Under review as a conference paper at ICLR 2021

APPENDIX

A PRELIMINARIES

Standard notations. For a positive integer n, we define [n] := {1,2,--- ,n}. For two
integers a < b, we define [a,b] := {a,a+1, -+ ,b}, and (a,b) := {a+1,--- ,b—1}. Similarly
we define [a,b) and (a,b]. For a full rank square matrix A, we use A~! to denote its true
inverse. We define the big O notation such that f(n) = O(g(n)) means there exists ng € N1
and M € R such that f(n) < M - g(n) for all n > ny.

Norms. For a matrix A, we use ||A|| or ||A]|2 to denote its spectral norm. We use ||Al|r to
denote its Frobenius norm. We use A" to denote the transpose of A. For a matrix A and

a vector x, we define ||z||4 := VT Ax.

Functions. We use ¢ to denote the ReLU activation function, i.e. ¢(z) = max{z,0}. For
a function f: R — R, we use f’ to denote the derivative of f.

Fast matrix multiplication. We define the notation 7pyat(n,d, m) to denote the time
of multiplying an n x d matrix with another d x m matrix. Let w denote the exponent
of matrix multiplication, i.e., Tat(n,n,n) = n®. The first result shows w < 3 is Strassen
(1969). The current best w ~ 2.373 due to Williams (2012); Le Gall (2014). The following
fact is well-known in the fast matrix multiplication literature Coppersmith (1982); Strassen
(1991); Biirgisser et al. (1997) : Tmat(a,b,¢) = O(Tmat(a, ¢, b)) = O(Tmat(c,a,b)) for any
positive integers a, b, c.

Kronecker product and vectorization. Given two matrices A € R™*% and B €
R"™2%42 e use ® to denote the Kronecker product, i.e., for C = A ® B € RMm"2xdd2 the
(il + (ig — 1) ‘N1, J1 + (jg — 1) . dl)—th entry of C is Ai1,j1Bi2,j27 Vi, € [Tll],ig € [7?,2],j1 €
[d1], j2 € [da]. For any give matrix H € R%*% we use h = vec(H) € R%19 to denote the
vector such that hj 4 (j,—1).a, = Hj, ju, Vi1 € [d1], jo € [da].

B GNTK FORMULAS

In this section we first present the GNTK formulas for GNNs of Du et al. (2019a), then we
show our approximate version of the GNTK formulas.

B.1 GNNs

A GNN has L AGGREGATE operations, each followed by a COMBINE operation, and each
COMBINE operation has R fully-connected layers. The fully-connected layers have output
dimension m, and use ReLLU as non-linearity. In the end the GNN has a READOUT operation
that corresponds to the pooling operation of normal neural networks.

Let G = (U, Ea? be a graph with |U| = N number of nodes. Each node v € U has a feature
vector h, € R%.

We define the initial vector h\>® = h, € R, Vu € U.

AGGREGATE operation. There are in total L AGGREGATE operations. For any [€ [L],
the AGGREGATE operation aggregates the information from last level as follows:

R R W S
a€N (u)u{u}

Note that the vectors h'"'” € R™ for all [€ [2: L], and the only special case is A e R,
¢y € R is a scaling parameter, which controls weight of different nodes during neighborhood
aggregation. In our experiments we choose ¢, between values {1, T } following Du

1
u)[+1
et al. (2019a).

12

Under review as a conference paper at ICLR 2021

COMBINE operation. The COMBINE operation has R fully-connected layers with ReLU
activation: Vr € [R],

A = (cg/m)t/2 - p(W) L=y e R™.

The parameters W) € R™*™ for all (I,7) € [L] x [R]\{(1,1)}, and the only special case
is WD) ¢ Rmxd, ¢y € R is a scaling parameter, in our experiments we set cg to be 2,
following the initialization scheme used in Du et al. (2019a); He et al. (2015).

READOUT operation. Using the simplest READOUT operation, the final output of the
GNN on graph G is

fgnn(G) = Z h;LJ%) cR™.

uelU

Using the READOUT operation with jumping knowledge as in Xu et al. (2018b), the final
output of the GNN on graph G is

fgnn(G) — Z[hg},}%)’ hg’R), L 7hSLL,R)] c Rmx(L+1)_
uelU

B.2 Exact GNTK FORMULAS

We first present the GNTK formulas of Du et al. (2019a).

We consider a GNN with L. AGGREGATE operations and L COMBINE operations, and each
COMBINE operation has R fully-connected layers. We use h(W,G) € R™ to denote the

function corresponding to this GNN, where W := UZG[L],TE[R]{W(Z’T)} denotes all tunable
parameters of this GNN.

Let G = (U,E) and H = (V,F) be two graphs with |U| = N and |[V| = N’. We use
Ag € RN*N and Ay € RY'*N to denote the adjacency matrix of G and H. We give the
recursive formula to compute the kernel value Kgnik (G, H) € R induced by this GNN, which
is defined as

<afgnn(VV7 G) Ofen(W, H) >] .

Kgntk(Ga H) = E |: lim oW) OW

W~N(0,I) Lm—o0

Recall that the GNN uses scaling factors ¢, for each node u € G. We define Cg € RV*N
to be the diagonal matrix such that (Cg)y, = ¢, for any v € U. Similarly we define

Cy € RN/XN,.

We will use intermediate matrices X" (G, H) € RV*N" and K¢)(G, H) € RV*N for
each £ €[0: L] and r € [0: R].

Initially we define £(OR)(G, H) € RN*N" as follows: Yu € U,v € V,
[Z(O7R)(Ga H)]u,'u = <hu; hv>7

where hy,h, € R? are the input features of u and v. And we we define K% (G, H) €
RVXN" a5 follows: Vu € UveV,

(KOG H) o = (B, By

Next we recursively define X(“")(G, H) and K“")(G, H) for | € [L] and r € [R], where
I denotes the level of AGGREGATE and COMBINE operations, and r denotes the level of
fully-connected layers inside a COMBINE operation. Then we define the final output after
READOUT operation.

13

Under review as a conference paper at ICLR 2021

AGGREGATE operation. The AGGREGATE operation gives the following formula:

[E(Z’O)(Ga H)luw = cucy Z Z [E(Zil’R)(Ga H)las,
a€N (u)U{u} beN (v)U{v}
[K(AU)(G’ H)]u,v = Culy Z Z [K(eil’R)(Ga H)]a,b

a€N (u)U{u} beN (v)U{v}
Note that the above two equations are equivalent to the following two equations:
SE(G H) = CaAg - S H(G H) - ApChy,
K9G, H) = CgAg - K2 (G H) - ApChy.
COMBINE operation. The COMBINE operation has R fully-connected layers with ReL.U
activation ¢(z) = max{0,z}. We use ¢(z) = 1[z > 0] to denote be the derivative of ¢.
For each r € [R], for each u € U and v € V, we define a covariance matrix

) n(r—1) G, Duw n(£r-1) G, H X
[A & (GvH)}uﬂ) = <{Z(€’7‘_1)EH7G))]]“:” {2(57" 1)EH7H))]]U’U> ERQ 2.

Then we recursively define [X(“") (G, H)],., and [K“") (G, H)]..., as follows:
(BENG, H)luw = co - E [6(a)o(b)], (3)

(a;0)~N(0,[ACT(GL H))
Cy - E h(a)p(b , 4
¢ (avb)NN(Ov[A(LT)(GvH)]u,v) |:¢<)¢<)] ()

[K(Z’r)(GvH)}u,v = [K(Z’ril)(Ga H)luw - [2(£’T)(G7H)}u,v + [E(AT) (G, H)]uo-

(G H) o

These intermediate outputs will be used to calculate the final output of the corresponding
GNTK.

READOUT operation. Finally we compute Kgnx (G, H) € R using the intermediate ma-
trices. This step corresponds to the READOUT operation.

If we do not use jumping knowledge,

Kenti (G, H) = Y [KE(G, H)u

uwelUweV

If we use jumping knowledge,

L
Kenti (G, H) = Y > [KE(G H)

ucU,veV [=0

B.3 APPROXIMATE GNTK FORMULAS

We follow the notations of previous section. Again we consider two graphs G = (U, E) and
H = (V,F) with |[U| = N and |V|= N’
Now the goal is to compute an approximate version of the kernel value K (G,H) € R such
that

Kgntk(G7 H) ~ Kgntk(Ga H)

We will use intermediate matrices $(“")(@, H) € RN*N" and K¢")(G, H) € RN*N' for
each £ € [0: L] and r € [0 : R]. In the approximate version we add two random Gaussian
matrices S € RPN and Sy € RY*N' where b < N and ¥ < N’ are two parameters.

Initially, Yu € U,v € V, we define [EOB) (G, H)]y = (hy, hy) and [KOR) (G, H)l,, =
(hy, hy), same as in the exact case.

Next we recursively define %(7)(G, H) and K“")(G, H) for £ € [L] and r € [R].

14

Under review as a conference paper at ICLR 2021

AGGREGATE operation. In the approximate version, we add two sketching matrices
Sq € RN and Sy € RV <N

NG H) = CgAg - (855¢) - SV (G H) - (S5 SH) - AuCl,
NG, H) := CaAc - (555¢) - K"V (G H) - (S5Sk) - AuCh,

where we define Cg € RV XY to be the diagonal matrix such that (Cg),, = ¢, for any u € V.
Similarly we define C'y € RN'*N',

COMBINE operation. The COMBINE operation has R fully-connected layers with ReLU
activation. The recursive definitions of [A“")(G, H)],., € R?*?, [XU")(G, H)],, € R,

[i(z’T)(G,H)]W, € R and [K“")(G, H)]y., € R are the same as in the exact case, except
now we are always working with the tilde version.

READOUT operation. Finally we compute Rgntk(G, H) € R using the intermediate ma-
trices. It is also the same as in the exact case, except now we are always working with the
tilde version.

C GENERALIZATION BOUND OF APPROXIMATE GNTK

In this section, we prove a generalization bound for the approximate version of GNTK. This
generalizes the generalization bound of Du et al. (2019a).

Similar to Du et al. (2019a), we consider a GNN that has one AGGREGATE operation
followed by one COMBINE operation with one fully-connected layer, and without jumping
knowledge. We set the scaling parameters ¢, = (|| EUEN(U yuguy Poll2)"t and ¢y = 2. We use

{(Gi, i)}, to denote the n training data, where G; = (V;, E;) is a graph with |V;| =
nodes, and y; € R is its label.

We use K € R"™ " to denote approximate version of the kernel matrix of the simple GNN,

where f(” = K(G;, G;), as defined in Section 3.2. We assume K is invertible. For a testing
graph G., the predicted label of kernel regression using approximate version of GNTK is

fK(Gtest) = [E(Gtesta Gl)a I?(Gtesta GZ); Ty I?(Gtest» Gn)]—r}—?ily'

Similar to Du et al. (2019a), we use the following standard generalization bound of kernel
regression.

Theorem C.1 (Bartlett & Mendelson (2002)). Given n training data {(G;,y;)}r, drawn
i.i.d. from the underlying distribution D. Consider any loss function £ : R x R — [0, 1] that
is 1-Lipschitz in the first argument such that ¢(y,y) = 0. With probability at least 1 — 0, the
population loss of the GNTK predictor fontic can be upper bounded by

Lo(fon) = B [0(fenuc(@), 9] S (Iyl%s - 0 KD)2/n + /log(1/6) /.

(G,y)~D

Now it remains to bound |[|y||z_, and tr[K K. We generalize the corresponding bounds of Du
et al. (2019a) to the approximate GNTK. We have the following two lemmas:

Lemma C.2 (Informal version of Lemma C.8). For each i € [n], if the labels {y;}7_, satisfy

i — 01 Z uaﬁl + ZQQI Z u3621>2l7 (5)

u€eV ueV

where Ty, = Cu Y e nr gy Mo @1, Q2,04+ o € R, B1, Ba, B, -+, Bor € RY, then we
have

T
lyll z—r < dlaa|-1Bull2 + Y 4va(2L =)]az] - [| B3

=1

15

Under review as a conference paper at ICLR 2021

Lemma C.3 (Informal version of Lemma C.9). If for all graphs G; = (V;, E;) in the training
set, |V;| is upper bounded by N, then tr[K] < O(nN?). Here n is the number of training
samples.

Combining Lemma C.8 and Lemma C.9 with Theorem C.1, we have the following main
generalization theorem:

Theorem C.4 (Main generalization theorem). Following the notations of Definition C.5,
and under the assumptions of Assumption C.6, if we further have the conditions that

T
4-ar)|Billz + D 4V = 1) - agl|Balla = o(n), N =o(v/n),
1=1
then the generalization error of the approximate GNTK can be upper bounded by

LD(fgntk) - (G,ENDV(fgntk(G)vy)] rg O(]./TLC),

for some constant ¢ € (0,1).

Next we show how to prove the two lemmas needed for the main generalization theorem.

C.1 NOTATIONS AND ASSUMPTIONS

We first list all the notations and assumptions we used when proving the main generalization
theorem.

Definition C.5 (Approximate GNTK with n data). Let {(G;,v;)}’ be the training data
and labels, and G; = (V;, E;) with |V;| = N;, and we assume N; = O(N), Vi € [n]. For
each i € [n] and each u € V;, let hy, €]Rff_ be the feature vector for u, and we define
He, = [huys hugy o+ s huy] € RN We also define Ag, € RN*Ni to be the adjacency
matriz of Gy, and define Sg, € R**Ni to be the sketching matriz used for G;.

Let K € R™™ be the approximate GNTK of a GNN that has one AGGREGATE oper-
ation followed by one COMBINE operation with one fully-connected layer (L = 1 and
R = 1) and without jumping knowledge. For each 1 € [L], » € [R], i,j € [n], let
E(l”")(Gi,Gj),K(l”")(Gi,Gj) € RNixN; be defined as of Section 3.2.
The scaling parameters wused by the GNN for G; are cg = 2 and ¢, =
(I[He, S, Sa, Aclsull2) ™t for each u € V;. We use Cq, € RN*Ni to denote the diag-
onal matriz with [Ca,lyu = Cu-
We further define two vectors for each i € [n] and each u € V;:
Eu = [HGiAGiCGi]*,u € Rd, (6)
hy = [Hg,S&,56,46,Ca.)eu € RY. (7)
And let T € Ny be a integer. For each t € N, we define two matrices F(t), H® ¢ RIxn.

Y = [Y 0OF), > 0O M), 3 oO(R,)] e RO, (8)

ueVy ueVa ueV,
H(t) = |: Z @(t)(hu), Z (b(t)(hu% o Z (I)(t)(hu):| c Rdxn’ (9)
ueVy ueVs weV,

where we define ®M) () to be the feature map of the polynomial kernel of degree t such that
(z,y)" = (W) (x), @M (y)) for any x,y € R%.

Assumption C.6 (Assumptions to prove generalization bound). We make the following
assumptions about the input graphs, its feature vectors, and its labels.

1. Labels. For each i € [n], we assume the label y; € R satisfy

T
yi=o1 Y (T, B1)+ Yoo Y (b, Ba)™,
=1

ueV; ueV;

where Qp,Q2,04, - 027 € R} Bla/@27ﬁ4a e a/82T S Rd-

16

Under review as a conference paper at ICLR 2021

2. Feature vectors and graphs. For each t € {1} U {21} |, we assume we have

(t) [

O\ T35 O\ T77(t)
| (H)TH F <7 (H)H 2,

where 1,772,774, ,y2r € R. We also let v = maxcyyuqanyr {n}. Note that
v=1

3. Sketching sizes. We assume the sketching sizes {b;}1'_, satisfy that Vi, j € [n],
|Ac,Ca, 1, ll2ll A, Ca, 1
min{vB, /i7}

~Tlog® N

2 ||HGjHGi||F

<0(1)- 1y Ca, As He, Hay Ac, Ca, 1),

where 1y, € RN, 1N, € RYi are the all one vectors of size N; and N;.

C.2 CLOSE-FORM FORMULA OF APPROXIMATE GNTK

Lemma C.7 (Close-form formula of approximate GNTK). Following the notations of Def-
inition C.5, we can decompose K € R™*™ into

K=K + K, Ky,

where I~(2 € R™*"™ 4s a PSD matriz, and f(l c R»xn, I~(1 satisfies the following:

1~ - 1 (21 — 3)! ~ ~
_ Loyt o goy Ly @3N e T e
Ky =g () HE 2ﬂ;(2l_z)u(2z_1) (HT) -2,

and equivalently for each i,j € [n], f(l(Gi, Gj)eR satisﬁes the following:

K.(G;, Gy) Z Z ws No) wfarccos(@ EU>)),

ueV; veV;

For each i,j € [n], f(g(Gi,G») € R satisfies the following:

Ky(G;,Gj) Z Z) (7r — arccos((hy, ho)) + /1 — (ﬁu,ﬁv)Q).

ucV; veV;

Proof. For i,j € [n], consider the two graphs G; = (V;, E;) and G; = (V;, E;) with [V;| = N
and |V;| = N;, we first compute the approximate GNTK formulas that corresponds to the
simple GNN (with L =1 and R = 1) by following the recursive formula of Section 3.2.

Compute [= 0, r = 1 variables. We first compute the initial variables
sON(@;, G, i), K K© 1)(G G;) € RNi*Ni for any u € V; and v € V;, we have

EODG:, Gluw = (hus ho), [KOD(Gi Gl = (s B, (10)
which follows from Section 3.2.
Compute [= 1, r = 0 variables. We compute (-0 (G;, G;) € RNi*Ni as follows:
ECNGs, Gl = [Ca, A, - (S&,5¢,) - 5OV(Gi, G) - (S4,56,) - Ac,Ca,luw
= [Ca,Ac, - (8&,5¢.) - Hé He, - (85,56,) - Ac,Ca,lu
= (hu, ho), (11)

where the first step follows from Section 3.2, the second step follows from Eq.(10) and the
definition Ha, = [huy; huys -+ huy,] € RPNi in lemma statement, and the third step

follows from the definition of hy,h, € R? in Eq. (7). Note that we have ||y 2 = 1 since
Cg, is a diagonal matrix with [Cg,luu = |[Ha,S¢, Sc, Ac,Ca,lwullz -

17

Under review as a conference paper at ICLR 2021

Then we compute K0 (G;, G;) € RN *N;.
[k(l,o)(Gian)]u,y = [Cq,Ag, - (SG Sa.)- K K01 (G“G) (ngSGj) . AGjCG_,»]u,v
= 200G, Gy) = (hu, ha), (12)

where the first step follows from Section 3.2, the second step follows from K O @Gy, G;) =
2(0’1)(G1,G]‘) (see Eq. (10))

Compute [= 1, r = 1 variables. Next we compute [g(l’l)(G“Gj)]u,v € R**2 for any
u € V; and v € V}, we have

ALY (. _ [2(1’0)(Gi,Gi)]u7u [2(1’0)(Gian)]u,v _ ~1~ <Euvﬁ’u>
ACD (GG () <<)

NG G)low BTG Gl hoha) 1
(13)
where the first step follows from Section 3.2, the second step follows from Eq. (11).
Then we compute i.(l’l)(Gth) € RNi*N;_ For any u € V; and v € V},
E(C Gl = €4 E [#(a) - 4(b)
(a;b)~N(0,[ATD(G:,Gj)]u,v)
1
=5 (7r — arccos({(hy, h))), (14)

where the first step follows from Section 3.2, the second step follows from Eq. (13) and
¢y = 2 (Definition C.5).

And similarly we compute [i(l’l)(Gi, G)luw € RN>Ni For any u € V; and v € V},

(ECD(G, Gl = €4 - _E [¢(a) - ¢(b)]
(@0)~N (0,[AD(G1,G)l o)

! <7r — arccos((hy, hy)) + /1 — (EH,EUP), (15)

271'

where the first step follows from Section 3.2, the second step follows from Eq. (13) and
¢y = 2 (Definition C.5).

Then we compute KD (Gy, G;) € RN*Ni. We decompose K 1(G;, G;) as follows:
KOD(G;,Gy) = K{V(Gy, Gy) + SHD(Gy, Gy), (16)
where we define
(KRG, G = KOG, Gl - B0V (G G, Yu€Vive v, (17)
The above equation follows from the definition of K1 (G, G;) (see Section 3.2).
We then have

(KD (Giy Giuw = (s B - %(W - arccos(@u,%v)))
= (hus) - 2i(7r > (2221).1.) @éz@jm))
= i lNLu,iNL % 2 m <ﬁu’ﬁv>2l
= §0u R 5> G ey)00 09

1=1
where the first step follows from plugging Eq. (1) and (14) into Eq. (17), the second step

21 the third step

follows from the Taylor expansion that arccos(z) = 5 — Y /2, (2(1201!?!! T

18

Under review as a conference paper at ICLR 2021

follows from merging terms, the fourth step follows from (z,y)? = (®(2V(z), Y (y)) since
®(D(.) is the feature map of the polynomial kernel of degree 2 (Definition C.5).

Compute kernel matrix K. Finally we compute K € R, We decompose K as follows:

K:I?l"‘-[?%

where we define IN(l,f(g € R™ ™ such that for any two graphs G; = (V;, E;) and G; =
(VJ"Ej)v

Ki(GiG) = Y KNG, G))uw €R,
ueV;,veV;

Ky(Gi,Gy) = Y [BU(Gi,G)luw €R.
u€eVi,veV;

This equality follows from K (G;, G;) = D uevi ey, [KAD(Gy, Gy)]uw (see Section 3.2) and
Eq. (16). For K, we further have

~ 1 ~ ~ 1 & (20 — 3)!! o e
Kl(Gi,Gj):Z<Zhu,Zhv>+% @ i) Z@U), Y e

ueV; veVj =1 veV;

1~ ~ 1 & (20 — 3)! ~ ~
_ Loy ogo L C(F@YT e
7 +2ﬂ;(2l_2)u(21_1) (H) :
where the firs step follows from Eq. (18), the second step follows from the definition of

H® ¢ R (Eq. (9) in Definition C.5). For K,, we have that Kj is a kernel matrix, so
it is positive semi-definite. Let A > B denotes ' Az < z" Bz for all . Thus we have
K » K;. O
C.3 BOUND ON y' K1y

Lemma C.8 (Bound on y' K 'y, generalization of Theorem 4.2 of Du et al. (2019a)).

Following the notations of Definition C.5 and under the assumptions of Assumption C.6,
we have

T
Iyl < 4-laalllBillz + D 4v/m(2l = 1) - Jaz] || Ball2-

=1

Proof. Decompose ||y||z-.. From Part 1 of Assumption C.6, we have Vi € [n]

yi=o1 Y (hu,B1) ZOQZ > (B, Ba)*

u€eV; ueV;
= a1 Y (h, B) +Za21 > (), @ (By))
uevV; uevV;
=y + Z i, (19)
=1

where the second step follows from ®(! is the feature map of the polynomial kernel of
degree 21, i.e., (z,y)? = (V) (), ®P)(y)) for any z,y € RY, and the third step follows
from defining vectors y1), y(?Y) € R™ for [€ [T] such that Vi € [n],

=01 (Y R, Br) €R, (20)
ueV;

y = an (Y @D (hy), @@ (By)) €R, Vi€ [T], (21)
ueV;

19

Under review as a conference paper at ICLR 2021

And we have

T
s < Il < Iyl + 3 Iy®llz o, (22)
=1

which follows from Lemma C.7 that K - K 1 and thus K1 < K 1 1, the second step follows
from Eq. (19) and triangle inequality.

1)

Upper bound ||y™V||z-1. Recall the definitions of the two matrices H JHM e R in
1

Eq. (8) and (9) of Definition C.5:

F(”;:{ZL,ZEU,-..,ZM, D = [Zthhu ..,Zhu]

ueVy u€eVs ueV, ueVy u€Vs ueVy,

Note that from Eq. (20) we have y(*) = oy - (F(l))—rﬁl € R™. Also, from Lemma C.7 we
have K; = 7(H(1))TH(1) R™*™. Using these two equations, we have

ly % =) TRy
<402 g7EY . (HO)THO) . (HY)T 8, (23)

Next we want to prove that (1 — %)(F(l))Tﬁ(l) < (HOTHD < (1+ %)(ﬁ(l))Tﬁ(l). For
any ¢,j € [n], we have

1 1
(A)THE)y = (3 R) - (Y h) = 1,8 AL HE, - He, A, Ca, i),
u€Vj veEV;
(HOYTHD] ;= (3" hy) - (D hy) =1 CE AL (S, Se)HE, - Ha, (84, 56,)Ac,Ca, 1
u€V; veV;

where 1y, € RYi is the all one vector, and the second steps of the two equations follow
from h, = [Hg, Ag,Ca,)ww and hy = [Hg, S Sa, Ag,Ca,)« (see Definition C.5).

For any 4,j € [n], using Lemma 5.4 we have that with probability 1 — 1/N4,
(1) (1)
[HOYTHO ;= [(H) TH
< O(log'® N)

T Vb
O(log"® N)

NG

O(log® N)
\/bib;

JAE@DY 'Y, (24)

-[|Ac; Ca, 2+ ||HG Ha, A, Cay 1w, |12

N Ac,Co 1w, ll2 - I1HE, Ha A, Ca, 1w 12

NAc,Co; 1w M2l Ac, Co w12 - 1 HE,

1
[
— 10#T
where the last step follows from Part 3 of Assumption C.6 that
14c,Ca, 1 211 Ac: Ca, Lyl - 1 He, He,ll v
min{v/5;, /5;)

<0(1)- -
<o) 'yTlong

15\71] ng Agl ng HGJ‘ AGJ' CGJ' 1 (V]
Then we have that

ZO\ T W\ T
I(HOTHD — (F)TH ||§S||(DTH® — (@) H|;

ZD NTED),, — (@) THEY] P

=1 j=1

20

[

N;]»

Under review as a conference paper at ICLR 2021

S 100,}/2T2 ZZ (1) (1) ’LJ

=1 j=1

Ly T)
(H)TH %

100 el
()12
@ a2,

<

- 100T2
where the third step follows from Eq. (24), the fifth step follows from Part 2 of Assump-
tion C.6 that (A)THM |p <~ - 1E)THY ..
Thus we have proven that
1

T\ THO
H)H

1. — — ~ ~
(=) ETHEY S EOTED < (14 3
Using this fact, we can bound ||y qul as follows:
—(1 ~ ~ 1 =
Iy s < (403 BT HY - ((HO)THO)=L (@Y)T)12
=) W\ T () 1 (1
< (SQ%'BFH() ((H())TH()) 1, (H()>T61)1/2

<4-aBllz. (25)
where the first step follows from Eq. (23).

Upper bound ||y3Y|| Rt Consider some [€ [T]. Recall the definitions of the two matrices
ﬁ(m),fl@l) € R™™ in Eq. (8) and (9) of Definition C.5:

7 . { Z) (7,), Z o (R, Z 2D }

ueVy ueVa ueVy,
e . (21) (21) . @) (3
S [X 8. Y e > e)]
ueVy u€eVy ueV,

Note that from Eq. (21) we have y) = ay (ﬁ(m))T@(Zl)(ﬁ 1) € R™. Also, from Lemma C.7

= %(HQDWH@” € R™*". Using these two equations, we have

ly@ON% = (@) TRy
2m (21 — 2)!1(21 — 1)042
= (21 —3)!! 2

we have K 1

~ ~ (21
QIH(1) ((H(Ql))TH(2l))—1_(H())Tﬁ2l- (26)

Next we want to prove that (1 — 2)(E ") TH® < @EHTHE < (14 L@y TH?.

For any i,j € [n], we have

(@) TH®) = (3 @) (S e @) = Y Y (B R (27)

4+ 1
2

ueV; veV; ueV; veVj
[(H(Ql))TH(Ql) Z (b(ZI) Z (I) (21) Z Z hTh (28)
ueV; veV; ueV; veV;

where the second steps of both equations follow from ®() ()T &) (y) = (2 Ty)?
Note that in Eq. (24) we have proven that

1D D (b = hih)| < 107T > > b

ucV; veV; ueV; veV;
Thus we have
20—1
1> > (g 1) =13 > Z uh o) (B) (e)17
ueV; veV; ueV; veV; i=0

21

Under review as a conference paper at ICLR 2021

<20 30N (B hy — B - (mas{ By o, [oo)2

ueV; veV;
1
<20 — - (1 h h
= 1007 R TINE 107T u;/ U;/
<Ly T)
uEVz veV;

where the firrst step follows from J:Ql;y = Zfl:(] (x—y)xiy?~17% the third step follows from
maxy ,{|hy, hy|} < > ey, Zvevj h,, h, since h, and h, are non-negative, and the previous
inequality from Eq. (24), the fourth step follows from [< T and (1 + ﬁ)m <(1+44)% <
Ve.

Thus we have proven that for any i,j € [n], we have
H(ﬁ(zl))Tﬁ(zz)]) [(H(Ql))TH(Ql) ”| — | Z Z h Tow) Z Z hT 21|
ueV; veV; ueV; veV;
1 —0), 12D
< —|(H H 7. 30
< S ETE), (30)

where the first step follows from Eq. (27) and (28), the second step follows from Eq. (29).

Now similar to how we bound ||y |71, we have that

~ ~ —(20)\ T(21) —(20)\ T=5(20)
[(HEN)THEY — () TH ||§§||(NTHE — (HT)TH %

—(2)\ T (21)
= ZZ| HENYTHE), ;= () TH),

=1 j=1
T T2
< QZZ I
i=1 j=1
_ O\ T7(2D) 12
- w”(H el

720 T77(210)
< EDTED),
where the third step follows from Eq. (30), the fifth step follows from Part 2 of Assump-
tion C.6 that (A)NTH |p <~ - |EYTHE®,.

Thus we have proven that

1, = ., ~ ~ 1, — _
(1- 5)(H(2l))TH(21) < (H(Ql))TH(Ql) <1+ 5)(H(2l))TH(21).

Using this fact, we can bound ||y?)||z 1 as follows:

2m(20 — 2)11(21 — —(21 ~ o (2 1/2
||y(2l)qu1 < ((a)3()” 1) %z .B;H()_((H(Ql))TH(Ql)) 1 (H())T/321>

8m(21 — 2)11(21 — 1) —@) =~ ~ o1 —(21) 1/2
< (T ok B ()T HCO) T ()T)
< 4ym(2l = 1) - agl|Ball2, (31)

where the first step follows from Eq. (26).
Upper bound ||y||z_.. Plugging Eq. (25) and (31) into Eq. (22), we have

T
Iyl <4-aillBullz +) 4va(2l = 1) - azl|Baillo.

=1

22

Under review as a conference paper at ICLR 2021

C.4 BOUND ON TRACE OF K

Lemma C.9 (Bound on trace of K, generalization of Theorem 4.3 of Du et al. (2019a)).
Following the notations of Definition C.5 and under the assumptions of Assumption C.0,
we have

tr[f(} < 2nNZ2.

Proof. From Lemma C.7 we can decompose K € R"™" into
K=K +Ky,* K.
And for each i € [n], Lemma C.7 gives the following bound on the diagonal entries of K:

K1 (G, G;) Z Z hu,h w—arccos((% i~zv>))

ueV; vev;

SZZ%N

ueV;veV;

where the second step follows from hy and h, are unit vectors and that arccos(+) € [0, 7].

Lemma C.7 also gives the following bound on the diagonal entries of Ko

K2(GinGi) = 30 (huh) (w—arccos((hu,h>)+ 1= (husho)?)

ueV; veV;

< ZZ 7r+1 < N2

ueV; veV;
where the second step follows from h,, and h, are unit vectors and that arccos(-) € [0, 7).
Thus we have

tr[K] = tr[Ky] + tr[Kp] <2 N? < 2nN2,
=1

D RUNNING TIME

Theorem D.1 (Main running time theorem). Consider a GNN with L levels of BLOCK
operations, and R hidden layers in each level. We compute the kernel matriz using n graphs
Gy =, E1), - Gy = (Vy, E,) with |V;| = N;. Let b; < N; be the sketch size of G;. Let
d € N be the dimension of the feature vectors.

The total running time to compute the approximate GNTK is

n

ZZTM Ni,d, N;) + O(L ZZTM (Ni, Nj,bi) + O(LR) - (3 Ny)>.

i=1 j=1 i=1 j=1 i=1
When assuming N; < N and b; < b for all i € [n], the total running time is

O(n2) - (Tmat (N, N, d) + L - Toat (N, N, b) + LR - N?).

Proof. Preprocessing time. When preprocessing, we compute AGngi for each i € [n] in
Tmat (N, Ni, b;) time. So in total we need Y .| Tmat(Ni, Ny, b;) time.

We also compute the initial matrices £O-F)(G;, G, i), K KOR)(qy, G, ;) € RN>Ni for each i, j €
[n] with [XOB(G, G)uw = [K(OVR)(GZ,GJ)]%U = (hu, hy), Yu € V;,v € V;. Computing

23

Under review as a conference paper at ICLR 2021

each (OR) (G, G;) corresponds to multiplying the concatenation of the feature vectors of G;
with that of G;, which is multiplying a IV; x d matrix with a d x]\ng matrix, and this takes
Tmat(Ni, d, Nj) time. So computing all initial matrices takes) ., ?:1 Tmat (N;, d, N;)
time.

Thus the total preprocessing time is

n n n

ZTmat(Nia Ni7 bl) + ZZTmat(Nia da Nj)

i=1 =1 j=1
BLock operation aggregation time. In the [-th level of BLOCK operation, Vi, j € [n]
we compute 3 ©LO)(@Gy, Gy), KE9(Gy,G5) € RN+*Ni by computing
240G, G;) = Cg,(A6,8¢,) - Sa, - £7VR(G1,Gy) - 5E, - (Sa, e,)Ca,
K9G, H) = Cq,(Ac,S¢,) - Sa, - KY"R(Gi, Gy) - 8, - (Sa, Ac,)Ca, -
This takes O(Tmat(Ni, Nj, bi) + Tmat (Ni, Nj, b;)) time.

Thus the total time of all aggregation operations of L levels is
n n
L)Y 0> Toar(Ni, Ny, by).
i=1 j=1

BLOCK operation: hidden layer time. In the [-th level of BLOCK operation, in the
r-th hidden layer, for each 4,j € [n] we compute i(”)(Gi,Gj),f((l”")(Gi,Gj) € RNixN;
by computing each entry [i(l”")(Gi,Gj)]u,v,[I?(I’T)(Gi,Gj)]uvy € Rforue Vi, velV
Computing each entry takes O(1) time, which follows trivially from their definitions (see
Section 3.1 and 3.2). Thus the total time of all R hidden layers operations of L levels is

LR)- (3 N)?
i=1
READOUT operation time. Finally we compute kernel matrix K € R™*™ such that for
i, € [n], K(G;,G;) € R is computed as

K(Ginj) = Z [K(LR)(Gian)]uw

ueV;,veV;

Thus the total time of READOUT operation is

Total time. Thus the total running time to compute the approximate GNTK is

ZZTmat N;,d, N;) + O(L ZZTmat (Ni, Nj,bi) + O(LR) - (> N;)%.

=1 j=1 =1 j=1 =1

When assuming N; < N and b; < b for all ¢ € [n], the total running time is

O(n?) - (Tmat (N, N,d) + L - Toat (N, N,b) + LR - N?).

For comparison we state the running time of computing GNTK of Du et al. (2019a).

24

Under review as a conference paper at ICLR 2021

Theorem D.2 (Running time of Du et al. (2019a)). Consider a GNN with L levels of
BLOCK operations, and R hidden layers in each level. We compute the kernel matrix using
n graphs G = (V1,Ev), -+ ,Gp = (Vp, Ey,) with |V;| = N;. Let d € Ny be the dimension of
the feature vectors.

The total running time of Du et al. (2019a) to compute the GNTK is

n

ZZﬁm N;,d, N;j) + O(L ZN2 +O(LR)- (Y Ni)2.

1=1 j=1 =1 =1

When assuming N; < N and b; < b for all i € [n], the total running time is
O(nZ) : (Tmat(NyN,d) +L'N4 +LR~N2).

We include a proof here for completeness.

Proof. Comparing with Theorem D.1, the only different part of the running time is the
aggregation time of BLOCK operation. For the other three parts, see the proof of Theo-
rem D.1.

BLock operation aggregation time. In the I-th level of BLOCK operation, Vi, j € [n]
we compute ©(-0(G;, G;), K49 (G,, G;) € RN*Ni by computing

vee(SE0(Gi, G))) = ((Co,4c;) ® (Co, Ag))) - vee(EUH(Gy, G5)) € RV,
vec(K(va)(Gi, Gj)) = ((Cg,Ag,) ® (chAGj)) ~vec(K(“1»R)(Gi7 G;)) € RN:iN;

Note that the sizes are ((Cg,Ag,) ® (Cg,;Ag,)) € RNNI>XNN; - yec(RE-1LR) (G, Gy)) €
RNiN5 . So this takes O(NZN?) time, even to simply compute ((Ce,Ag,) ® (Ca,Ag,)).-

Thus the total time of all aggregation operations of L levels is
L)- QN2
i=1

Total time. Thus the total running time in Du et al. (2019a) to compute the exact GNTK
is

ZZ mat (Ni, d, Nj) + O(L ZN2 +O(LR)- (Y N2,

i=1 j=1 i=1 i=1

When assuming N; < N and b; < b for all ¢ € [n], the total running time is
O(n?) - (Tmat(N,N,d) + L- N* + LR - N?).

E MISSING PROOFS FOR KRONECKER PRODUCT AND SKETCHING

E.1 PROOFS OF KRONECKER PRODUCT EQUIVALENCE

Fact E.1 (Equivalence between two matrix products and Kronecker product then ma-
trix-vector multiplication). Given matrices A € R"*% B ¢ R"2*92 and H € R4*% e
have vec(AHBT) = (A® B) - vec(H).
Proof. First note that AHBT € Rm*"2 A® B € Rmm2*dd2 and (A® B)-vec(H) € R™"2,
For any i1 € [n1], ia € [na], define i := iy + (i — 1) - ny, we have

vec(AHB'"); = (AHB™)

11,02

25

Under review as a conference paper at ICLR 2021

E E Al1]1' J1,d2 Z2j27

Jj1€[d1] j2€[d2]
and we also have,

((A® B) - vec(H)), = > (A® B);; - vec(H),

J=j1+(j2—1)-d1,
J1€[d1],j2€[d2]

= E Ail,leiz,jz : Hjhjé'
j1€[d1],j2€[dz2]

Thus we have vec(AHBT) = (A® B) - vec(H). O

E.2 PROOF OF SKETCHING BOUND

We will use the following inequality.

Fact E.2 (Khintchine’s inequality). Let 01,09, ,0, be i.i.d. sign random variables, and
let 21,22, -+ , 2z, € R. Then there exist constants C,C" > 0 such that Vt € R4,

n
E 024
i=1

Lemma E.3 (Restatement of Lemma 5.4). Let A € R™" be a matriz. Let R € R"*"
and S € R¥2*™ be two independent AMS matrices. Let g,h € R™ be two vectors. Then with
probability at least 1 — poly(1/n), we have

g (RTR)A(STS)h — g" Ah

|

> C’t||z||2} <e O

log!*3 15, oS n

S0 Bl Al + O

Proof. For i € [n], we use R; € R% and S; € R to denote the i-th column of R and S.

< O(™ gl ARl + O(2 =) - llgllaRll2lAll -

4

Each column R; of the AMS matrix R has the same distribution as o;R;, where o; is a
random sign. The AMS matrix R has the following properties:

1. <R“Rl> =1Vie [n] (32)
log(n/d)
Vi

Similarly each column S; of AMS matrix S has the same distribution as ¢}S;, where o} is a
random sign. For more details see Alon et al. (1999).

We have

2. Pr [(Ri,Rﬁ < Vi e [n]} >1-4. (33)

g (RTR)A(STS) Z gihjioio;ololy (R, Rj)Aj v (Siv, Sj). (34)
1,5,4" .3’

Thus we can split the summation of Eq. (34) into three parts: 1. Two pairs of indexes are
the same: 7 = j and ¢ = j’; 2. One pair of indexes are the same: i = j and i’ # j', or
symmetrically ¢ # j and ¢/ = j'; 3. No pair of indexes are the same: 7 # j and i’ # 7.

Part 1. Two pairs of indexes are the same. We consider the case where i = j and
i/ = j'. We have

Z gihjioiojol 0% (R, Ry) Ajir(Sir, Sjr) Zgzhz/A v =g Ah, (35)
i=j,i'=j" 1,1/
where the first step follows from (R;, R;) = (Sir, Si) = 1,Vi,i" € [n], see Eq. (32).

Part 2. One pair of indexes are the same. We consider the case where i = j and
i’ # j', or the symmetric case where 7 # j and i’ = 5.

26

Under review as a conference paper at ICLR 2021

W.l.o.g. we consider the case that i = j and i’ # j’. We have
Z gihj/UiO'jCT;/O';/<Ri,Rj>Aj7¢/<Si/,Sj/> = Z gihj/O';/O';-/Ai,i/<Si/,Sj/)
i=g,i' #5’ i,i'#£5"
= Z(T;/hj/ Z 02/(AT9)1'/ <S¢/,Sj/>,
7 A5
where the first step follows from (R;, R;) = 1,Vi € [n] (Eq. (32)), the second step follows
from Zi giAi,i’ = (ATg>i/.

Using Khintchine’s inequality (Fact E.2) and Union bound, we have that with probability
at least 1 — poly(1/n),

(ZO’ ‘R Z ol (AT g)i(Sy, Sy >) < O(logn) ZhQ (Z ol (ATg)i/<S¢/,ij>)2

i'#j’ i'#£j’
O(log*n Zh2 Z)7 (Sir, Sjr)?
J’ i'#£5
O((log® n)/ba) Y h% > " (ATg)?
J’ A5

< O((log” n) /ba) || LII3[1AT 9113,

where the first step follows from applying Khintchine’s inequality with ¢ = O(y/logn)
the second step again follows from applying Khintchine’s inequality with ¢ = O(y/logn)
the third step follows from that with probability at least 1 — poly(1/n), (S;,S;) <

O(y/(logn)/bs) for all i # j € [n], see Eq. (33).

Plugging this equation into the previous equation, and note that the case that i’ = j',i # j
is symmetric, we have that with probability at least 1 — poly(1/n),

Z glh /0’10]0 10 /<R1,R > jyi/<Si/,Sj/) (36)
i=j.i'#5’
or i'=j’ i#j
< O(log"® n//b1)gllll ARz + O(log™® n/\/ba)llg " Allz]|Rll2. (37)

Part 3. No pair of indexes are the same. We consider the case where i # j and
i’ # j’. We prove it by using Khintchine’s inequality (Fact E.2) four times. We have that
with probability 1 — poly(1/n),

2
Z githO'iO'jO';/U;-/<Ri,Rj>Aj,i/<Si/,Sjl>>

i, 5
(ngizalh ZU,S“S Zm R;,R;j) JZ/>
i#g J#i
O(logn) ZQZ(ZU,h ZU/SZ,S ZUZ R;,R;)A)
i'#g! J#i
O(log’ n Zgl >on (> i8S, 8i1) > oilRi, R; >Aj,l-/)2
3’ e J#i
log n Zgl Zh2 Z SzuSj'>2(zai<Ri7Rj>Aj7i’)2
i A i
O(log* n Zgz D nE Y (8w S (Ri, Ry)*AT,
J Y j#i

< O((log’ n)/(blbz))Hg\lzllh\lzllz‘lllfm

where the second step follows from Khintchine’s inequality with ¢ = O(y/n), the third step
follows from Khintchine’s inequality with ¢ = O(y/n) for each i € [n], and combining the n

27

Under review as a conference paper at ICLR 2021

inequalities using Union bound, the fourth step and the fifth step follows from same reason
as the third step, the sixth step follows from that with probability at least 1 — poly(1/n),

(Sir,Sj) < O(y/(logn)/by) for all i’ # j' € [n], and similarly with probability at least

1 — poly(1/n), (Ri, R;) < O(y/(logn)/b1) for all i # j € [n], we combine the 2n? such
bounds all 4, 5,4, j' € [n] using Union bound.

Thus we have that with probability at least 1 — poly(1/n),

Z gihji0i0;0},0% (Riy Rj)Aj i (Sir, Sjr) < O((log® n)//biba) - [lglla||B]l2l|All 7. (38)
i34, #5

Combining all parts together. Adding Eq. (35), (36), (38) together and plugging into
Eq. (34), using Union bound, we have that with probability at least 1 — poly(1/n),
g (RTR)A(STS)h —g" Ah

logl'5 n

Vb1

log3 n

Vbiby

1og1'5 n

Vbs

< O(Mgll2llAhll2 + O(Mg " All2[[All2 + O() - llgllzliAll2l|All -

F EXPERIMENT DETAILS

All our experiments are run on an AMD Ryzen 3960X CPU with 128 Gigabytes RAM. We
also disable the parallel computing among pairs of graphs for fair running time comparison.
In calculating the kernel, we follow the formula described in Section 3.1 and 3.2, using
the technique introduced in Section 4.2 and 4.3. Follow Du et al. (2019a), during GNTK
learning, we tune the number of AGGREGATE operations, the number of fully connected
layers in each COMBINE operation, and the normalization parameter ¢,. We also use the
C—SVM as the final classifier, and use grid search from 120 values evenly chosen from
[10_27 104] to find the best C value.

Note that different choice of hyper-parameters will result in different learning time. Thus,
we use the same optimum parameters reported in Du et al. (2019a) and compare the perfor-
mance in Section 6. Specifically, for social networking datasets COLLAB, IMDBBINARY
and IMDBMULTI, we set the number of AGGREGATE operations to be 2, the number of
fully connected layers in each COMBINE operation to be 2, and ¢, to be 1. And for bioinfor-
matics datasets PTC, NCI1, MUTAG and PROTEINS, we set the number of AGGREGATE
operations to be 10, the number of fully connected layers in each COMBINE operation to be
1, and ¢, to be 1/|JN(u)|, where N (u) is the neighborhood of node w.

For our sketching method, we find that current benchmark datasets for graph classification
task are generally small, and matrix decoupling method has already results in a descent
kernel learning time. As shown in Table 2, the average number of nodes in the graphs
are less than 1k. On small graphs, after matrix reordering and decoupling, the matrix
multiplication time won’t dominate the overall calculation time. And for very small graphs,
the overhead memory access time introduced by sketching method is even larger than the
reduced matrix multiplication time. We observe that when the average number of nodes in
the graph reaches 10k or more, the matrix multiplication time will dominate the running
time of whole algorithm. Thus, for future large scale graph classification tasks, according
to Section 4.3 and 5, our sketching method will significantly reduce the running time with
strictly bounded generalization error.

We conduct experiments to validate that the error introduced by matrix sketching is strictly
bounded. Following Lemma 5.4, we validate the error difference between matrix multiplica-
tion with and without the sketching method. Specifically, we randomly generate [n, n] matrix
A, G and H. And matrix multiplication without sketching is calculated by M = GT AH. For
the sketching method, we randomly generate two AMS matrices R and S with size [yn,n]
where ~ is the sketching ratio. And matrix multiplication with sketching is calculated by
Mg, = GTRTRASTSH. The experimental error matrix is calculated by |M — Mg/, and
the theoretical error matrix is calculated by the RHS of Lemma 5.4. We divide both errors

28

Under review as a conference paper at ICLR 2021

1.0
0354 \ —— sketching error —— sketching time / original time
—— sketching error in theory
0.8
0.30
\
\

- N\ o
o \ £]
£ 0.25 \ = 06
(7] \\ [}
g h £
2 <
= J T 0.4
v 0.20 go

0.15 A 0.2 1

0.10 A

T T T T T 0.0 T T T T T
0.1 0.2 0.3 0.4 0.5 0.1 0.2 0.3 0.4 0.5
sketching rate sketching rate

Figure 1: Comparison between theoretical and experimental sketching errors (left) and
sketching time (right) under different sketching rates.

by the original matrix M to show the relative error. And we show the final mean error by
taking the average over all entries of the error matrices.

The results are shown in Fig. 1. We take n = 500, and run experiments under different
sketching rates from 0.1 to 0.9. We run each sketching rate for 100 times and calculate the
mean error. We also show the comparison between time of matrix multiplication with and
without the sketching. Experiments show that our sketching error is always lower than the
theoretical bound. When sketching rate gets higher, we lose less information so the error
decreases, and in the meantime running time increases because the dimension of the matrix
is larger. This experiment validates our Lemma 5.4, showing that our matrix sketching
method has a strictly bounded error.

29

	Introduction
	Background
	Our GNTK formulation
	Exact GNTK formulas
	Approximate GNTK formulas

	Our techniques : running time
	Notations and known facts
	Speedup via Kronecker product equivalence
	Speedup via sketching matrices

	Our techniques : error analysis
	Experiments
	Conclusion
	References
	Preliminaries
	GNTK formulas
	GNNs
	Exact GNTK formulas
	Approximate GNTK formulas

	Generalization bound of approximate GNTK
	Notations and assumptions
	Close-form formula of approximate GNTK
	Bound on yK"0365K-1y
	Bound on trace of K"0365K

	Running time
	Missing proofs for Kronecker product and Sketching
	Proofs of Kronecker product equivalence
	Proof of sketching bound

	Experiment Details

