that hj1+(j2�1)·d1

= Hj1,j2 , 8j1 2 [d1], j2 2 [d2].

B GNTK formulas

In this section we first present the GNTK formulas for GNNs of Du et al. (2019a), then we
show our approximate version of the GNTK formulas.

B.1 GNNs

A GNN has L Aggregate operations, each followed by a Combine operation, and each
Combine operation has R fully-connected layers. The fully-connected layers have output
dimension m, and use ReLU as non-linearity. In the end the GNN has a ReadOut operation
that corresponds to the pooling operation of normal neural networks.

Let G = (U,E) be a graph with |U | = N number of nodes. Each node u 2 U has a feature
vector hu 2 Rd.

We define the initial vector h(0,R)
u = hu 2 Rd, 8u 2 U .

Aggregate operation. There are in total L Aggregate operations. For any l 2 [L],
the Aggregate operation aggregates the information from last level as follows:

h(l,0)
u

:= cu ·
X

a2N (u)[{u}

h(l�1,R)
a

.

Note that the vectors h(l,0)
u 2 Rm for all l 2 [2 : L], and the only special case is h(1,0)

u 2 Rd.
cu 2 R is a scaling parameter, which controls weight of different nodes during neighborhood
aggregation. In our experiments we choose cu between values {1, 1

|N (u)|+1} following Du
et al. (2019a).

12

Under review as a conference paper at ICLR 2021

Combine operation. The Combine operation has R fully-connected layers with ReLU
activation: 8r 2 [R],

h(l,r)
u

:= (c�/m)1/2 · �(W (l,r) · h(l,r�1)
u

) 2 Rm.

The parameters W (l,r) 2 Rm⇥m for all (l, r) 2 [L] ⇥ [R]\{(1, 1)}, and the only special case
is W (1,1) 2 Rm⇥d. c� 2 R is a scaling parameter, in our experiments we set c� to be 2,
following the initialization scheme used in Du et al. (2019a); He et al. (2015).

ReadOut operation. Using the simplest ReadOut operation, the final output of the
GNN on graph G is

fgnn(G) :=
X

u2U

h(L,R)
u

2 Rm.

Using the ReadOut operation with jumping knowledge as in Xu et al. (2018b), the final
output of the GNN on graph G is

fgnn(G) :=
X

u2U

[h(0,R)
u

, h(1,R)
u

, · · · , h(L,R)
u

] 2 Rm⇥(L+1).

B.2 Exact GNTK formulas

We first present the GNTK formulas of Du et al. (2019a).

We consider a GNN with L Aggregate operations and L Combine operations, and each
Combine operation has R fully-connected layers. We use h(W,G) 2 Rm to denote the
function corresponding to this GNN, where W := [`2[L],r2[R]{W (`,r)} denotes all tunable
parameters of this GNN.

Let G = (U,E) and H = (V, F) be two graphs with |U | = N and |V | = N 0. We use
AG 2 RN⇥N and AH 2 RN

0⇥N
0

to denote the adjacency matrix of G and H. We give the
recursive formula to compute the kernel value Kgntk(G,H) 2 R induced by this GNN, which
is defined as

Kgntk(G,H) := E
W⇠N (0,I)

h
lim

m!1

D@fgnn(W,G)

@W
,
@fgnn(W,H)

@W

Ei
.

Recall that the GNN uses scaling factors cu for each node u 2 G. We define CG 2 RN⇥N

to be the diagonal matrix such that (CG)u = cu for any u 2 U . Similarly we define
CH 2 RN

0⇥N
0
.

We will use intermediate matrices ⌃(`,r)(G,H) 2 RN⇥N
0

and K(`,r)(G,H) 2 RN⇥N
0

for
each ` 2 [0 : L] and r 2 [0 : R].

Initially we define ⌃(0,R)(G,H) 2 RN⇥N
0
as follows: 8u 2 U, v 2 V ,

[⌃(0,R)(G,H)]u,v := hhu, hvi,

where hu, hv 2 Rd are the input features of u and v. And we we define K(0,R)(G,H) 2
RN⇥N

0
as follows: 8u 2 U, v 2 V ,

[K(0,R)(G,H)]u,v := hhu, hvi.

Next we recursively define ⌃(`,r)(G,H) and K(`,r)(G,H) for l 2 [L] and r 2 [R], where
l denotes the level of Aggregate and Combine operations, and r denotes the level of
fully-connected layers inside a Combine operation. Then we define the final output after
ReadOut operation.

13

Under review as a conference paper at ICLR 2021

Aggregate operation. The Aggregate operation gives the following formula:

[⌃(`,0)(G,H)]u,v := cucv
X

a2N (u)[{u}

X

b2N (v)[{v}

[⌃(`�1,R)(G,H)]a,b,

[K(`,0)(G,H)]u,v := cucv
X

a2N (u)[{u}

X

b2N (v)[{v}

[K(`�1,R)(G,H)]a,b.

Note that the above two equations are equivalent to the following two equations:

⌃(`,0)(G,H) = CGAG · ⌃(`�1,R)(G,H) ·AHCH ,

K(`,0)(G,H) = CGAG ·K(`�1,R)(G,H) ·AHCH .

Combine operation. The Combine operation has R fully-connected layers with ReLU
activation �(z) = max{0, z}. We use �̇(z) = [z � 0] to denote be the derivative of �.

For each r 2 [R], for each u 2 U and v 2 V , we define a covariance matrix

[A(`,r)(G,H)]u,v :=

✓
[⌃(`,r�1)(G,G)]u,u [⌃(`,r�1)(G,H)]u,v
[⌃(`,r�1)(H,G)]u,v [⌃(`,r�1)(H,H)]v,v

◆
2 R2⇥2.

Then we recursively define [⌃(`,r)(G,H)]u,v and [K(`,r)(G,H)]u,v as follows:

[⌃(`,r)(G,H)]u,v := c� · E
(a,b)⇠N (0,[A(`,r)(G,H)]u,v)

⇥
�(a)�(b)

⇤
, (3)

[⌃̇(`,r)(G,H)]u,v := c� · E
(a,b)⇠N (0,[A(`,r)(G,H)]u,v)

⇥
�̇(a)�̇(b)

⇤
, (4)

[K(`,r)(G,H)]u,v := [K(`,r�1)(G,H)]u,v · [⌃̇(`,r)(G,H)]u,v + [⌃(`,r)(G,H)]u,v.

These intermediate outputs will be used to calculate the final output of the corresponding
GNTK.

ReadOut operation. Finally we compute Kgntk(G,H) 2 R using the intermediate ma-
trices. This step corresponds to the ReadOut operation.

If we do not use jumping knowledge,

Kgntk(G,H) =
X

u2U,v2V

[K(L,R)(G,H)]u,v.

If we use jumping knowledge,

Kgntk(G,H) =
X

u2U,v2V

LX

l=0

[K(l,R)(G,H)]u,v.

B.3 Approximate GNTK formulas

We follow the notations of previous section. Again we consider two graphs G = (U,E) and
H = (V, F) with |U | = N and |V | = N 0.

Now the goal is to compute an approximate version of the kernel value eK(G,H) 2 R such
that

eKgntk(G,H) ⇡ Kgntk(G,H).

We will use intermediate matrices e⌃(`,r)(G,H) 2 RN⇥N
0

and eK(`,r)(G,H) 2 RN⇥N
0

for
each ` 2 [0 : L] and r 2 [0 : R]. In the approximate version we add two random Gaussian
matrices SG 2 Rb⇥N and SH 2 Rb

0⇥N
0
where b  N and b0  N 0 are two parameters.

Initially, 8u 2 U, v 2 V , we define [e⌃(0,R)(G,H)]u,v := hhu, hvi and [eK(0,R)(G,H)]u,v :=
hhu, hvi, same as in the exact case.

Next we recursively define e⌃(`,r)(G,H) and eK(`,r)(G,H) for ` 2 [L] and r 2 [R].

14

Under review as a conference paper at ICLR 2021

Aggregate operation. In the approximate version, we add two sketching matrices
SG 2 Rb⇥N and SH 2 Rb

0⇥N
0
:

e⌃(`,0)(G,H) := CGAG · (S>
G
SG) · e⌃(`�1,R)(G,H) · (S>

H
SH) ·AHCH ,

eK(`,0)(G,H) := CGAG · (S>
G
SG) · eK(`�1,R)(G,H) · (S>

H
SH) ·AHCH ,

where we define CG 2 RN⇥N to be the diagonal matrix such that (CG)u = cu for any u 2 V .
Similarly we define CH 2 RN

0⇥N
0
.

Combine operation. The Combine operation has R fully-connected layers with ReLU
activation. The recursive definitions of [eA(`,r)(G,H)]u,v 2 R2⇥2, [e⌃(`,r)(G,H)]u,v 2 R,
[e⌃(`,r)

· (G,H)]u,v 2 R and [eK(`,r)(G,H)]u,v 2 R are the same as in the exact case, except
now we are always working with the tilde version.

ReadOut operation. Finally we compute eKgntk(G,H) 2 R using the intermediate ma-
trices. It is also the same as in the exact case, except now we are always working with the
tilde version.

C Generalization bound of approximate GNTK

In this section, we prove a generalization bound for the approximate version of GNTK. This
generalizes the generalization bound of Du et al. (2019a).

Similar to Du et al. (2019a), we consider a GNN that has one Aggregate operation
followed by one Combine operation with one fully-connected layer, and without jumping
knowledge. We set the scaling parameters cu = (k

P
v2N (u)[{u} hvk2)�1 and c� = 2. We use

{(Gi, yi)}ni=1 to denote the n training data, where Gi = (Vi, Ei) is a graph with |Vi| = Ni

nodes, and yi 2 R is its label.

We use eK 2 Rn⇥n to denote approximate version of the kernel matrix of the simple GNN,
where eKi,j = eK(Gi, Gj), as defined in Section 3.2. We assume eK is invertible. For a testing
graph Gte, the predicted label of kernel regression using approximate version of GNTK is

fK(Gtest) = [eK(Gtest, G1), eK(Gtest, G2), · · · , eK(Gtest, Gn)]
> eK�1y.

Similar to Du et al. (2019a), we use the following standard generalization bound of kernel
regression.
Theorem C.1 (Bartlett & Mendelson (2002)). Given n training data {(Gi, yi)}ni=1 drawn
i.i.d. from the underlying distribution D. Consider any loss function ` : R⇥R ! [0, 1] that
is 1-Lipschitz in the first argument such that `(y, y) = 0. With probability at least 1� �, the
population loss of the GNTK predictor fgntk can be upper bounded by

LD(fgntk) = E
(G,y)⇠D

[`(fgntk(G), y)] . (kyk2eK�1 · tr[eK])1/2/n+
p

log(1/�)/n.

Now it remains to bound kyk eK�1 and tr[eK]. We generalize the corresponding bounds of Du
et al. (2019a) to the approximate GNTK. We have the following two lemmas:
Lemma C.2 (Informal version of Lemma C.8). For each i 2 [n], if the labels {yi}ni=1 satisfy

yi = ↵1

X

u2V

hhu,�1i+
TX

l=1

↵2l

X

u2V

hhu,�2li2l, (5)

where hu = cu
P

v2N (u)[{u} hv, ↵1,↵2,↵4, · · ·↵2T 2 R, �1,�2,�4, · · · ,�2T 2 Rd, then we
have

kyk eK�1  4|↵1| · k�1k2 +
TX

l=1

4
p
⇡(2l � 1)|↵2l| · k�2lk2l2 .

15

Under review as a conference paper at ICLR 2021

Lemma C.3 (Informal version of Lemma C.9). If for all graphs Gi = (Vi, Ei) in the training
set, |Vi| is upper bounded by N , then tr[K]  O(nN2). Here n is the number of training
samples.

Combining Lemma C.8 and Lemma C.9 with Theorem C.1, we have the following main
generalization theorem:
Theorem C.4 (Main generalization theorem). Following the notations of Definition C.5,
and under the assumptions of Assumption C.6, if we further have the conditions that

4 · ↵1k�1k2 +
TX

l=1

4
p
⇡(2l � 1) · ↵2lk�2lk2 = o(n), N = o(

p
n),

then the generalization error of the approximate GNTK can be upper bounded by
LD(fgntk) = E

(G,y)⇠D
[`(fgntk(G), y)] . O(1/nc),

for some constant c 2 (0, 1).

Next we show how to prove the two lemmas needed for the main generalization theorem.

C.1 Notations and assumptions

We first list all the notations and assumptions we used when proving the main generalization
theorem.
Definition C.5 (Approximate GNTK with n data). Let {(Gi, yi)}ni=1 be the training data
and labels, and Gi = (Vi, Ei) with |Vi| = Ni, and we assume Ni = O(N), 8i 2 [n]. For
each i 2 [n] and each u 2 Vi, let hu 2 Rd

+ be the feature vector for u, and we define
HGi := [hu1 , hu2 , · · · , huNi

] 2 Rd⇥Ni
+ . We also define AGi 2 RNi⇥Ni to be the adjacency

matrix of Gi, and define SGi 2 Rbi⇥Ni to be the sketching matrix used for Gi.

Let eK 2 Rn⇥n be the approximate GNTK of a GNN that has one Aggregate oper-
ation followed by one Combine operation with one fully-connected layer (L = 1 and
R = 1) and without jumping knowledge. For each l 2 [L], r 2 [R], i, j 2 [n], let
e⌃(l,r)(Gi, Gj), eK(l,r)(Gi, Gj) 2 RNi⇥Nj be defined as of Section 3.2.

The scaling parameters used by the GNN for Gi are c� = 2 and cu =
(k[HGiS

>
Gi
SGiAGi]⇤,uk2)�1, for each u 2 Vi. We use CGi 2 RNi⇥Ni to denote the diag-

onal matrix with [CGi]u,u = cu.

We further define two vectors for each i 2 [n] and each u 2 Vi:
hu := [HGiAGiCGi]⇤,u 2 Rd, (6)
ehu := [HGiS

>
Gi
SGiAGiCGi]⇤,u 2 Rd. (7)

And let T 2 N+ be a integer. For each t 2 N+, we define two matrices H
(t)
, eH(t) 2 Rd⇥n:

H
(t)

:=
h X

u2V1

�(t)(hu),
X

u2V2

�(t)(hu), · · · ,
X

u2Vn

�(t)(hu)
i
2 Rd⇥n, (8)

eH(t) :=
h X

u2V1

�(t)(ehu),
X

u2V2

�(t)(ehu), · · · ,
X

u2Vn

�(t)(ehu)
i
2 Rd⇥n, (9)

where we define �(t)(·) to be the feature map of the polynomial kernel of degree t such that
hx, yit = h�(t)(x),�(t)(y)i for any x, y 2 Rd.
Assumption C.6 (Assumptions to prove generalization bound). We make the following
assumptions about the input graphs, its feature vectors, and its labels.

1. Labels. For each i 2 [n], we assume the label yi 2 R satisfy

yi = ↵1

X

u2Vi

hhu,�1i+
TX

l=1

↵2l

X

u2Vi

hhu,�2li2l,

where ↵1,↵2,↵4, · · · ,↵2T 2 R, �1,�2,�4, · · · ,�2T 2 Rd.

16

Under review as a conference paper at ICLR 2021

2. Feature vectors and graphs. For each t 2 {1} [{2l}T
l=1, we assume we have

k(H(t)
)>H

(t)kF  �t · k(H
(t)
)>H

(t)k2,

where �1, �2, �4, · · · , �2T 2 R. We also let � = maxt2{1}[{2l}T
l=1

{�t}. Note that
� � 1.

3. Sketching sizes. We assume the sketching sizes {bi}ni=1 satisfy that 8i, j 2 [n],

kAGjCGj1[Nj]k2kAGiCGi1[Ni]k2 · kH
>
Gj

HGikF

 O(1) ·
min{

p
bi,

p
bj}

�T log3 N
· 1>

[Ni]
C>

Gi
A>

Gi
H>

Gi
HGjAGjCGj1[Nj],

where 1[Ni] 2 RNi ,1[Nj] 2 RNj are the all one vectors of size Ni and Nj.

C.2 Close-form formula of approximate GNTK

Lemma C.7 (Close-form formula of approximate GNTK). Following the notations of Def-
inition C.5, we can decompose eK 2 Rn⇥n into

eK = eK1 + eK2 ⌫ eK1,

where eK2 2 Rn⇥n is a PSD matrix, and eK1 2 Rn⇥n. eK1 satisfies the following:

eK1 =
1

4
(eH(1))> · eH(1) +

1

2⇡

1X

l=1

(2l � 3)!!

(2l � 2)!!(2l � 1)
· (eH(2l))> · eH(2l),

and equivalently for each i, j 2 [n], eK1(Gi, Gj) 2 R satisfies the following:

eK1(Gi, Gj) =
X

u2Vi

X

v2Vj

hehu,ehvi ·
1

2⇡

�
⇡ � arccos(hehu,ehvi)

�
,

For each i, j 2 [n], eK2(Gi, Gj) 2 R satisfies the following:

eK2(Gi, Gj) =
X

u2Vi

X

v2Vj

hehu,ehvi ·
1

2⇡

⇣
⇡ � arccos(hehu,ehvi) +

q
1� hehu,ehvi2

⌘
.

Proof. For i, j 2 [n], consider the two graphs Gi = (Vi, Ei) and Gj = (Vj , Ej) with |Vi| = Ni

and |Vj | = Nj , we first compute the approximate GNTK formulas that corresponds to the
simple GNN (with L = 1 and R = 1) by following the recursive formula of Section 3.2.

Compute l = 0, r = 1 variables. We first compute the initial variables
e⌃(0,1)(Gi, Gj), eK(0,1)(Gi, Gj) 2 RNi⇥Nj , for any u 2 Vi and v 2 Vj , we have

[e⌃(0,1)(Gi, Gj)]u,v = hhu, hvi, [eK(0,1)(Gi, Gj)]u,v = hhu, hvi, (10)

which follows from Section 3.2.

Compute l = 1, r = 0 variables. We compute e⌃(1,0)(Gi, Gj) 2 RNi⇥Nj as follows:

[e⌃(1,0)(Gi, Gj)]u,v = [CGiAGi · (S>
Gi
SGi) · e⌃(0,1)(Gi, Gj) · (S>

Gj
SGj) ·AGjCGj]u,v

= [CGiAGi · (S>
Gi
SGi) ·H>

Gi
HGj · (S>

Gj
SGj) ·AGjCGj]u,v

= hehu,ehvi, (11)

where the first step follows from Section 3.2, the second step follows from Eq.(10) and the
definition HGi := [hu1 , hu2 , · · · , huNi

] 2 Rd⇥Ni in lemma statement, and the third step
follows from the definition of ehu,ehv 2 Rd in Eq. (7). Note that we have kehuk2 = 1 since
CGi is a diagonal matrix with [CGi]u,u = k[HGiS

>
Gi
SGiAGiCGi]⇤,uk�1

2 .

17

Under review as a conference paper at ICLR 2021

Then we compute eK(1,0)(Gi, Gj) 2 RNi⇥Nj :

[eK(1,0)(Gi, Gj)]u,v = [CGiAGi · (S>
Gi
SGi) · eK(0,1)(Gi, Gj) · (S>

Gj
SGj) ·AGjCGj]u,v

= e⌃(1,0)(Gi, Gj) = hehu,ehvi, (12)

where the first step follows from Section 3.2, the second step follows from eK(0,1)(Gi, Gj) =
e⌃(0,1)(Gi, Gj) (see Eq. (10)).

Compute l = 1, r = 1 variables. Next we compute [eA(1,1)(Gi, Gj)]u,v 2 R2⇥2 for any
u 2 Vi and v 2 Vj , we have

[eA(1,1)(Gi, Gj)]u,v =

✓
[e⌃(1,0)(Gi, Gi)]u,u [e⌃(1,0)(Gi, Gj)]u,v
[e⌃(1,0)(Gj , Gi)]v,u [e⌃(1,0)(Gj , Gj)]v,v

◆
=

✓
1 hehu,ehvi

hehv,ehui 1

◆
,

(13)

where the first step follows from Section 3.2, the second step follows from Eq. (11).

Then we compute e⌃(1,1)
· (Gi, Gj) 2 RNi⇥Nj . For any u 2 Vi and v 2 Vj ,

[e⌃(1,1)
· (Gi, Gj)]u,v = c� · E

(a,b)⇠N (0,[eA(1,1)(Gi,Gj)]u,v)
[�̇(a) · �̇(b)]

=
1

2⇡

⇣
⇡ � arccos(hehu,ehvi)

⌘
, (14)

where the first step follows from Section 3.2, the second step follows from Eq. (13) and
c� = 2 (Definition C.5).

And similarly we compute [e⌃(1,1)(Gi, Gj)]u,v 2 RNi⇥Nj . For any u 2 Vi and v 2 Vj ,

[e⌃(1,1)(Gi, Gj)]u,v = c� · E
(a,b)⇠N (0,[eA(1,1)(Gi,Gj)]u,v)

[�(a) · �(b)]

=
1

2⇡

⇣
⇡ � arccos(hehu,ehvi) +

q
1� hehu,ehvi2

⌘
, (15)

where the first step follows from Section 3.2, the second step follows from Eq. (13) and
c� = 2 (Definition C.5).

Then we compute eK(1,1)(Gi, Gj) 2 RNi⇥Nj . We decompose eK(1,1)(Gi, Gj) as follows:

eK(1,1)(Gi, Gj) = eK(1,1)
1 (Gi, Gj) + e⌃(1,1)(Gi, Gj), (16)

where we define

[eK(1,1)
1 (Gi, Gj)]u,v := [eK(1,0)(Gi, Gj)]u,v · [e⌃(1,1)

· (Gi, Gj)]u,v, 8u 2 Vi, v 2 Vj . (17)

The above equation follows from the definition of eK(1,1)(Gi, Gj) (see Section 3.2).

We then have

[eK(1,1)
1 (Gi, Gj)]u,v = hehu,ehvi ·

1

2⇡

�
⇡ � arccos(hehu,ehvi)

�

= hehu,ehvi ·
1

2⇡

⇣
⇡ �

�⇡
2
�

1X

l=0

(2l � 1)!!

(2l)!!
· h
ehu,ehvi2l+1

2l + 1

�⌘

=
1

4
hehu,ehvi+

1

2⇡

1X

l=1

(2l � 3)!!

(2l � 2)!!(2l � 1)
· hehu,ehvi2l

=
1

4
hehu,ehvi+

1

2⇡

1X

l=1

(2l � 3)!!

(2l � 2)!!(2l � 1)
· h�(2l)(ehu),�

(2l)(ehv)i, (18)

where the first step follows from plugging Eq. (12) and (14) into Eq. (17), the second step
follows from the Taylor expansion that arccos(x) = ⇡

2 �
P1

l=0
(2l�1)!!
(2l)!! · x

2l+1

2l+1 , the third step

18

Under review as a conference paper at ICLR 2021

follows from merging terms, the fourth step follows from hx, yi2l = h�(2l)(x),�(2l)(y)i since
�(2l)(·) is the feature map of the polynomial kernel of degree 2l (Definition C.5).

Compute kernel matrix eK. Finally we compute eK 2 Rn⇥n. We decompose eK as follows:
eK = eK1 + eK2,

where we define eK1, eK2 2 Rn⇥n such that for any two graphs Gi = (Vi, Ej) and Gj =
(Vj , Ej),

eK1(Gi, Gj) =
X

u2Vi,v2Vj

[eK(1,1)
1 (Gi, Gj)]u,v 2 R,

eK2(Gi, Gj) =
X

u2Vi,v2Vj

[e⌃(1,1)(Gi, Gj)]u,v 2 R.

This equality follows from eK(Gi, Gj) =
P

u2Vi,v2Vj
[eK(1,1)(Gi, Gj)]u,v (see Section 3.2) and

Eq. (16). For eK1, we further have

eK1(Gi, Gj) =
1

4
h
X

u2Vi

ehu,
X

v2Vj

ehvi+
1

2⇡

1X

l=1

(2l � 3)!!

(2l � 2)!!(2l � 1)
· h

X

u2Vi

�(2l)(ehu),
X

v2Vj

�(2l)(ehv)i

=
1

4
(eH(1))> · eH(1) +

1

2⇡

1X

l=1

(2l � 3)!!

(2l � 2)!!(2l � 1)
· (eH(2l))> · eH(2l),

where the firs step follows from Eq. (18), the second step follows from the definition of
eH(t) 2 Rd⇥n (Eq. (9) in Definition C.5). For eK2, we have that eK2 is a kernel matrix, so
it is positive semi-definite. Let A ⌫ B denotes x>Ax  x>Bx for all x. Thus we have
eK ⌫ eK1.

C.3 Bound on y> eK�1y

Lemma C.8 (Bound on y> eK�1y, generalization of Theorem 4.2 of Du et al. (2019a)).
Following the notations of Definition C.5 and under the assumptions of Assumption C.6,
we have

kyk eK�1  4 · |↵1|k�1k2 +
TX

l=1

4
p
⇡(2l � 1) · |↵2l|k�2lk2.

Proof. Decompose kyk eK�1 . From Part 1 of Assumption C.6, we have 8i 2 [n]

yi = ↵1

X

u2Vi

hhu,�1i+
TX

l=1

↵2l

X

u2Vi

hhu,�2li2l

= ↵1

X

u2Vi

hhu,�1i+
TX

l=1

↵2lh
X

u2Vi

�(2l)(hu),�
(2l)(�2l)i

= y(1)
i

+
TX

l=1

y(2l)
i

, (19)

where the second step follows from �(2l) is the feature map of the polynomial kernel of
degree 2l, i.e., hx, yi2l = h�(2l)(x),�(2l)(y)i for any x, y 2 Rd, and the third step follows
from defining vectors y(1), y(2l) 2 Rn for l 2 [T] such that 8i 2 [n],

y(1)
i

:= ↵1h
X

u2Vi

hu,�1i 2 R, (20)

y(2l)
i

:= ↵2lh
X

u2Vi

�(2l)(hu),�
(2l)(�2l)i 2 R, 8l 2 [T], (21)

19

Under review as a conference paper at ICLR 2021

And we have

kyk eK�1  kyk eK�1
1

 ky(1)k eK�1
1

+
TX

l=1

ky(2l)k eK�1
1

, (22)

which follows from Lemma C.7 that eK ⌫ eK1 and thus eK�1 � eK�1
1 , the second step follows

from Eq. (19) and triangle inequality.

Upper bound ky(1)k eK�1
1

. Recall the definitions of the two matrices H
(1)

, eH(1) 2 Rd⇥n in
Eq. (8) and (9) of Definition C.5:

H
(1)

:=
h X

u2V1

hu,
X

u2V2

hu, · · · ,
X

u2Vn

hu

i
, eH(1) :=

h X

u2V1

ehu,
X

u2V2

ehu, · · · ,
X

u2Vn

ehu

i
.

Note that from Eq. (20) we have y(1) = ↵1 · (H
(1)

)>�1 2 Rn. Also, from Lemma C.7 we
have eK1 ⌫ 1

4 (
eH(1))> eH(1) 2 Rn⇥n. Using these two equations, we have

ky(1)k2eK�1
1

= (y(1))> eK�1
1 y(1)

 4↵2
1 · �>

1 H
(1) · ((eH(1))> eH(1))�1 · (H(1)

)>�1. (23)

Next we want to prove that (1� 1
2)(H

(1)
)>H

(1) � (eH(1))> eH(1) � (1 + 1
2)(H

(1)
)>H

(1). For
any i, j 2 [n], we have

[(H
(1)

)>H
(1)

]i,j = (
X

u2Vi

h
>
u
) · (

X

v2Vj

hv) = 1>
[Ni]

C>
Gi
A>

Gi
H>

Gi
·HGjAGjCGj1[Nj],

[(eH(1))> eH(1)]i,j = (
X

u2Vi

eh>
u
) · (

X

v2Vj

ehv) = 1>
[Ni]

C>
Gi
A>

Gi
(S>

Gi
SGi)H

>
Gi

·HGj (S
>
Gj

SGj)AGjCGj1[Nj],

where 1[Ni] 2 RNi is the all one vector, and the second steps of the two equations follow
from hu = [HGiAGiCGi]⇤,u and ehu = [HGiS

>
Gi
SGiAGiCGi]⇤,u (see Definition C.5).

For any i, j 2 [n], using Lemma 5.4 we have that with probability 1� 1/N4,

|[(eH(1))> eH(1)]i,j � [(H
(1)

)>H
(1)

]i,j |

 O(log1.5 N)p
bi

· kAGiCGi1[Ni]k2 · kH
>
Gi
HGjAGjCGj1[Nj]k2

+
O(log1.5 N)p

bj
· kAGjCGj1[Nj]k2 · kH

>
Gj

HGiAGiCGi1[Ni]k2

+
O(log3 N)p

bibj
· kAGjCGj1[Nj]k2kAGiCGi1[Ni]k2 · kH

>
Gj

HGikF

 1

10�T
· [(H(1)

)>H
(1)

]i,j , (24)

where the last step follows from Part 3 of Assumption C.6 that

kAGjCGj1[Nj]k2kAGiCGi1[Ni]k2 · kH
>
Gj

HGikF

 O(1) ·
min{

p
bi,

p
bj}

�T log3 N
· 1>

[Ni]
C>

Gi
A>

Gi
H>

Gi
HGjAGjCGj1[Nj].

Then we have that

k(eH(1))> eH(1) � (H
(1)

)>H
(1)k22  k(eH(1))> eH(1) � (H

(1)
)>H

(1)k2
F

=
nX

i=1

nX

j=1

|[(eH(1))> eH(1)]i,j � [(H
(1)

)>H
(1)

]i,j |2

20

Under review as a conference paper at ICLR 2021

 1

100�2T 2

nX

i=1

nX

j=1

[(H
(1)

)>H
(1)

]2
i,j

=
1

100�2T 2
k(H(1)

)>H
(1)k2

F

 1

100T 2
k(H(1)

)>H
(1)k22,

where the third step follows from Eq. (24), the fifth step follows from Part 2 of Assump-
tion C.6 that k(H(1)

)>H
(1)kF  � · k(H(1)

)>H
(1)k2.

Thus we have proven that

(1� 1

10
)(H

(1)
)>H

(1) � (eH(1))> eH(1) � (1 +
1

10
)(H

(1)
)>H

(1)
.

Using this fact, we can bound ky(1)k eK�1
1

as follows:

ky(1)k eK�1
1

 (4↵2
1 · �>

1 H
(1) · ((eH(1))> eH(1))�1 · (H(1)

)>�1)
1/2

 (8↵2
1 · �>

1 H
(1) · ((H(1)

)>H
(1)

)�1 · (H(1)
)>�1)

1/2

 4 · ↵1k�1k2. (25)
where the first step follows from Eq. (23).

Upper bound ky(2l)k eK�1
1

. Consider some l 2 [T]. Recall the definitions of the two matrices

H
(2l)

, eH(2l) 2 Rd⇥n in Eq. (8) and (9) of Definition C.5:

H
(2l)

:=
h X

u2V1

�(2l)(hu),
X

u2V2

�(2l)(hu), · · · ,
X

u2Vn

�(2l)(hu)
i
,

eH(2l) :=
h X

u2V1

�(2l)(ehu),
X

u2V2

�(2l)(ehu), · · · ,
X

u2Vn

�(2l)(ehu)
i
.

Note that from Eq. (21) we have y(2l) = ↵2l ·(H
(2l)

)>�(2l)(�2l) 2 Rn. Also, from Lemma C.7
we have eK1 ⌫ (2l�3)!!

2⇡(2l�2)!!(2l�1) (
eH(2l))> eH(2l) 2 Rn⇥n. Using these two equations, we have

ky(2l)k2eK�1
1

= (y(2l))> eK�1
1 y(2l)

 2⇡(2l � 2)!!(2l � 1)

(2l � 3)!!
↵2
2l · �>

2lH
(2l) · ((eH(2l))> eH(2l))�1 · (H(2l)

)>�2l. (26)

Next we want to prove that (1 � 1
2)(H

(2l)
)>H

(2l) � (eH(2l))> eH(2l) � (1 + 1
2)(H

(2l)
)>H

(2l).
For any i, j 2 [n], we have

[(H
(2l)

)>H
(2l)

]i,j = (
X

u2Vi

�(2l)(hu)
>) · (

X

v2Vj

�(2l)(hv)) =
X

u2Vi

X

v2Vj

(h
>
u
hv)

2l (27)

[(eH(2l))> eH(2l)]i,j = (
X

u2Vi

�(2l)(ehu)
>) · (

X

v2Vj

�(2l)(ehv)) =
X

u2Vi

X

v2Vj

(eh>
u
ehv)

2l (28)

where the second steps of both equations follow from �(2l)(x)>�(2l)(y) = (x>y)2l.

Note that in Eq. (24) we have proven that

|
X

u2Vi

X

v2Vj

(h
>
u
hv � eh>

u
ehv)| 

1

10�T

X

u2Vi

X

v2Vj

h
>
u
hv.

Thus we have
��
X

u2Vi

X

v2Vj

�
(h

>
u
hv)

2l � (eh>
u
ehv)

2l
��� =

��
X

u2Vi

X

v2Vj

2l�1X

i=0

(h
>
u
hv � eh>

u
ehv)(h

>
u
hv)

i(eh>
u
ehv)

2l�1�i
��

21

Under review as a conference paper at ICLR 2021

 2l · |
X

u2Vi

X

v2Vj

(h
>
u
hv � eh>

u
ehv)| · (max

u,v

{|h>
u
hv|, |eh>

u
ehv|})2l�1

 2l · 1

10�T
· (1 + 1

10�T
)2l · (

X

u2Vi

X

v2Vj

h
>
u
hv)

2l

 1

2�
(
X

u2Vi

X

v2Vj

h
>
u
hv)

2l, (29)

where the first step follows from x2l�y2l =
P2l�1

i=0 (x�y)xiy2l�1�i, the third step follows from
maxu,v{|h

>
u
hv|} 

P
u2Vi

P
v2Vj

h
>
u
hv since hu and hv are non-negative, and the previous

inequality from Eq. (24), the fourth step follows from l  T and (1+ 1
10�T)

2l  (1+ 1
10l)

2l p
e.

Thus we have proven that for any i, j 2 [n], we have
��[(eH(2l))> eH(2l)]i,j � [(H

(2l)
)>H

(2l)
]i,j

�� = |
X

u2Vi

X

v2Vj

(h
>
u
hv)

2l �
X

u2Vi

X

v2Vj

(eh>
u
ehv)

2l|

 1

2�
[(H

(2l)
)>H

(2l)
]i,j . (30)

where the first step follows from Eq. (27) and (28), the second step follows from Eq. (29).

Now similar to how we bound ky(1)k eK�1
1

, we have that

k(eH(2l))> eH(2l) � (H
(2l)

)>H
(2l)k22  k(eH(2l))> eH(2l) � (H

(2l)
)>H

(2l)k2
F

=
nX

i=1

nX

j=1

|[(eH(2l))> eH(2l)]i,j � [(H
(2l)

)>H
(2l)

]i,j |2

 1

4�2

nX

i=1

nX

j=1

[(H
(2l)

)>H
(2l)

]2
i,j

=
1

4�2
k(H(2l)

)>H
(2l)k2

F

 1

4
k(H(2l)

)>H
(2l)k22,

where the third step follows from Eq. (30), the fifth step follows from Part 2 of Assump-
tion C.6 that k(H(2l)

)>H
(2l)kF  � · k(H(2l)

)>H
(2l)k2.

Thus we have proven that

(1� 1

2
)(H

(2l)
)>H

(2l) � (eH(2l))> eH(2l) � (1 +
1

2
)(H

(2l)
)>H

(2l)
.

Using this fact, we can bound ky(2l)k eK�1
1

as follows:

ky(2l)k eK�1
1


⇣2⇡(2l � 2)!!(2l � 1)

(2l � 3)!!
↵2
2l · �>

2lH
(2l) · ((eH(2l))> eH(2l))�1 · (H(2l)

)>�2l

⌘1/2


⇣8⇡(2l � 2)!!(2l � 1)

(2l � 3)!!
↵2
2l · �>

2lH
(2l) · ((eH(2l))> eH(2l))�1 · (H(2l)

)>�2l

⌘1/2

 4
p
⇡(2l � 1) · ↵2lk�2lk2, (31)

where the first step follows from Eq. (26).

Upper bound kyk eK�1 . Plugging Eq. (25) and (31) into Eq. (22), we have

kyk eK�1  4 · ↵1k�1k2 +
TX

l=1

4
p
⇡(2l � 1) · ↵2lk�2lk2.

22

Under review as a conference paper at ICLR 2021

C.4 Bound on trace of eK

Lemma C.9 (Bound on trace of eK, generalization of Theorem 4.3 of Du et al. (2019a)).
Following the notations of Definition C.5 and under the assumptions of Assumption C.6,
we have

tr[eK]  2nN2.

Proof. From Lemma C.7 we can decompose eK 2 Rn⇥n into

eK = eK1 + eK2 ⌫ eK1.

And for each i 2 [n], Lemma C.7 gives the following bound on the diagonal entries of eK1:

eK1(Gi, Gi) =
X

u2Vi

X

v2Vi

hehu,ehvi ·
1

2⇡

�
⇡ � arccos(hehu,ehvi)

�


X

u2Vi

X

v2Vi

1

2
=

N2
i

2
,

where the second step follows from ehu and ehv are unit vectors and that arccos(·) 2 [0,⇡].

Lemma C.7 also gives the following bound on the diagonal entries of eK2:

eK2(Gi, Gi) =
X

u2Vi

X

v2Vi

hehu,ehvi ·
1

2⇡

⇣
⇡ � arccos(hehu,ehvi) +

q
1� hehu,ehvi2

⌘


X

u2Vi

X

v2Vi

1

2⇡
(⇡ + 1)  N2

i
.

where the second step follows from ehu and ehv are unit vectors and that arccos(·) 2 [0,⇡].

Thus we have

tr[eK] = tr[eK1] + tr[eK2]  2
nX

i=1

N2
i
 2nN2.

D Running time

Theorem D.1 (Main running time theorem). Consider a GNN with L levels of BLOCK
operations, and R hidden layers in each level. We compute the kernel matrix using n graphs
G1 = (V1, E1), · · · , Gn = (Vn, En) with |Vi| = Ni. Let bi  Ni be the sketch size of Gi. Let
d 2 N+ be the dimension of the feature vectors.

The total running time to compute the approximate GNTK is
nX

i=1

nX

j=1

Tmat(Ni, d,Nj) +O(L) ·
nX

i=1

nX

j=1

Tmat(Ni, Nj , bi) +O(LR) · (
nX

i=1

Ni)
2.

When assuming Ni  N and bi  b for all i 2 [n], the total running time is

O(n2) · (Tmat(N,N, d) + L · Tmat(N,N, b) + LR ·N2).

Proof. Preprocessing time. When preprocessing, we compute AGiS
>
Gi

for each i 2 [n] in
Tmat(Ni, Ni, bi) time. So in total we need

P
n

i=1 Tmat(Ni, Ni, bi) time.

We also compute the initial matrices e⌃(0,R)(Gi, Gj), eK(0,R)(Gi, Gj) 2 RNi⇥Nj for each i, j 2
[n] with [e⌃(0,R)(Gi, Gj)]u,v = [K(0,R)(Gi, Gj)]u,v = hhu, hvi, 8u 2 Vi, v 2 Vj . Computing

23

Under review as a conference paper at ICLR 2021

each e⌃(0,R)(Gi, Gj) corresponds to multiplying the concatenation of the feature vectors of Gi

with that of Gj , which is multiplying a Ni ⇥ d matrix with a d⇥Nj matrix, and this takes
Tmat(Ni, d,Nj) time. So computing all initial matrices takes

P
n

i=1

P
n

j=1 Tmat(Ni, d,Nj)
time.

Thus the total preprocessing time is
nX

i=1

Tmat(Ni, Ni, bi) +
nX

i=1

nX

j=1

Tmat(Ni, d,Nj).

Block operation: aggregation time. In the l-th level of Block operation, 8i, j 2 [n]
we compute e⌃(l,0)(Gi, Gj), eK(l,0)(Gi, Gj) 2 RNi⇥Nj by computing

e⌃(`,0)(Gi, Gj) := CGi(AGiS
>
Gi
) · SGi · e⌃(`�1,R)(Gi, Gj) · S>

Gj
· (SGjAGj)CGj ,

eK(`,0)(G,H) := CGi(AGiS
>
Gi
) · SGi · eK(`�1,R)(Gi, Gj) · S>

Gj
· (SGjAGj)CGj .

This takes O(Tmat(Ni, Nj , bi) + Tmat(Ni, Nj , bj)) time.

Thus the total time of all aggregation operations of L levels is

O(L) ·
nX

i=1

nX

j=1

Tmat(Ni, Nj , bi).

Block operation: hidden layer time. In the l-th level of Block operation, in the
r-th hidden layer, for each i, j 2 [n] we compute e⌃(l,r)(Gi, Gj), eK(l,r)(Gi, Gj) 2 RNi⇥Nj

by computing each entry [e⌃(l,r)(Gi, Gj)]u,v, [eK(l,r)(Gi, Gj)]u,v 2 R for u 2 Vi, v 2 Vj .
Computing each entry takes O(1) time, which follows trivially from their definitions (see
Section 3.1 and 3.2). Thus the total time of all R hidden layers operations of L levels is

O(LR) · (
nX

i=1

Ni)
2.

ReadOut operation time. Finally we compute kernel matrix K 2 Rn⇥n such that for
i, j 2 [n], K(Gi, Gj) 2 R is computed as

K(Gi, Gj) =
X

u2Vi,v2Vj

[K(L,R)(Gi, Gj)]u,v.

Thus the total time of ReadOut operation is

(
nX

i=1

Ni)
2.

Total time. Thus the total running time to compute the approximate GNTK is
nX

i=1

nX

j=1

Tmat(Ni, d,Nj) +O(L) ·
nX

i=1

nX

j=1

Tmat(Ni, Nj , bi) +O(LR) · (
nX

i=1

Ni)
2.

When assuming Ni  N and bi  b for all i 2 [n], the total running time is

O(n2) · (Tmat(N,N, d) + L · Tmat(N,N, b) + LR ·N2).

For comparison we state the running time of computing GNTK of Du et al. (2019a).

24

Under review as a conference paper at ICLR 2021

Theorem D.2 (Running time of Du et al. (2019a)). Consider a GNN with L levels of
BLOCK operations, and R hidden layers in each level. We compute the kernel matrix using
n graphs G1 = (V1, E1), · · · , Gn = (Vn, En) with |Vi| = Ni. Let d 2 N+ be the dimension of
the feature vectors.

The total running time of Du et al. (2019a) to compute the GNTK is
nX

i=1

nX

j=1

Tmat(Ni, d,Nj) +O(L) · (
nX

i=1

N2
i
)2 +O(LR) · (

nX

i=1

Ni)
2.

When assuming Ni  N and bi  b for all i 2 [n], the total running time is

O(n2) · (Tmat(N,N, d) + L ·N4 + LR ·N2).

We include a proof here for completeness.

Proof. Comparing with Theorem D.1, the only different part of the running time is the
aggregation time of Block operation. For the other three parts, see the proof of Theo-
rem D.1.

Block operation: aggregation time. In the l-th level of Block operation, 8i, j 2 [n]
we compute ⌃(l,0)(Gi, Gj),K(l,0)(Gi, Gj) 2 RNi⇥Nj by computing

vec(⌃(`,0)(Gi, Gj)) := ((CGiAGi)⌦ (CGjAGj)) · vec(⌃(`�1,R)(Gi, Gj)) 2 RNiNj ,

vec(K(`,0)(Gi, Gj)) := ((CGiAGi)⌦ (CGjAGj)) · vec(K(`�1,R)(Gi, Gj)) 2 RNiNj .

Note that the sizes are ((CGiAGi) ⌦ (CGjAGj)) 2 RNiNj⇥NiNj , vec(⌃(`�1,R)(Gi, Gj)) 2
RNiNj . So this takes O(N2

i
N2

j
) time, even to simply compute ((CGiAGi)⌦ (CGjAGj)).

Thus the total time of all aggregation operations of L levels is

O(L) · (
nX

i=1

N2
i
)2.

Total time. Thus the total running time in Du et al. (2019a) to compute the exact GNTK
is

nX

i=1

nX

j=1

Tmat(Ni, d,Nj) +O(L) · (
nX

i=1

N2
i
)2 +O(LR) · (

nX

i=1

Ni)
2.

When assuming Ni  N and bi  b for all i 2 [n], the total running time is

O(n2) · (Tmat(N,N, d) + L ·N4 + LR ·N2).

E Missing proofs for Kronecker product and Sketching

E.1 Proofs of Kronecker product equivalence

Fact E.1 (Equivalence between two matrix products and Kronecker product then ma-
trix-vector multiplication). Given matrices A 2 Rn1⇥d1 , B 2 Rn2⇥d2 , and H 2 Rd1⇥d2 , we
have vec(AHB>) = (A⌦B) · vec(H).

Proof. First note that AHB> 2 Rn1⇥n2 , A⌦B 2 Rn1n2⇥d1d2 , and (A⌦B) ·vec(H) 2 Rn1n2 .

For any i1 2 [n1], i2 2 [n2], define i := i1 + (i2 � 1) · n1, we have

vec(AHB>)i = (AHB>)i1,i2

25

Under review as a conference paper at ICLR 2021

=
X

j12[d1]

X

j22[d2]

Ai1,j1 ·Hj1,j2 ·Bi2,j2 ,

and we also have,
�
(A⌦B) · vec(H)

�
i
=

X

j:=j1+(j2�1)·d1,

j12[d1],j22[d2]

(A⌦B)i,j · vec(H)j

=
X

j12[d1],j22[d2]

Ai1,j1Bi2,j2 ·Hj1,j2 .

Thus we have vec(AHB>) = (A⌦B) · vec(H).

E.2 Proof of sketching bound

We will use the following inequality.
Fact E.2 (Khintchine’s inequality). Let �1,�2, · · · ,�n be i.i.d. sign random variables, and
let z1, z2, · · · , zn 2 R. Then there exist constants C,C 0 > 0 such that 8t 2 R+,

Pr
h���

nX

i=1

�izi
��� � Ctkzk2

i
 e�C

0
t
2

.

Lemma E.3 (Restatement of Lemma 5.4). Let A 2 Rn⇥n be a matrix. Let R 2 Rb1⇥n

and S 2 Rb2⇥n be two independent AMS matrices. Let g, h 2 Rn be two vectors. Then with
probability at least 1� poly(1/n), we have

g>(R>R)A(S>S)h� g>Ah

 O(
log1.5 np

b1
)kgk2kAhk2 +O(

log1.5 np
b2

)kg>Ak2khk2 +O(
log3 np
b1b2

) · kgk2khk2kAkF .

Proof. For i 2 [n], we use Ri 2 Rb1 and Si 2 Rb2 to denote the i-th column of R and S.

Each column Ri of the AMS matrix R has the same distribution as �iRi, where �i is a
random sign. The AMS matrix R has the following properties:

1. hRi, Rii = 1, 8i 2 [n]. (32)

2. Pr
h
hRi, Rji 

p
log(n/�)p

b1
, 8i 6= j 2 [n]

i
� 1� �. (33)

Similarly each column Si of AMS matrix S has the same distribution as �0
i
Si, where �0

i
is a

random sign. For more details see Alon et al. (1999).

We have

g>(R>R)A(S>S)h =
X

i,j,i0,j0

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i. (34)

Thus we can split the summation of Eq. (34) into three parts: 1. Two pairs of indexes are
the same: i = j and i0 = j0; 2. One pair of indexes are the same: i = j and i0 6= j0, or
symmetrically i 6= j and i0 = j0; 3. No pair of indexes are the same: i 6= j and i0 6= j0.

Part 1. Two pairs of indexes are the same. We consider the case where i = j and
i0 = j0. We have

X

i=j,i0=j0

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i =

X

i,i0

gihi0Ai,i0 = g>Ah, (35)

where the first step follows from hRi, Rii = hSi0 , Si0i = 1, 8i, i0 2 [n], see Eq. (32).

Part 2. One pair of indexes are the same. We consider the case where i = j and
i0 6= j0, or the symmetric case where i 6= j and i0 = j0.

26

Under review as a conference paper at ICLR 2021

W.l.o.g. we consider the case that i = j and i0 6= j0. We have
X

i=j,i0 6=j0

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i =

X

i,i0 6=j0

gihj0�
0
i0�

0
j0Ai,i0hSi0 , Sj0i

=
X

j0

�0
j0hj0

X

i0 6=j0

�0
i0(A

>g)i0hSi0 , Sj0i,

where the first step follows from hRi, Rii = 1, 8i 2 [n] (Eq. (32)), the second step follows
from

P
i
giAi,i0 = (A>g)i0 .

Using Khintchine’s inequality (Fact E.2) and Union bound, we have that with probability
at least 1� poly(1/n),

⇣X

j0

�0
j0hj0

X

i0 6=j0

�0
i0(A

>g)i0hSi0 , Sj0i
⌘2

 O(log n)
X

j0

h2
j0

⇣ X

i0 6=j0

�0
i0(A

>g)i0hSi0 , Sj0i
⌘2

 O(log2 n)
X

j0

h2
j0

X

i0 6=j0

(A>g)2
i0hSi0 , Sj0i2

 O((log3 n)/b2)
X

j0

h2
j0

X

i0 6=j0

(A>g)2
i0

 O((log3 n)/b2)khk22kA>gk22,

where the first step follows from applying Khintchine’s inequality with t = O(
p
log n),

the second step again follows from applying Khintchine’s inequality with t = O(
p
log n),

the third step follows from that with probability at least 1 � poly(1/n), hSi, Sji 
O(

p
(log n)/b2) for all i 6= j 2 [n], see Eq. (33).

Plugging this equation into the previous equation, and note that the case that i0 = j0, i 6= j
is symmetric, we have that with probability at least 1� poly(1/n),

X

i=j,i
0 6=j

0

or i
0=j

0
,i 6=j

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i (36)

 O(log1.5 n/
p
b1)kgk2kAhk2 +O(log1.5 n/

p
b2)kg>Ak2khk2. (37)

Part 3. No pair of indexes are the same. We consider the case where i 6= j and
i0 6= j0. We prove it by using Khintchine’s inequality (Fact E.2) four times. We have that
with probability 1� poly(1/n),

⇣ X

i 6=j,i0 6=j0

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i

⌘2

=
⇣X

i

�igi
X

j0

�0
j0hj0

X

i0 6=j0

�0
i0hSi0 , Sj0i

X

j 6=i

�ihRi, RjiAj,i0

⌘2

 O(log n)
X

i

g2
i

⇣X

j0

�0
j0hj0

X

i0 6=j0

�0
i0hSi0 , Sj0i

X

j 6=i

�ihRi, RjiAj,i0

⌘2

 O(log2 n)
X

i

g2
i

X

j0

h2
j0

⇣ X

i0 6=j0

�0
i0hSi0 , Sj0i

X

j 6=i

�ihRi, RjiAj,i0

⌘2

 O(log3 n)
X

i

g2
i

X

j0

h2
j0

X

i0 6=j0

hSi0 , Sj0i2
⇣X

j 6=i

�ihRi, RjiAj,i0

⌘2

 O(log4 n)
X

i

g2
i

X

j0

h2
j0

X

i0 6=j0

hSi0 , Sj0i2
X

j 6=i

hRi, Rji2A2
j,i0

 O((log6 n)/(b1b2))kgk22khk22kAk2
F
,

where the second step follows from Khintchine’s inequality with t = O(
p
n), the third step

follows from Khintchine’s inequality with t = O(
p
n) for each i 2 [n], and combining the n

27

Under review as a conference paper at ICLR 2021

inequalities using Union bound, the fourth step and the fifth step follows from same reason
as the third step, the sixth step follows from that with probability at least 1 � poly(1/n),
hSi0 , Sj0i  O(

p
(log n)/b2) for all i0 6= j0 2 [n], and similarly with probability at least

1 � poly(1/n), hRi, Rji  O(
p
(log n)/b1) for all i 6= j 2 [n], we combine the 2n2 such

bounds all i, j, i0, j0 2 [n] using Union bound.

Thus we have that with probability at least 1� poly(1/n),
X

i 6=j,i0 6=j0

gihj0�i�j�
0
i0�

0
j0hRi, RjiAj,i0hSi0 , Sj0i  O((log3 n)/

p
b1b2) · kgk2khk2kAkF . (38)

Combining all parts together. Adding Eq. (35), (36), (38) together and plugging into
Eq. (34), using Union bound, we have that with probability at least 1� poly(1/n),

g>(R>R)A(S>S)h� g>Ah

 O(
log1.5 np

b1
)kgk2kAhk2 +O(

log1.5 np
b2

)kg>Ak2khk2 +O(
log3 np
b1b2

) · kgk2khk2kAkF .

F Experiment Details

All our experiments are run on an AMD Ryzen 3960X CPU with 128 Gigabytes RAM. We
also disable the parallel computing among pairs of graphs for fair running time comparison.
In calculating the kernel, we follow the formula described in Section 3.1 and 3.2, using
the technique introduced in Section 4.2 and 4.3. Follow Du et al. (2019a), during GNTK
learning, we tune the number of Aggregate operations, the number of fully connected
layers in each Combine operation, and the normalization parameter cu. We also use the
C�SVM as the final classifier, and use grid search from 120 values evenly chosen from⇥
10�2, 104

⇤
to find the best C value.

Note that different choice of hyper-parameters will result in different learning time. Thus,
we use the same optimum parameters reported in Du et al. (2019a) and compare the perfor-
mance in Section 6. Specifically, for social networking datasets COLLAB, IMDBBINARY
and IMDBMULTI, we set the number of Aggregate operations to be 2, the number of
fully connected layers in each Combine operation to be 2, and cu to be 1. And for bioinfor-
matics datasets PTC, NCI1, MUTAG and PROTEINS, we set the number of Aggregate

operations to be 10, the number of fully connected layers in each Combine operation to be
1, and cu to be 1/|N (u)|, where N (u) is the neighborhood of node u.

For our sketching method, we find that current benchmark datasets for graph classification
task are generally small, and matrix decoupling method has already results in a descent
kernel learning time. As shown in Table 2, the average number of nodes in the graphs
are less than 1k. On small graphs, after matrix reordering and decoupling, the matrix
multiplication time won’t dominate the overall calculation time. And for very small graphs,
the overhead memory access time introduced by sketching method is even larger than the
reduced matrix multiplication time. We observe that when the average number of nodes in
the graph reaches 10k or more, the matrix multiplication time will dominate the running
time of whole algorithm. Thus, for future large scale graph classification tasks, according
to Section 4.3 and 5, our sketching method will significantly reduce the running time with
strictly bounded generalization error.

We conduct experiments to validate that the error introduced by matrix sketching is strictly
bounded. Following Lemma 5.4, we validate the error difference between matrix multiplica-
tion with and without the sketching method. Specifically, we randomly generate [n, n] matrix
A, G and H. And matrix multiplication without sketching is calculated by M = GTAH. For
the sketching method, we randomly generate two AMS matrices R and S with size [�n, n]
where � is the sketching ratio. And matrix multiplication with sketching is calculated by
Msk = GTRTRASTSH. The experimental error matrix is calculated by |M � Msk|, and
the theoretical error matrix is calculated by the RHS of Lemma 5.4. We divide both errors

28

Under review as a conference paper at ICLR 2021

Figure 1: Comparison between theoretical and experimental sketching errors (left) and
sketching time (right) under different sketching rates.

by the original matrix M to show the relative error. And we show the final mean error by
taking the average over all entries of the error matrices.

The results are shown in Fig. 1. We take n = 500, and run experiments under different
sketching rates from 0.1 to 0.9. We run each sketching rate for 100 times and calculate the
mean error. We also show the comparison between time of matrix multiplication with and
without the sketching. Experiments show that our sketching error is always lower than the
theoretical bound. When sketching rate gets higher, we lose less information so the error
decreases, and in the meantime running time increases because the dimension of the matrix
is larger. This experiment validates our Lemma 5.4, showing that our matrix sketching
method has a strictly bounded error.

29

	Introduction
	Background
	Our GNTK formulation
	Exact GNTK formulas
	Approximate GNTK formulas

	Our techniques : running time
	Notations and known facts
	Speedup via Kronecker product equivalence
	Speedup via sketching matrices

	Our techniques : error analysis
	Experiments
	Conclusion
	References
	Preliminaries
	GNTK formulas
	GNNs
	Exact GNTK formulas
	Approximate GNTK formulas

	Generalization bound of approximate GNTK
	Notations and assumptions
	Close-form formula of approximate GNTK
	Bound on yK"0365K-1y
	Bound on trace of K"0365K

	Running time
	Missing proofs for Kronecker product and Sketching
	Proofs of Kronecker product equivalence
	Proof of sketching bound

	Experiment Details

