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Abstract

In this paper, we examine the convergence rate of a wide range of regularized1

methods for learning in games. To that end, we propose a unified algorithmic tem-2

plate that we call “follow the generalized leader” (FTGL), and which includes as3

special cases the canonical “follow the regularized leader” algorithm, its optimistic4

variants, extra-gradient schemes, and many others. The proposed framework is5

also sufficiently flexible to account for several different feedback models – from6

full information to bandit feedback. In this general setting, we show that FTGL7

algorithms converge locally to strict Nash equilibria at a rate which does not depend8

on the level of uncertainty faced by the players, but only on the geometry of the9

regularizer near the equilibrium. In particular, we show that algorithms based on10

entropic regularization – like the exponential weights algorithm – enjoy a linear11

convergence rate, while Euclidean projection methods converge to equilibrium in a12

finite number of iterations, even with bandit feedback.13

1 Introduction14

In the presence of uncertainty, the players of a game may not have full knowledge of its structure, “or15

the ability and inclination to go through any complex reasoning process to calculate an equilibrium.16

But the participants are still supposed to adapt by accumulating empirical information on the relative17

advantages of the various pure strategies at their disposal”. This aphorism – originally due to Nash18

[36, p. 21] – constitutes the driving principle of game-theoretic learning, and highlights one of the19

field’s most central questions: Does learning with empirical observations lead to a Nash equilibrium?20

And, if so, at what rate?21

These questions have been at the forefront of game-theoretic research ever since the early days22

of the field, and they have recently received renewed attention via their connection to multi-agent23

reinforcement learning [45], generative adversarial networks [18], auctions [46], and many other24

applications where online decision-making plays a major role. Still, any attempt to provide a positive25

answer to these questions must wrestle with a major roadblock: the well-known impossibility result26

of Hart and Mas-Colell [20] shows that there are no uncoupled dynamics that converge to Nash27

equilibrium in all games, thus shattering any hope of obtaining a universal convergence result.28

In view of the above, contemporary research on game-theoretic learning has focused on relaxing29

the feedback requirements of the players’ learning processes, and understanding the stability – and30

instability – properties of different kinds of equilibria under popular learning algorithms. One31

property that stands out in this regard is the so-called “folk theorem” of evolutionary game theory32

[21], which can be stated as follows: Under the replicator dynamics – the continuous-time limit of33

the multiplicative / exponential weights (EW) algorithm [2, 31, 47] – a Nash equilibrium is stable34

and attracting if and only if it is strict (i.e., if and only if each player has a unique best response).35
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The replicator dynamics are the most widely studied model for evolution in population games, so36

the above equivalence essentially delineates what is and what isn’t achievable in an evolutionary37

setting. In the context of online learning (our paper’s main focus), a similar equivalence was obtained38

only recently [11, 15, 32], but it extends to the entire family of “follow the regularized leader”39

(FTRL) dynamics [43, 44], in both continuous [11, 32] and discrete time [15]. In particular, [15]40

studied the convergence of discrete-time FTRL models in the presence of uncertainty, and proved41

a high-probability, stochastic version of this equivalence that holds for several different types of42

feedback (full information, bandit, etc.). Thus, coupled with the prominence of FTRL in online and43

game-theoretic learning, strict Nash equilibria emerge as the only stable limit points of regularized44

learning under uncertainty.45

Our contributions. One important limitation of the above results is that they are qualitative in46

nature. Indeed, even though asymptotic stability guarantees that a learning process converges locally47

to a strict equilibrium, it provides no information about the speed of this convergence. In particular,48

especially for discrete-time models of regularized learning, asymptotic stability does not provide any49

guidance on how to tune the algorithm’s hyperparameters (learning rate, mixing, etc.), and/or what to50

expect in terms of the number of iterations required to reach a neighborhood of a Nash equilibrium.51

Our paper aims to provide quantitative answers to these questions for a wide array of regularized52

learning methods in the presence of uncertainty and limited information. To do so, we first introduce a53

flexible algorithmic framework – dubbed “follow the generalized leader” (FTGL) – that incorporates54

a broad spectrum of action choice mechanisms and feedback models. In more detail (and in analogy55

to FTRL), the FTGL template maintains a cumulative estimate for the payoff of each action available56

to the learner, and then selects a mixed strategy via a suitable “regularized” choice map. Specifically:57

1. In terms of regularization, the FTGL template includes as special cases the standard logit choice58

and Euclidean projection methods (as well as all other standard regularizers used in practice).59

2. In terms of the information used to update the “aggregate score” of each pure strategy, FTGL60

includes “vanilla” FTRL, its optimistic variants [10, 40–42], extra-gradient and mirror-prox61

methods [25, 27, 37], with either full, oracle-based, or bandit feedback.62

In this general context, our main result may be summarized as follows. First, we introduce a “rate63

function” q that depends only on the regularizer defining the learning process, and which captures64

the sensitivity of the induced choice map to external stimuli: for example, q(G) = exp(G) for65

entropic / logit choice models, whereas q(G) = [G]+ for methods run with Euclidean projections. We66

then show that, with probability at least 1 − X, the algorithm’s local rate of convergence to a strict67

equilibrium G∗ is of the form ‖-= − G∗‖ ≤ q(3 − 2
∑=
B=1 WB), where W= is the method’s learning rate68

and 2, 3 are constants with 2 > 0.69

This result shows that the convergence speed of FTGL methods depends only on the choice of70

regularizer and learning rate: for example, EW methods run with a constant step size converge to an71

equilibrium at an exponential rate, whereas Euclidean regularization attains convergence in a finite72

number of iterations. From a regret-theoretic point of view, this is somewhat surprising because73

the regret guarantees of entropic FTRL (the EW algorithm) are far superior to those of FTRL with74

Euclidean regularization [5, 43].75

Equally surprising is the fact that the type of feedback employed does not affect the method’s rate of76

convergence: ceteris paribus, an FTGL method attains the same rate of convergence to strict Nash77

equilibria, whether run with full, partial, or bandit / payoff-based feedback. This comes into stark78

contrast with the corresponding rates of regret minimization, which depend crucially on the type of79

feedback received [6, 29]; in a certain, precise sense, this robustness in the face of uncertainty shows80

that regret minimization and convergence to Nash equilibrium are fundamdentally different questions.81

Related work. The convergence speed of methods based on the FTRL template – “vanilla”, opti-82

mistic, or otherwise – have been studied extensively in the context of monotone games and variational83

inequalities; for a (highly incomplete) list of recent references, see [9, 10, 16, 17, 22, 24, 30, 33–35]84

and references therein. In this branch of the literature, there are two distinct threads: results con-85

cerning the convergence of the “time-average” of the process [16, 25, 35, 37], and those focusing86

on the algorithm’s “last-iterate” [9, 10, 17, 22, 24, 30]. In the latter case (which is the one closest to87

our setting), the fastest achievable speed of convergence is exponential when the method is run with88

a finetuned constant step-size, perfect payoff gradient observations, and the operator defining the89
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problem is strongly monotone and Lipschitz smooth. When run with stochastic gradients, the corre-90

sponding min-max optimal rate is O(1/)) under the same assumptions (zeroth-order rates are usually91

much worse). The apparent gulf between the rates of convergence obtained for monotone games and92

those obtained herein have to do with two crucial factors: first, we are studying finite games, which93

are typically not monotone; second, we are examining the algorithm’s rate of convergence to strict94

equilibria, which are corner points of the problem’s domain. This means that the geometry of the95

problem around a strict equilibrium is fundamentally sharper than the geometry around a solution of96

a generic monotone variational inequality, a fact which in turn explains the qualitatively different97

nature of the rates we obtain.98

In the context of finite games, there have been several works examining the speed of convergence to99

the game’s set of coarse correlated equilibria (CCE) by leveraging the algorithm’s regret minimization100

properties, cf. [3, 4, 12, 13, 38, 46] and references therein. However, in addition to examining the101

algorithm’s empirical average – as opposed to the induced day-to-day sequence of play – these results102

focus almost exclusively on CCE, which means that it is not possible to draw any conclusions about103

convergence to the game’s Nash set – qualitatively or quantitatively. To the best of our knowledge,104

the closest work to our own in the literature is the paper of Cohen et al. [8] who showed that the105

EXP3 algorithm with explicit exploration converges at a sub-geometric rate in potential games; our106

analysis allows for a wider range of learning rates, so we are able to obtain faster convergence rates107

than Cohen et al. [8]. We are not aware of any other comparable results in the literature.108

2 Preliminaries109

Finite games. Throughout this work we consider #-players finite games in normal form. Formally,110

each player, indexed by 8 ∈ N = {1, . . . , #}, has a finite set of pure strategies U8 ∈ A8 = {1, . . . , �8},111

and a payoff function D8 : A→ ℝ, where A B ∏
8 A8 is the space of all pure strategy profiles. For112

concision, we will denote such a game as a tuple Γ = Γ(N ,A, D).113

During play, players can also play mixed strategies, i.e., probability distributions G8 ∈ X8 B Δ(A8)114

over their pure strategies. In this case, we will write G8U8 for the probability that player 8 ∈ N selects115

U8 ∈ A8 under G8 , G = (G1, . . . , G# ) for the players’ mixed strategy profile, and X B ∏
8 X8 for the116

set thereof. Finally, when focusing on the mixed strategy of a particular player 8 ∈ N , we will use the117

shorthand (G8; G−8) B (G1, . . . , G8 , . . . , G# ) – and, similarly, (U8;U−8) for pure strategies.118

Now, the expected payoff of player 8 in a mixed strategy profile G ∈ X is given by119

D8 (G) ≡ D8 (G8; G−8) =
∑
U1∈A1

· · ·
∑

U# ∈A#

D8 (U1, . . . , U# ) · G1,U1 · · · G# ,U#
(1)

where D8 (U1, . . . , U# ) is the payoff of player 8 in the action profile U = (U1, . . . , U# ) ∈ A. For120

posterity, we will also write E8U8 (G) = D8 (U8; G−8) for the payoff that player 8 would have gotten by121

playing U8 ∈ A8 against the mixed strategy profile G−8 of all other players. In this way, the mixed122

payoff vector of the 8-th player can be seen as a vector field E8 : X → Y8 = ℝA8 which can be written123

in components as124

E8 (G) = (E8U8 (G))U8 ∈A8
. (2)

Again, we will write E(G) = (E1 (G), . . . , E# (G)) for the ensemble of payoff vectors of all players125

and Y =
∏
8 Y8 for the space of payoff vectors respectively. Finally, in a slight abuse of notation,126

we will identify U8 with the mixed strategy that assigns all probability to U8 , and we will write127

E8 (U) = (D8 (U8;U−8))U8 ∈A8
. for the corresponding pure payoff vector.128

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash129

equilibrium i.e., a (possibly) mixed strategy profile G∗ ∈ X that discourages unilateral deviations;130

formally, G∗ ∈ X is said to be a Nash equilibrium of Γ if131

D8 (G∗) ≥ D8 (G8; G∗−8) for all G8 ∈ X8 and all 8 ∈ N . (NE)

The set of pure strategies supported at the equilibrium component G∗
8
∈ X8 of each player will132

be denoted by supp(G∗
8
) = {U8 ∈ A8 : G∗

8U8
> 0}. In turn, the size of the support of G∗ leads to133

the following dichotomy: G∗ is called pure if supp(G∗
8
) ≡ ∏

8∈# supp(G∗
8
) is a singleton and mixed134

otherwise.135
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Finally, we will also say that a Nash equilibrium G∗ is strict if (NE) holds as a strict inequality136

whenever G8 ≠ G∗8 ; obviously, strict equilibria are also pure, but the converse need not hold. Strict137

Nash equilibria play a key role in game theory because any unilateral deviation incurs a strict loss138

to the deviating player; put differently, if G∗ is strict, every player has a unique best response. In139

addition, they are the only equilibria that remain invariant under small generic perturbations of the140

game [14]; these robustness properties of strict equilibria will play a key role in the sequel.141

3 Regularized learning142

Throughout our paper, we will focus on a wide family of learning schemes that unfold as follows:143

At each stage = = 1, 2, . . . , every player maintains a “score vector” .8,= ∈ Y8 whose components144

indicate the player’s propensity to play a given pure strategy. More formally, this is captured by a145

player-specific “regularized choice” map &8 : Y8 → X8 which outputs the player’s mixed strategy146

-8,= = &8 (.8,=) as a function of .8,= (see below for a detailed definition). Then, after selecting their147

actions and collecting their rewards, players also receive – or otherwise construct – an estimate +8,=148

of their mixed payoff vectors, which is used to increment their score variables and continue playing.149

Formally, this learning process, which we call “follow the generalized leader” (FTGL), can be150

described via the round-by-round recursive rule151

-8,= = &8 (.8,=)
.8,=+1 = .8,= + W=+8,=

(FTGL)

where W= > 0 is a “learning rate” parameter such that
∑
= W= = ∞. The terminology FTGL alludes152

to the widely known “follow the regularized leader” algorithm, which is, historically speaking, the153

parent-scheme of FTGL. The link to regularization is provided by the method’s choice map, which154

we detail below; the assumptions for the signal sequence +8,= are provided right after.155

3.1. The choice map. The guiding principle behind the definition of the players’ choice maps156

&8 : Y8 → X8 , 8 ∈ N , as follows: Because the players’ score variables .8,= are assumed to represent157

an estimate of each strategy’s cumulative payoff over time, &8 is defined as a “regularized” version158

of the best-response correspondence H8 ↦→ arg maxG8 ∈X8
〈H8 , G8〉.1 On that account, we will consider159

regularized best responses of the general form160

&8 (H8) = arg max
G8 ∈X8

{〈H8 , G8〉 − ℎ8 (G8)} (3)

where ℎ8 : X8 → ℝ denotes the 8-th player’s regularization function.161

For concreteness, we will focus on a class of decomposable regularizers of the form ℎ8 (G8) =162 ∑
U8 ∈A8

\8 (G8) where the so-called “kernel function” \8 : [0, 1] → ℝ is assumed continuous on163

[0, 1], twice differentiable on (0, 1], and strongly convex, i.e., inf (0,1] \ ′′8 > 0. Of course, different164

regularizers give rise to different instances of (FTGL); two of the most widely used and cited examples165

are as follows:166

Example 3.1 (Entropic regularization and multiplicative/exponential weights). Perhaps the most167

common representative of regularization functions is given by the entropic kernel \ (G) = G log G168

i.e., ℎ(G8) =
∑
U8 ∈A8

G8U8 log G8U8 . This choice of regularizer is well-known to provide the logit169

choice map Λ8 (H8) = (exp(H8U8 ))U8 ∈A8

/ ∑
U8 ∈A8

exp(H8U8 ). The resulting algorithm is known in the170

literature as the multiplicative/exponential weights algorithm [1, 2, 31, 43, 47].171

Example 3.2 (Euclidean projection). Another popular regularizer is the quadratic penalty ℎ(G) =172 ∑
0 G0

2/2, which yields the payoff projection map Π(H) = arg minG∈Δ‖H − G‖2, cf. [28, 48].173

Remark 3.1. Examples 3.1 and 3.2 are archetypes of a fundamental dichotomy between regularization174

functions: in the former case, we have \ ′(0) = −∞, so ℎ becomes steep at the boundary of the175

player’s strategy space; in the later case, \ is differentiable at 0, so ℎ is non-steep. We will see that176

this steep/non-steep dichotomy has a crucial impact on the method’s rate of convergence.177

1In this context, regularization can be seen as a means to reinforce exploration so as to avoid committing prematurely to a
given strategy.
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3.2. The feedback model. As we mentioned in the beginning of the section, the “payoff signal”178

+= contains information about the structure of the algorithm as well as the setting under consideration.179

Thus to account for as broad a range of algorithms as possible, we will assume that the players’ signal180

sequence is of the general form181

+= = E(-=) + /= (4)

for some abstract error process /= = (/8,=)8∈N . Tp be clear though, we should stress that we do not182

assume that += is directly correlated to – or obtained by – the chosen mixed strategy -=; this will be183

made clear in the range of models we present below.184

To distinguish between random (zero-mean) and systematic (non-zero-mean) errors, we will further185

decompose /= as /= = *= + 1=, where186

1= = �[/= |F=] and �[*= |F=] = 0 (5)

with F= denoting the history of -= up to stage = (inclusive). Notice that, since the feedback signal187

is generated only after the player chooses a strategy, += is not F=-measurable in general. On this188

account, we will make the following blanket assumptions for the input signal sequence +=:189

1. Vanishing bias: 1= converges uniformly to 0 as =→∞. (A1)

2. Bounded variance: �[‖*=‖@∗ |F=] ≤ f@= for some @ > 2. (A2)

In the above f= is assumed to be a deterministic, stage-specific, and possibly increasing bound on190

the variance of the noise component *=; our precise assumptions for its growth (relative to 1= or191

otherwise) will be detailed later in this section.192

Specific models. So far, the formulation of (FTGL) has been kept intentionally abstract and devoid193

of any modeling assumptions for how the players’ payoff signals are generated or estimated. To194

illustrate the width and breadth of (FTGL), we present of series of specific models below, including195

the popular FTRL and optimistic FTRL methods:196

Model 1 (FTRL with oracle-based feedback). Assume that each player chooses an action based on a197

given mixed strategy, and once every player has chosen an action, an oracle reveals to each player198

their corresponding pure payoff vector. Formally, at each round = = 1, 2, . . . , each player chooses a199

pure strategy U8,= ∈ A8 based on a mixed strategy -8,= ∈ X8 and subsequently observes the payoff200

vector201

+8,= = E8 (U=) = (D8 (U8;U−8,=))U8 ∈A8
. (6)

Thus, in this case, (FTGL) boils down to the standard “follow the regularized leader” (FTRL)202

algorithm of [43, 44]. As for our basic feedback assumptions, we readily see that 18,= = 0 and203

*8,= = E8 (U=) − E8 (-=); hence:204

• (A1) is trivially satisfied since 18,= = 0.205

• (A2) is again satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so *= has206

uniformly bounded moments for all @ ∈ [1,∞]. §207

Model 2 (FTRL with bandit feedback). If the players only observe their realized rewards, they208

have to construct a model for += based on incomplete information. This is the standard setting for209

multi-armed bandits [5, 6, 29], so it is often referred to as the “bandit feedback” model. In this case,210

the players’ action selection process is as in Model 1 above, but the feedback signal sequence += is211

now reconstructed by means of the importance-weighted estimator212

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to213

-8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter214

Y= → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if215

a strategy has zero probability to be chosen under -=, it will still be sampled with positive probability216

thanks to the mixing factor Y=.217

The importance-weighted estimator (IWE) estimator may be seen as a special case of the model218

(4) with *8,= = +8,= − E8 ( -̂=) and 18,= = E8 ( -̂=) − E8 (-=). Both assumptions (A1),(A2) are again219

satisfied; indeed:220
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Feedback FTRL OptFTRL EG / MP

Full information 1= = 0
f= = 0

‖1= ‖∗ = O (W=)
f= = 0

‖1= ‖∗ = O (W=)
f= = 0

Oracle-based 1= = 0
f= = O (1)

‖1= ‖∗ = O (W=)
f= = O (1)

‖1= ‖∗ = O (W=)
f= = O (1)

Bandit
(payoff-based)

‖1= ‖∗ = O (Y=)
f= = Θ(1/Y=)

‖1= ‖∗ = O (Y=)
f= = Θ(1/Y=)

‖1= ‖∗ = O (Y=)
f= = Θ(1/Y=)

Table 1: Recasting different online learning algorithms within the general template of (FTGL).

• For (A1): A standard calculation performed in Appendix D reveals that ‖18,=‖∗ = $ (Y=). Thus221

our assumption is satisfied since Y= → 0.222

• For (A2): Again a standard calculation presented in Appendix D reveals that ‖+8,= − E8 ( -̂=)‖∗ =223

$ (1/Y=) and thus the noise has bounded moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].224

Model 3 (OptFTRL with oracle-based feedback). Following Rakhlin and Sridharan [42], the so-225

called “optimistic” variant of FTRL is given by the recursive formula:226

.̃8,= = .8,= + W=+8,=−1 -̃8,= = &8 (.̃8,=) .8,=+1 = .8,= + W=+8,= (OptFTRL)

In the above the payoff signal +8,=, which depends on the state -̃=, is generated as follows: at each227

round = = 1, 2, . . . , every player 8 ∈ N picks an action U8,= ∈ A8 based on -̃8,= ∈ X8 and observes228

the pure payoff vector E8 (U=) ≡ (D8 (U8;U−8,=))U8 ∈A8
. At first glance, it seems difficult to reconcile229

the above update structure with that of (FTGL); however, it is indeed possible to integrate (OptFTRL)230

within (FTGL) by considering the auxiliary states -= = &(.=) (which are never played and are only231

used here for the analysis).232

Indeed, each player’s input signal is a special case of (4) with payoff feedback +8,= = E8 (U=), zero-233

mean noise*8,= = E8 (U=) − E8 ( -̃=) and bias 18,= = E8 ( -̃=) − E8 (-=) that satisfy both the assumptions234

(A1),(A2). In more detail, we have:235

• For (A1): ‖18,=‖∗ = ‖E8 ( -̃=) − E8 (-=)‖∗ = $ (W=), which goes uniformly to 0 whenever W= → 0.236

• For (A2): ‖*8,=‖∗ = ‖E8 (U=) − E8 ( -̃=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗ and thus the noise has bounded237

moments for all @ ∈ [1,∞].238

Remark 3.2. Based on the structure of the aforementioned algorithms, it is easy to check that we239

capture a-fortiori the model of a full-information payoff signal; for a more complete account of the240

different algorithms and feedback models see Table 1.241

4 Analysis & Results242

We are now in a position to state our main convergence results for (FTGL). We begin with a precise243

statement and discussion in Section 4.1; subsequently, we present the main proof techniques in244

Section 4.2.245

4.1. Statement and discussion of our main results. Our analysis will focus exclusively on strict246

Nash equilibria. As we discussed in the introduction, the reason for this is that only strict Nash equi-247

libria can be asymptotically stable under FTRL [11, 15], so they are the only reasonable candidates248

to consider when examining the rate of convergence of a regularized learning algorithm.2249

To proceed, we will need one technical assumption linking the learning rate of (FTGL) and the250

bias/variance parameters of the driving feedback sequence +=. This is as follows:251

The sequence X= B

∑=
:=1 W

1+ @

2
:

f
@

:[∑=
:=1 W:

]1+V@/2 is summable for some V < 1. (A3)

2As a sidenote, we should remark here that FTGL also contains the optimistic FTRL algorithm, which does converge to
mixed Nash equilibria in bilinear zero-sum games with perfect, deterministic feedback [16, 27, 34]. At first glance, this would
seem to contradict the results of [11, 15], but one needs to bear in mind that the convergence of (OptFTRL) to mixed equilibria
only occurs in settings with perfect information (i.e., += = E (-=) for all = = 1, 2, . . . ). In the presence of uncertainty, this
convergence is destroyed [7, 23], so there is no contradiction with the results of [15]. Because we are primarily interested in
learning with limited information and/or under uncertainty, we will not treat this somewhat fragile case.
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Assumption (A3) imposes a growth condition on the method’s learning rate relative to the bias and252

variance parameters of the input signal sequence +=, but it is otherwise a technical prerequisite for253

the analysis to come. What is more important for our purposes is that the concrete models that we254

discussed in the previous section satisfy it for a wide range of the player-chosen parameters W= (and255

Y= in the case of bandit-based algorithms); to streamline our presentation, we postpone a more precise256

discussion of this issue until after the statement of our main results.257

The last element that we need to introduce concerns the players’ choice of regularizer: clearly, since258

propensities are transformed to strategies via each player’s individual choice map &8 : Y8 → X8 , it259

stands to reason that the underlying regularization function ℎ plays a major role in the method’s260

rate of convergence. Indeed, given an update of the form .=+1 ← .= + W=+=, the method’s strategy261

variable will move forward as -=+1 ← -= + W=�&(+)+= +O(W2
=), where �& denotes the Jacobian262

matrix of &. Thus, to leading order in W=, the update -=+1 ← -= is dominated by the first derivatives263

of &.264

By a relatively straightforward application of the Legendre identity from convex analysis (& = (mℎ)−1265

in our context; see below for a precise statement), this rate of change is related to the inverse mapping266

of the derivative each \8 (the kernel of the underlying regularizer). Motivated by this observation, we267

introduce below the algorithm’s so-called rate function:268

q8 (C) =
{
(\ ′
8
)−1 (C) if C > \ ′

8
(0+),

0 otherwise.
(7)

The definition of the rate function q captures the sensitivity of the choice map & in a very precise269

way: If the score difference corresponding to two pure strategies U, V ∈ A8 grows as HV − HU = C270

for some C > 0, then the probability of playing the strategy with the lesser score must be less than271

the probabiity of playing the strategy with the higher score. The precise amount of this disparity of272

course depends on the player’s choice function & and q acts as a “transfer” function in this regard.273

Specifically, as we show in detail later, we have GU = q(−Θ(C)), i.e., q determines the rate at which274

GU vanishes. For different regularizers we present the corresponding rates in Table 2.275

With all this in hand, our main result can be stated as follows:276

Theorem 1. Let G∗ be a strict Nash equilibrium of Γ, and fix some confidence level X > 0. If277

Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and278

constants 38 , 2′8 with 2′
8
> 0 such that, if .1 ∈ Winit, we have:279

1. -= converges to G∗ with probability at least 1 − X.280

2. Conditioned on the above, the rate of convergence for each player 8 ∈ N is given by281

‖-8,= − G∗8 ‖1 ≤ 2
∑

U8 ∈A8\supp(G∗
8
)
q8

(
38 − 2′8

∑=

:=1
W:

)
. (8)

Armed with this general result, we readily obtain the following immediate consequences thereof:282

Corollary 1. If the regularizer employed is non-steep (i.e., \8 is differentiable at 0), -= converges to283

G∗ in a finite number of iterations.284

Corollary 2. Suppose that FTRL is run with oracle-based feedback as per Model 1 and a learning285

rate of the form W= ∝ 1/=? , ? ∈ [0, 1]. Then the conclusion of Theorem 1 holds.286

Corollary 3. Suppose that FTRL is run with bandit feedback as per Model 2, a learning rate of the287

form W= ∝ 1/=? , ? ∈ [0, 1] and a mixing parameter Y= ∝ 1/=A , A ∈ (0, 1/2). Then the conclusion of288

Theorem 1 holds.289

Corollary 4. Suppose that Optimistic FTRL is run with oracle-based feedback as per Model 3 and a290

learning rate of the form W= ∝ 1/=? , ? ∈ (0, 1]. Then the conclusion of Theorem 1 holds.291

More generally, we show in the supplement that the conclusion of Theorem 1 holds for all algorithms292

and feedback models presented in Table 1: in all cases therein, players can employ step-size policies293

of the form W= ∝ 1/=? , ? ∈ [0, 1], and a mixing parameter Y= ∝ 1/=A with A ∈ (0, 1/2) for the bandit294

models. The only case that does not follow as an immediate corollary of Theorem 1 is the case of295

constant step-sizes for Optimistic FTRL and EG/MP; however, a slightly more refined argument (that296

we present in the Appendix C) shows that constant step-sizes are also covered by the convergence297

rate guarantee (8) of Theorem 1.298
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ALGORITHM KERNEL \ (x) RATE q (−y)

Multiplicative Weight Updates G log G exp(−H)
Projection Gradient Descent G2/2 −H

Inverse Updates − log G −1/H
q-Replicator@>0 [@ (1 − @) ]−1 (G − G@) [@−1 + (1 − @)H ]1/@−1

Table 2: Regularizers & correspinding rates.

4.2. Sketch of proof and main techniques. At a high level, the main idea of the proof of The-299

orem 1 relies on a tandem application of martingale limit theory and convex analysis in order to300

exploit the specific structure of (FTGL). While martingale limit theory emerges naturally to control301

the components of the noise, a delicate analysis of the contribution of ℎ8 in the solution of the convex302

constrained optimization problem, that G = &8 (H) induces, is necessary to derive the aforementioned303

generic rates. Below we provide a sketch of the main steps in this analysis304

Step 1. Our starting point is to explore the geometric properties that are induced by the existence of a305

strict Nash equilibrium. Indeed, the fact that (NE) holds as a strict inequality for each pure strategy306

against the equilibrium’s strategy, ensures convergence properties for strict Nash equilibria. More307

precisely, an immediate implication of (NE) is that there exist neighborhood U of G∗ and constants308

21, . . . , 2# such that309

E8U∗
8
(G) − E8U8 (G) ≥ 28 for all G ∈ U and U8 ≠ U∗8 , U8 ∈ A8 , 8 ∈ N (9)

In other words, in the neighborhood U the payoff of the equilibrium’s strategy strictly dominates310

all other strategies’ payoffs for each player. However, since the linchpin of (FTGL) is the interplay311

between X and Y , for the purpose of our analysis, we need to investigate the variational structure of312

U in both spaces.313

Informal Lemma 1. There exists a neighborhood U , constants 21, . . . , 2# and "1, . . . , "# for314

which (9) holds such that
∏
8∈N &8 (W"8

) ⊆ U , where W"8
are open sets of the form 3315

W"8
= {.8 : .8U∗

8
− .8U8 > "8 for all U8 ≠ U∗8 , U8 ∈ A8} for "8 > 0, 8 ∈ N (10)

Step 2. We now focus on one player 8 ∈ N and drop the index 8 altogether. First we prove that there316

exists an open set of initializations Winit of (FTGL), for which with arbitrary high probability the317

dual variable (.: ):∈ℕ never exits W" and thus its image remains in the desired neighborhood U .318

We start by writing the score differences between each pure strategy U ∈ A and U∗ ∈ supp(G∗)319

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (11)

where drift: = EU (-: ) − EU∗ (-: ), noise: = *U,: −*U∗ ,: , bias: = 1U,: − 1U∗ ,: . We will prove by320

induction our forward-invariant statement; let .: ∈ W" and thus -: ∈ U for all : = 1, . . . , = then321

• By (9) we have
∑=
:=1 W:drift: ≤ −2

∑=
:=1 W: for all : = 1, . . . , =.322

• By the triangle inequality and (A1), the term
∑=
:=1 W:bias: is dominated by the term

∑=
:=1 W:drift:323

for all = = 1, 2, . . ..324

• Subsequently, by leveraging the machinery of martingale’s maximal inequalities and assumption325

(A2), which we present in Appendix A and using learning rates that respect (A3), we prove that with326

probability at least 1 − X, for any fixed confidence level X,
∑=
:=1 W:noise: , which is a martingale, is327

also dominated by the term
∑=
:=1 W:drift: for all = = 1, 2, . . .328

• We now define the open set of initial conditions Winit, which is of the form described in (10), with329

constant "init. By choosing4 "init ≥ " +
∑=
:=1 W: (noise: + bias: ) − (2 − 2′)

∑=
:=1 W: , for any330

2′ < 2 and any = ≥ 1, since .1 ∈ Winit we have that .U,=+1 − .U∗ ,=+1 ≤ −" for all = ≥ 1.331

By substituting the inequality for "init in (11) we get .U,=+1 − .U∗ ,=+1 ≤ −" − 2′
∑=
:=1 W: and332

convergence occurs as an immediate consequence; Indeed -U∗ ,= → 1, since whenever .U − .U∗ →333

−∞, it holds that each U ∈ A \ supp(G∗) becomes extinct i.e., -U → 0.334

Step 3. We now proceed to the delineation of the rates of convergence. Using the KKT conditions335

(Lemma B.1) combined with Eq. (11),Eq. (9) and the fact that .1 ∈ Winit we have336

\ ′(-U,=+1) − \ ′(-U∗ ,=+1) = .U,=+1 − .U∗ ,=+1 ≤ −"init − 2
=∑
:=1

W: +
=∑
:=1

W: (noise: + bias: )

3It is worth mentioning that the images of these open sets belong to neighborhoods of G∗, which are nested as "8 increases.
4such a "init exists since both the bias and the noise terms are dominated by the term −(2 − 2′) ∑=

:=1 W: .
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(a) Battle of the Sexes
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Figure 1: For the Battle of the Sexes experiment, we initialize uniformly randomly our executions from
.8=8C ∈ [−1, 1] × [−1, 1] and examine the instantiations of Model 1-3 using constant-step size and exploration
rate Y= ∝ 1/ 3√=. For the Pigou’s game, our setup includes two alternative disjoint paths for # = 1000 drivers.
The first path has linear latency ℓ1 (G) = G/# while the second one has constant unit congestion, ℓ2 (G) = 1,
where G denotes the population of the drivers that uses the corresponding path.

Recall that \ is strong convex, or equivalently \ ′ is strictly increasing; by rearranging and substituting337

to the above inequality we get338

\ ′(-U,=+1) ≤ \ ′(-U∗ ,=+1) − " − 2′
=∑
:=1

W: ≤ 3 − 2′
=∑
:=1

W: (12)

where 3 = −" + \ ′(1) and U ∈ A, U ≠ U∗. By aggregating over all U ∈ A, U ≠ U∗339

‖G∗ − -=+1‖1 = 2(1 − -U∗ ,=+1) ≤ 2
∑

U∈A≠U∗
q(3 − 2′

=∑
:=1

W: ) (13)

which indicates the rate of convergence and completes our proof.340

5 Numerical experiments341

In this section we perform a series of numerical experiments to validate our theoretical findings.342

Specifically we are interested in verifying both the correctness in the computation of the rates via q8343

for different regularizers and at the same time the fact that convergence speed is invariant to different344

feedback models and algorithmic variants of (FTGL).345

To do this, we start by examining variations of (FTGL) in the archetypal game of Battle of the Sexes,346

a popular two-player benchmark of the coordination games, which however involves elements of347

conflict as well. This game exhibits two strict Nash equilibria and one mixed equilibrium (for the348

exact definition, see Appendix E). We then seek to experimentally study the performance of (FTGL)349

while the number of the players scales up. To do this we use the atomic version of classical Pigou’s350

congestion game [39], where # units of traffic (e.g., rush-hour drivers) leave from $ (origin) to �351

(destination) at the same time and each driver has the same dominant pure strategy/path for this trip.352

Accordingly to Table 2 the decay rate for the entropic regularization is exponential while for the case353

of euclidean is linear, which indeed yield linear and constant-time convergence as Fig. 16 illustrates.354

We defer a detailed exposition of various configurations with different step-sizes, alternative dis-355

cretization methods like MirrorProx and ExtraGradient and feedback models with the presence (or356

not) of extra heavy-tailed/uniform/gaussian noise again to the paper’s supplement.357
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A Martingale limit theory504

Our analysis leverages tools from martingale limit theory. Below we present the two main theorems that
we utilize in the main body of our proofs.
• (Doob’s inequality), also known as Kolmogorov’s submartingale inequality gives a bound on the

probability that a stochastic process exceeds any given value over a given interval of time.
• (Burkholder’s inequality), also known the Burkholder-Davis-Gundy inequality is a remarkable result

relating the maximum of a local martingale with its quadratic variation.
505

Theorem A.1 (Doob’s inequality). Let (= be a martingale with respect to the filtration F=, then for506

each Y > 0 and @ ≥ 1,507

ℙ( sup
1≤:≤=

|(: | ≥ Y) ≤
� |(= |@
Y@

(Doob’s inequality)

Theorem A.2 (Burkholder’s inequality). Let (= be a martingale with respect to the filtration F= and508

-= = (= − (=−1. Then for all 1 < @ < ∞, there exists constant �@ depending only on @ such that509

� |(= |@ ≤ �@ �
����� =∑
:=1

-2
:

�����@/2 (Burkholder’s inequality)

Proofs for these two theorems can be found in [19].510

B A dichotomy between the regularizers511

Our main result (Theorem 1) provides a mechanism to compute the convergence rate to a strict Nash
Equilibrium universally for all smooth convex regularizers ℎ8 (G) =

∑
U8 ∈A8

\8 (GU8 ). An important
implication of our main theorem (Corollary 1) is that for the case of non-steep kernels (i.e., \8 is
differentiable at 0), -= converges to G∗ in a finite number of iterations. Below we give some intuition
for the interested reader about the differences between the steep and non-steep case.

512

Steep vs non-steep. In this section we elaborate in detail the dichotomy among the different513

regularizers mentioned in Sections 3.1 and 4. As we established in Section 3.1, different players may514

apply different regularizers ℎ8 in their choice maps &8 (H8). Depending on the regularizer chosen, the515

behavior of (FTGL) could vary significantly. To investigate more this diversity, we start by describing516

formally the strategy-choice step G8 = &8 (H8) as a convex constrainted minimization problem.517

&8 (H8) = − arg min
G8 ∈X8

{ℎ8 (G8) − 〈G8 , H8〉} . (B.1)

Following also the folklore convention from convex analysis, we express ℎ as an extended-real valued518

function ℎ : V → ℝ ∪ {∞} with value∞ outside of the simplex X . Additionally, the subdifferential519

of ℎ at G ∈ V is defined as:520

mℎ(G) = {H ∈ V∗ : ℎ(G ′) ≥ ℎ(G) + 〈H, G ′ − G〉 ∀G ′ ∈ V} (B.2)

If mℎ(G) is nonempty, then ℎ is called subdifferentiable at G ∈ X . When G ∈ ri(X ) then mℎ(G) is521

always non-empty or more compactly ri(X ) ⊆ dom mℎ ≡ {G ∈ X : mℎ(G) ≠ ∅} ⊆ dom ℎ ⊆ X .522

Notice that when the gradient of ℎ exists, then its subgradient always contains it. Leveraging the523

property that local and global minima coincides in the case of convex function, Fermat’s rule provides524

a simple characterization of the minimizers of a function as the zeros of its subdifferential:525

Fact (Fermat’s Rule). For a proper convex function 5 , argmin 5 ≡ zerm 5 = {G ∈ X | 0 ∈ m 5 (G)}526

With these in mind, we present a typical separation between the different regularizers„ focusing on527

the more simple case of decomposable ones ℎ(G) = ∑
U∈A \U (G). On the one hand, steep regularizers528

have differentiable kernels on (0, 1] and become infinitely steep as G approaches the boundary or529

\ ′(0) = −∞. On the other hand, for the non-steep case the kernel is differentiable in all of [0, 1].530

As a result of Fermat’s Rule, when a steep regularizer is employed the points of the boundary are531
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Figure 2: Steep vs. non-steep regularizers (note in particular the singular behavior of the gradient at the
boundary in the case of steep regularizers).

infeasible not only as initial conditions but also as part of the sequence of play, while non-steep ones532

allow completely the sequence of play to transfer between the different faces of the simplex. The533

qualititative difference in behavior between these cases is illustrated in Fig. 2 (which shows the very534

different behavior of the derivates of ℎ near the boundary of the state space).535

Having discussed the connection between the choice map and the properties of the regularizer, the
following lemma quantifies the gulf between the steep and non-steep case and provides the relation
between mixed strategies and score vectors and the mirror map (3) that defines the dynamics (FTGL).
More precisely, we focus on the perspective of an arbitrary player, say 8, and for ease of notation we
write &, G and H instead of &8 , G8 and H8 respectively.

536

Lemma B.1. G = &(H) if and only if there exist ` ∈ ℝ and aU ∈ ℝ+ such that, for all U ∈ A, we537

have: a) HU = mℎ
mGU
+ ` − aU; and b) GUaU = 0 In particular, if ℎ is steep, we have aU = 0 for all538

U ∈ A.539

Proof. Recall that540

&(H) = arg max
G∈K

{〈H |G〉 − ℎ(G)}

= arg max

{ ∑
U∈A

HUGU − ℎ(G) :
∑
U∈A

GU = 1 and ∀U ∈ A : GU ≥ 0

}
The result follows by applying the Karash-Kuhn Tucker (KKT) conditions to this optimization541

problem and noting that, since the constraints are affine, the KKT conditions are sufficient for542

optimality. Our Langragian is543

L(G, `, a) = (
∑
U∈A

HUGU − ℎ(G)) − `(
∑
U∈A

GU − 1) +
∑
U∈A

aUGU

where the set of constraints (i) of the statement of the lemma are the stationarity constraints, which in544

our case are ∇L(G, `, a) = 0⇔ ∇(∑U∈A HUGU − ℎ(G)) = `∇(
∑
U∈A GU −1) −∑

U∈A aU∇GU , while545

the set of constraints (ii) of the statement of the lemmas are the complementary slackness constraints.546

Note that complementary slackness implies that whenever aU > 0 whenever U ∉ supp(G). Finally, if547

ℎ is steep, we have |mUℎ(G) | → ∞ as G → bd(X ), which implies that the KKT conditions admit a548

solution with aU = 0. �549
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C Proof of Main Theorem550

Our first lemma shows a property of strict Nash equilibria. More precisely, we prove the existence
of a neighborhood U in which each player’s payoff corresponding to the strategy of the equilibrium
outweighs the payoff of any other pure strategy.

551

Lemma C.1. Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium. Then there exists a neighbor-552

hood U of G∗ and constants 28 such that for each player 8 ∈ N :553

E8U∗
8
(G) − E8U8 (G) ≥ 28 for all G ∈ U and U8 ≠ U∗8 , U8 ∈ A8 . (C.1)

Proof. Our claim is a consequence of the definition of strict Nash equilibria. Specifically, from (NE)554

for each player 8 ∈ N we have that555

E8U∗
8
(G∗) > E8U8 (G∗) for all U8 ∈ A8 , U8 ≠ U∗8 (C.2)

By continuity there exists a neighborhood U ⊆ X and 28 > 0 for each player 8 ∈ N such that556

E8U∗
8
(G) − E8U8 (G) ≥ 28 for all G ∈ U (C.3)

�557

"8 < .8,U∗
8
−.8,U8

Y

G∗ = (U∗1 , . . . , U
∗
#
)

U

X

The following lemma plays a central role in the proof of our
main theorem (Theorem 1). More precisely, Lemma C.2 pro-
vides a detailed analysis of the topology of a neighborhood U
where variational inequality (C.1) holds both in primal space
X and dual space Y . In order to achieve that we introduce
the notion of “(U∗

8
, "8)-score-dominant” open set for a player

8 ∈ N , which we denote W8 ("8).

Definition (Score-Dominant Collection). Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium of

a finite game Γ. Then a collection is said to be “(U∗
8
, "8)8∈N -score-dominant” if there exist positive

constants "8 > 0 corresponding open sets W8 ("8) of the form

W8 ("8) = {.8 : .8U∗
8
− .8U8 > "8 for all U8 ≠ U∗8 , U8 ∈ A8} for each player 8 ∈ N (C.4)

558

Lemma C.2. Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium. Then for every Y ∈ (0, 1),559

there exist constants "8, Y and the corresponding score-dominant open sets for each player 8 ∈ N560

such that:
∏
8∈N &8 (W8 ("8, Y)) ⊆ UY , where UY = {G ∈ X : G8U∗

8
> 1 − Y for every player 8 ∈ N }561

Proof. For an arbitrary player 8 ∈ N let W8 ("8, Y) be a score-dominant open set. We will show that562

any "8, Y > \ ′8 (1) − \ ′8 (
Y
|A8 | ) > 0 satisfies the desideratum. Indeed, again by using Lemma B.1 for a563

.8 ∈ W8 ("8, Y) with G8 = &8 (.8) we have that564

.8U∗
8
− .8U8 > "8, Y (C.5)

\ ′(G8U∗
8
) − \ ′8 (G8U8 ) − (aU∗8 − aU8 ) > "8, Y . (C.6)

with aU8 ≥ 0 and G8U8 = 0 whenever G8U8 > 0. Notice that since "8, Y > 0 and \ ′
8

is strictly increasing,565

it holds that G8U8 < G8U∗
8
. Indeed, assume by contradiction that G8U8 ≥ G8U∗8 for some U8 , then we566

examine two different cases:567

(i) If G8U∗
8
= 0, then G8U8 ≥ G8U∗8 for all U8 ∈ A8 with G8U8 > 0 for at least one U8 ∈ A8 , U8 ≠ U∗8568

which is a contradiction to (C.6).569

(ii) if G8U∗
8
> 0, then (C.6) implies that "8, Y ≤ \ ′(G8U∗

8
) − \ ′

8
(G8U8 ) < 0 which is again a contradic-570

tion.571

Therefore aU∗
8
= 0 and (C.6) can be rewritten for all U8 ≠ U∗8 with G8U8 > 0 as572

\ ′8 (G8U8 ) < −"8, Y + \ ′(G8U∗8 ) < −"8, Y + \
′(1) < \ ′8 ( Y

|A8 | ) (C.7)

where last inequality holds by the choice of "8, Y > \ ′8 (1) − \ ′8 (
Y
|A8 | ) > 0. Again, since \ ′ is strictly573

increasing, this implies that for all U8 ≠ U∗8 either G8U8 = 0 or 0 < G8U8 < Y
|A8 | . By union bound, this574

implies that G8U∗
8
> 1 − Y and equivalently that G ∈ UY . �575
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Remark C.1. It is easy to check that as " ′
8

increases the score-dominant sets and their corresponding576

images are nested. Indeed if " ′ ≥ "Y ⇒ W (") ⊆ W (" ′) ⇒ &(W (")) ⊆ &(W (" ′)), since577

.8U∗
8
− .8U8 > " > "Y for all U8 ≠ U∗8 , U8 ∈ A8 .578

Remark C.2. Notice that since the above analysis is for each strategy U8 ∈ A8 of player 8, it implies579

that not only the images &8 (W"8
) are nested, but also that if G8 = &8 (.8), .8 ∈ W"8

all G8U8 → 0 for580

U8 ≠ U
∗
8

as "8 →∞.581

Theorem 1. Let G∗ be a strict Nash equilibrium of Γ, and fix some confidence level X > 0. If582

Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and583

constants 38 , 2′8 with 2′
8
> 0 such that, if .1 ∈ Winit, we have:584

1. -= converges to G∗ with probability at least 1 − X.585

2. Conditioned on the above, the rate of convergence for each player 8 ∈ N is given by586

‖-8,= − G∗8 ‖1 ≤ 2
∑

U8 ∈A8\supp(G∗
8
)
q8

(
38 − 2′8

∑=

:=1
W:

)
. (8)

Remark C.3. The probability guarantee is over only the potential randomness that the payoff oracle.587

i.e., when players have access to a perfect payoff oracle; the results hold with probability 1.588

Proof. Fix a confidence level X and the parameters of the algorithm respecting (A1)–(A3). We will589

prove that there exists a “score-dominant” open set of initial conditions Winit590

Winit ≡ {. : "init < .U∗ − .U for all U ≠ U∗, U ∈ A} ⊆ Y for some "init > 0
such that whenever .1 ∈ Winit then with probability at least 1 − X the sequence of play generated by591

(FTGL) converges to G∗ with rate given by the function q8592

q8 (C) =
{
(\ ′
8
)−1 (C) if C > \ ′

8
(0+),

0 otherwise.
(C.8)

which depends on the choice of the kernel \8 of each player and the payoff matrix of the game.593

For convenience of notation we focus on an arbitrary player in the proof, without loss of generality let594

it be the 8-th one, and we completely drop the index 8. Since the equilibrium is strict by Lemmas C.1595

and C.2 there exist a neighborhood Ustrict, 2strict > 0 and "strict > 0 such that596

EU∗ (G) − EU (G) ≥ 2strict for all U ≠ U∗, U ∈ A and G ∈ Ustrict (C.9)
. ∗U − .U > "strict for all U ≠ U∗, U ∈ A and G = &(. ) ∈ Ustrict (C.10)

We start by proving the following claim:597

Claim 1. Let W (") be a “score-dominant” open set for the strict Nash equilibrium G∗ . Then there598

exists "init > 0 such that if .1 ∈ W ("init) =Winit then with probability at least 1 − X the sequence599

of play (.=)=∈ℕ stays in W ("strict).600

Proof of Claim. By definition of (FTGL) for the score differences we have601

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (C.11)

where drift: = EU (-: ) − EU∗ (-: ), noise: = *U,: −*U∗ ,: , bias: = 1U,: − 1U∗ ,: . Notice that602

• (Bias) By (A1):
∑=
:=1 W:bias: ≤ 2

∑=
:=1 W: ‖1: ‖∗ = >(

∑=
:=1 W: ) (C.12)603

• (Payoff ) By Lemma C.1:
∑=
:=1 W:drift: ≤ −2

∑=
:=1 W: (C.13)604

• (Zero-mean Noise) For the remaining term, '= =
∑=
:=1 W:noise: , firstly notice that it is trivially605

a martingale. We will prove that with probability at least 1 − X this martingale is bounded606

above by a term b= which is dominated by the term
∑=
:=1 W: . Consider the event �=, b= =607

{sup1≤:≤= |': | ≥ b=}; we will show that the union of these events E = ⋃∞
==1 �=, b= occurs with608

probability at most X when b= = b (
∑=
:=1 W: )0 with 0 < 1. Using Theorem A.1 and Theorem A.2609

we have610

ℙ(�=, b= ) ≤
�[|'= |@]
b=
@ ≤

2@ �[(
∑=
:=1 W

2
:
‖*: ‖2∗)@/2]

b
@
=

(C.14)
611
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Fact (Generalized Hölder’s Inequality). We will now consider a variation of the612

Hölder’sinequality613 (
=∑
:=1

0:1:

)A
≤

(
=∑
:=1

0
`A

A−1
:

)A−1 =∑
:=1

0
(1−`)A
:

1A: for all A > 1, ` ∈ (0, 1) (GH)

Applying (GH) for 0: = W2
:
, 1: = ‖*: ‖2∗, A = @/2 and ` = (A − 1)/2A = (@ − 2)/2@, we get614

ℙ(�=, b= ) ≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

�[‖*: ‖@∗ ]
b
@
=

(C.15)

≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

�[�[‖*: ‖@∗ |F: ]]
b
@
=

(C.16)

≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

f
@

:

b
@
=

(C.17)

Recall that b= = b
(∑=

:=1 W:
)0 with 0 < 1 and let us denote X= =

2@

b@

∑=
:=1 W

1+ @2
:

f
@

:

[∑=
:=1 W:]1+(20−1)@/2 or615

equivalently X= =
2@

b@

∑=
:=1 W

1+ @2
:

f
@

:

[∑=
:=1 W:]1+V@/2

for some V < 1. By assumption (A3), X= is summable and616

by controlling the parameter b we can ensure that617

∞∑
==1

X= = X (C.18)

Applying union bound to all the events �=, b= we have that with probability at least 1 − X it is618

=∑
:=1

W:noise: ≤ b= for all = = 1, 2, . . . (C.19)

For the rest of the proof we condition to the event E2 . Let us define a constant "init, such that619

"init ≥ max{"strict, "strict + sup=≥1{
∑=
:=1 W: (noise: + bias: ) − (2 − 2′)

∑=
:=1 W: }, for any arbitray620

choice of 0 < 2′ < 2strict
5 . Let us recall the definition of a “score-dominant” open set621

W (") = {. : . ∗U − .U > " for all U ≠ U∗, U ∈ A}.
We will prove by strong induction that .= ∈ W ("strict), for all = ≥ 1.622

• For the base of the induction, we have that .1 ∈ W ("init) and by the choice of "strict, trivially we623

get that .1 ∈ W ("strict).624

• For the inductive step, let us assume that .: ∈ W ("strict) for all : = 1, 2, . . . , =, we will show625

below that .=+1 ∈ W ("strict).626

Combining (C.12),(C.13),(C.19) for the terms
∑=
:=1 W:drift: ,

∑=
:=1 W:noise: ,

∑=
:=1 W:bias: the627

claim’s assumption .1 ∈ W ("strict) and the choice of "init, (C.11) can be bounded as628

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (C.20)

.U,=+1 − .U∗ ,=+1 ≤ .U,1 − .U∗ ,1 − 2strict

=∑
:=1

W: + b= + 2
=∑
:=1

W: ‖1: ‖∗ (C.21)

.U,=+1 − .U∗ ,=+1 ≤ −"init − (2strict − 2′)
=∑
:=1

W: + b= + 2
=∑
:=1

W: ‖1: ‖∗ − 2′
=∑
:=1

W: (C.22)

.U,=+1 − .U∗ ,=+1 ≤ −"strict − 2′
=∑
:=1

W: ≤ −"strict (C.23)

and thus .=+1 ∈ W ("strict). �629

5such a "init > 0 exists since both the bias and the noise terms are dominated by the term the terms 2
∑=

:=1 W: ‖1: ‖∗,b=
and consequently by −(2 − 2′) ∑=

:=1 W: .
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The above claim immediately implies that -= ∈ U for all = = 1, 2, . . .. We will now prove that the630

sequence of play converges to G∗.631

Proof of Convergence. Let’s assume that ad absordum that there exists at least one strategy U ≠632

U∗, U ∈ A such that lim sup=→∞ -U,= ≥ Y > 0. for all sufficiently large =. Recall also that for633

- ∈ Ustrict, it holds that -U∗ > 0 by construction in Lemma C.2.634

Then by Lemma B.1 we have635

.U = \
′(-U) + ` − EU (C.24)

where ` ∈ ℝ and EU ≥ 0 while EU = 0 whenever -U > 0. Leveraging that i) the sequence of play is636

contained in U , ii) by descending to a subsequence if necessary -U,<8
> 0 and iii) recall (C.20) for637

the subsequence we have638

.U,<8+1 − .U∗ ,<8+1 = \
′(-U,<8+1 ) − \ ′(-U∗ ,<8+1 ) ≤ −"strict − 2′

=∑
:=1

W<:
(C.25)

However, the RHS of the above inequality goes to −∞ as = → ∞, while the LHS of the above639

inequality is bounded by the constant \ ′(Y) − \ ′(1) since \ ′ is strictly increasing, which is a contra-640

diction6. �641

Proof of Rate. We now proceed to the delineation of the exact rates achieved. Consider the function642

q(C) =
{
(\ ′)−1 (C) if C > \ ′(0+),
0 otherwise.

(C.26)

where (\ ′)−1 (I) is the inverse function of the kernel \ ′7. Focusing on (C.25) we can derive that643

\ ′(-U,=+1) ≤ −"strict + \ ′(-U∗ ,=+1) − 2′
=∑
:=1

W: (C.27)

≤ −"strict + \ ′(1) − 2′
=∑
:=1

W: (C.28)

for all U ∈ A8 and = = 1, 2, . . .. As a result644

-U,=+1 ≤ q(−"strict + \ ′(1) − 2′
=∑
:=1

W: ) (C.29)

Aggregating over all strategies U ∈ A, U ≠ U∗ we have645

‖G∗ − -=+1‖1 = 2(1 − -U∗ ,=+1) (C.30)

≤
∑

U∈A≠U∗
q(−"strict + \ ′(1) − 2′

=∑
:=1

W: ) (C.31)

≤
∑

U∈A≠U∗
q(3 − 2′

=∑
:=1

W: ) (C.32)

where 3 = −"strict + \ ′(1). �646

�647

6The aforementioned by contradiction argument also provides a short proof of Remark C.2.
7 \′ is strictly increasing and so does its inverse.
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Corollary 1. If the regularizer employed is non-steep (i.e., \8 is differentiable at 0), -= converges to648

G∗ in a finite number of iterations.649

Proof. Additionally, in the case of non-steep regularizers we can prove that convergence occurs650

in finite time. More precisely, focusing on (C.28) and bearing in mind that -U,=+1 ≥ 0 for all651

= = 1, 2, . . . we have652

\ ′(0) ≤ \ ′(-U,=+1) ≤ −"strict + \ ′(1) − 2′
=∑
:=1

W: (C.33)

At the same time for finite = it holds653

=∑
:=1

W: ≥ (−"strict + \ ′(1) − \ ′(0))/2′ (C.34)

since \ ′(0) is finite for non-steep regularizers. Rearranging the above inequality we have654

− "strict + \ ′(1) − 2′
=∑
:=1

W: ≤ \ ′(0) (C.35)

which inevitably implies that -U,=+1 = 0. �655

D Models656

We start by presenting the well-known algorithms Follow the Regularized Leader (FTRL), Optimistic
Follow the Regularized Leader (OptFTRL) and Mirror Prox (MP), as special cases of our general
algorithmic framework.

657

.8,=+1 = .8,= + W=+8,=
-8,= = &8 (.8,=)

(FTRL)
658

.̃8,= = .8,= + W=+8,=−1 -̃8,= = &8 (.̃8,=) .8,=+1 = .8,= + W=+8,= (OptFTRL)

659

Remark D.1. (OptFTRL) requires two initializations and then at each stage the previous payoff signal660

is stored and is utilized to calculate the auxiliary cumulative payoff .̃8,=.661

.8,=+1/2 = .8,= + W=+8,= .8,=+1 = .8,= + W=+8,=+1/2
-8,=+1/2 = &8 (.8,=+1/2) -8,=+1 = &8 (.8,=+1)

(MirrorProx)

662

Remark D.2. (MirrorProx) requires only one initialization, but at each stage the algorithm generates663

two different states and correspondingly two payoff signals are needed.664

For both the algorithms (OptFTRL),(MirrorProx) we can prove that for the cases of full information,
oracle based feedback and noisy payoff feedback, the implicit bias for modeling their intermediate steps
is ‖18,=‖∗ = O(W=). The bias is the same in all of the three cases and thus we only present the case of
full information.

665

Proof. Full information:666

• (OptFTRL): +8,= = E8 (-=) + (E8 ( -̃=) − E8 (-=)). Thus667

‖18,=‖∗ = ‖E8 ( -̃=) − E8 (-=)‖∗ ≤ �‖ -̃= − -=‖ (D.1)

= �‖&8 (.̃=) −&8 (.=)‖ ≤ � ′‖.̃= − .=‖∗ (D.2)
= O(W=) (D.3)
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• (MirrorProx): +8,= = E8 (-=) + (E8 (-=+1/2) − E8 (-=)). The proof is similar to the above and668

‖18,=‖∗ = O(W=).669

�670

Below, we explain how the proof of Theorem 1 can be oriented to the specific structure of both
(OptFTRL) and (MirrorProx), in order to achieve all the permitted step-sizes. We will not make an exact
proof but we will thoroughly describe how the proof of Theorem 1 should be altered for the case of full
information; the reader can follow similar steps for the case of oracle based feedback.

671

• Optimistic Follow the Regularized Leader672

(OptFTRL) has an extra auxiliary cumulative payoff .̃=. We will first prove that if the two673

initializations of (OptFTRL) are appropriate then Theorem 1 holds without introducing any674

bias term.675

Step 1: Notice that for the score differences of the auxiliary cumulative payoffs we have676

.̃U,=+1 − .̃U∗ ,=+1 = .U,= − .U∗ ,= + W=
(
EU ( -̃=−1) − EU∗ ( -̃=−1)

)
(D.4)

By substituting all the .= terms we have677

.̃U,=+1 − .̃U∗ ,=+1 = .U,1 −.U∗ ,1 +
=−1∑
:=1

W:
(
EU ( -̃: ) − EU∗ ( -̃: )

)
+ W=

(
EU ( -̃=−1) − EU∗ ( -̃=−1)

)
(D.5)

Step 2: Assume that .̃: ∈ W" as described in Theorem 1 and thus -̃: ∈ U for all678

: = 1, . . . , =. We will prove by induction that .̃=+1 ∈ W" . Notice that since -̃: ∈ U it679

holds that680

EU ( -̃: ) − EU∗ ( -̃: ) ≤ −2 for all : = 1, . . . , = (D.6)
Step 3: From Eq. (D.5) we have681

.̃U,=+1 − .̃U∗ ,=+1 ≤ .U,1 − .U∗ ,1 − 2
=∑
:=1

W: (D.7)

By choosing "init > " our claim follows. We stress here that we have implicitly assumed682

that for the second initialization of (OptFTRL) it holds .̃1 ∈ W .683

Step 4: The rest of the proof holds as the one in Theorem 1, as all of the states -̃= remain in684

the desired neighborhood U in which the variational inequality holds.685

• Mirror Prox686

This algorithm, as we have already mentioned, calculates two different cumulative payoffs687

and primal states at each round.688

Step 1:We will first prove by induction that that the cumulatve payoffs .=+1/2 ∈ W" for all689

= = 1, 2, . . .. Assume that .:+1/2 ∈ W" and thus -:+1/2 ∈ U for all : = 1, . . . , = then for690

the score differences we have691

.U,=+1/2 − .U∗ ,=+1/2 = .U,= − .U∗ ,= + W= (EU (-=) − EU∗ (-=)) (D.8)

= .U,1 − .U∗ ,1 +
=−1∑
:=1

W:
(
EU (-:−1/2) − EU∗ (-:−1/2)

)
(D.9)

+ W= (EU (-=) − EU∗ (-=)) (D.10)

≤ .U,1 − .U∗ ,1 − 2
=−1∑
:=1

W: + W= max
U∈A
‖E(U)‖∗ (D.11)

Step 2: Choose "init > " + W= maxU∈A{‖E(U)‖∗} which is feasible for step-size of the692

form W= ∝ 1/=? , ? ∈ [0, 1] and our claim follows.693

Step 3: Continue with the proof as presented in Theorem 1.694

Below we prove some properties concerning the case of payoff oracle/bandit feedback.
695
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Proposition D.1. In the bandit case, let -̃= be the state such that -̂8,= is the mixed strategy of the696

8Cℎ player at round = i.e., -̂8,= = (1 − Y=) -̃8,= + Y=/|A8 |, based on which the pure strategy U8,= is697

selected. Then the following properties hold698

1. �[*8,= |F=] = 0.699

2. ‖*8,=‖∗ = O(1/Y=).700

3. ‖18,=‖∗ = O(Y=).701

Remark D.3. In the case of (MirrorProx) -̃8,= is the state -8,=−1/2.702

Proof. The payoff signal which is estimated through the (IWE) can be rewritten as +8,= = E8 (-=) +703

*8,= + 18,=, where*8,= = +8,= − E8 ( -̂=) and 18,= = E8 ( -̂=) − E8 (-=).704

1. Let A8 = {U1, . . . , U |A8 |} be the pure strategies of player 8 ∈ N ; then705

�[+8,=] =
∑

U−8 ∈A−8
(D8 (U1;U−8), . . . , D8 (U |A8 |)) -̂−8,= = E8 ( -̂=) (D.12)

where with -̂−8,= we symbolize the joint probability distribution for all players except for the 8Cℎ706

player.707

2. We move on to the second part of this proposition.708

‖*8,=‖∗ = ‖+8,= − E8 ( -̂=)‖∗ (D.13)

≤ ‖+8,=‖∗ + ‖E8 ( -̂=)‖∗ (D.14)
≤ max
U∈A
|D8 (U) | |A8 |/Y= +max

U∈A
|D8 (U) | (D.15)

= O(1/Y=) (D.16)

3. Finally for the norm of the bias term, let again A8 = {U1, . . . , U |A8 |} be the pure strategies of709

player 8 ∈ N ; then710

‖18,=‖∗ = ‖E8 ( -̂=) − E8 (-=)‖∗ (D.17)

= ‖(D8 (U1; -̂−8,=) − D8 (U1; -−8,=), . . . , D8 (U |A8 |; -̂−8;=) − D8 (U |A8 |; -−8;=))‖∗ (D.18)

It is sufficient to examine one of the elements of the vector 18,=:711

|D8 (U1; -̂−8,=) − D8 (U1; -−8,=) | (D.19)

= |
∑
U2∈A2

· · ·
∑

U# ∈A#

( -̂2U2 ,= . . . -̂# U# ,= − -2U2 ,= . . . -# U# ,=)D8 (U1, . . . , U# ) | (D.20)

≤
∑
U2∈A2

· · ·
∑

U# ∈A#

| -̂2U2 ,= . . . -̂# U# ,= − -2U2 ,= . . . -# U# ,= | |D8 (U1, . . . , U# ) | (D.21)

= O(Y=) (D.22)

�712

In this section we provide different algorithms and feedback models which connect to our general713

algorithm (FTGL) and model described in Section 3.2. We first present a useful proposition in order714

to calculate the permitted parameters of the algorithm in order for assumption A3 to be satisfied.715

Proposition D.2. 1. For all step sizes of the form W= = W/=? , with ? < 1 and noise bounds f= = f=A716

assumption A3 is satisfied if717

2
@
− ? + 2A < V(1 − ?) for some V < 1 (D.23)

Furthermore, it holds that718

1/@ + A < 1/2 (D.24)

2. For all step-sizes of the form W= = W/= and f= = f=A , assumption A3 holds as long as719

1/@ + A < 1/2 (D.25)
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Proof. 1. Since W= = W/=? and f= = f=A , assumption A3 is restated as720

X= =

∑=
:=1 W

1+@/2
:

f
@

:

[∑=
:=1 W: ]1+V@/2

(D.26)

= �@ (
=∑
:=1

1/: ?)−1−V@/2
=∑
:=1

1/: ? (1+
@

2 ) :A@ (D.27)

≤ � ′@=(1−?) (−1− V@

2 )=1−? (1+ @

2 )+A@ (D.28)

≤ � ′@=−1− V@

2 +?+
?V@

2 +1−?−
?@

2 +A@ (D.29)

≤ � ′@=−
V@

2 +
?V@

2 −
?@

2 +A@ (D.30)

Thus X= is summable if the exponent of = is less than −1:721

− V@
2
+ ?V@

2
− ?@

2
+ A@ < −1 (D.31)

2
@
− ? + 2A < V(1 − ?) (D.32)

The second expression of the proposition can be derived if we only keep the variable 0 in the RHS722

of the above inequality723

2
@
− ? + 2A < V(1 − ?) (D.33)

( 2
@
− ? + 2A)/(1 − ?) < V < 1 (D.34)

2
@
− ? + 2A < 1 − ? (D.35)

1/@ + A < 1/2 (D.36)

2. Let W= = W/= and f= = f=A , then for assumption A3 we have724

X= =

∑=
:=1 W

1+@/2
:

f
@

:

[∑=
:=1 W: ]1+V@/2

(D.37)

= �@

∑=
:=1

1
:1+@/2 :

A@

[∑=
:=1

1
:
]1+V@/2

(D.38)

≤ � ′@ (log(= + 1))−1−V@/2=1−1−@/2+A@ (D.39)

≤ � ′@ (log(= + 1))−1−V@/2=−@/2+A@ (D.40)

Since the sum
∑∞
==1 1/(log1+Y (=)=1+Y′) is finite for all Y, Y′ > 0; assumption A3 is satisfied as725

long as726

− @/2 + A@ < −1⇒ 1/@ + A < 1/2 (D.41)

�727

Model D.1 ((FTRL) & Full information). In this case players have access to their full payoff vector728

E(-=) for each round = = 1, 2, . . . and thus +8,= = E8 (-=) for all 8 ∈ N . All of the assumptions729

A1-A3 are satisfied; indeed730

• (A1): Trivially satisfied since 18,= = 0.731

• (A2): Trivially satisfied since*8,= = 0.732

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §733

Model D.2 ((FTRL) & Noisy payoff feedback). In this setting at each round = = 1, 2, . . . players734

have access to a perturbed version of their full payoff vector E(-=) with a zero-mean noise*=. Two735

examples of such noises that we consider in the experimental section are a zero-mean guassian noise736

and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for737

all @ ∈ [1,∞]. Thus738
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• (A1): Trivially satisfied since 18,= = 0.739

• (A2): Satisfied for all @ ∈ [1,∞].740

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §741

Model D.3 ((FTRL) & Oracle-based feedback). Assume that each player chooses an action based on742

a given mixed strategy, and once every player has chosen an action, an oracle reveals to each player743

their corresponding pure payoff vector. Formally, at each round = = 1, 2, . . . , each player chooses a744

pure strategy U8,= ∈ A8 based on a mixed strategy -8,= ∈ X8 and subsequently observes the payoff745

vector746

+8,= = E8 (U=) = (D8 (U8;U−8,=))U8 ∈A8
. (D.42)

Regarding our basic assumptions, we readily have 18,= = 0 and*8,= = E8 (U=) − E8 (-=); hence:747

• (A1): Trivially satisfied since 18,= = 0.748

• (A2): Satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so*= has uniformly749

bounded moments for all @ ∈ [1,∞].750

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §751

Model D.4 ((FTRL) & Payoff-based feedback). If the players only observe their realized rewards,752

they have to construct a model for += based on incomplete information. This is the standard setting753

for multi-armed bandits, so it is often referred to as the “bandit feedback” model. In this case, the754

players’ action selection process is as in Model D.3 above, but the feedback signal sequence += is755

now reconstructed by means of the importance-weighted estimator756

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to757

-8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter758

Y= → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if759

a strategy has zero probability to be chosen under -=, it will still be sampled with positive probability760

thanks to the mixing factor Y=.761

The IWE estimator may be seen as a special case of the model (4) with *8,= = +8,= − E8 ( -̂=) and762

18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:763

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.764

• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded765

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].766

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and767

Y= ∝ 1/=A , A ∈ (0, 1/2).768

§769

Model D.5 ((OptFTRL) & Full information). In this case the full payoff vector of each player is770

+8,= = E8 ( -̃=) for all 8 ∈ N . As we proved above the state -̃= can be treated separately and thus771

• (A1): Trivially satisfied since 18,= = 0.772

• (A2): Trivially satisfied since*8,= = 0.773

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §774

Model D.6 ((OptFTRL) & Noisy payoff feedback). Again in this setting at each round = = 1, 2, . . .775

players have access to a perturbed version of their full payoff vector E( -̃=) with a zero-mean noise776

*=. Two examples of such noises that we consider in the experimental section are a zero-mean777

guassian noise and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic778

constant bounds for all @ ∈ [1,∞]. Thus779

• (A1): Trivially satisfied since 18,= = 0.780

• (A2): Satisfied for all @ ∈ [1,∞].781

• (A3): From Proposition D.2 and our specific analysis for (OptFTRL) is satisfied for all the step-sizes782

of the form W= ∝ 1/=? , ? ∈ [0, 1]. §783

Model D.7 ((OptFTRL) & Oracle-based feedback). In this case the payoff signal+8,=, which depends784

on the state -̃=, is generated as follows: at each round = = 1, 2, . . . , every player 8 ∈ N picks an action785

U8,= ∈ A8 based on -̃8,= ∈ X8 and observes the pure payoff vector E8 (U=) ≡ (D8 (U8;U−8,=))U8 ∈A8
.786
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Each player’s input signal is a special case of (4) with payoff feedback +8,= = E8 (U=), zero-mean787

noise*8,= = E8 (U=) − E8 ( -̃=) and bias 18,= = 0 that satisfy all of the assumptions A1 - A3. In more788

detail, we have:789

• (A1): trivially satisfied since 18,= = 0.790

• (A2): ‖*8,=‖∗ = ‖E8 (U=) − E8 ( -̃=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗ and thus the noise has bounded791

moments for all @ ∈ [1,∞].792

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §793

Model D.8 ((OptFTRL) & Payoff-based feedback). As we mentioned in Model D.4, in this case794

players only observe their realized rewards; thus they have to construct a model for += based on795

incomplete information. The players’ action selection process is as in Model D.7 above, but the796

feedback signal sequence += is now reconstructed by means of the importance-weighted estimator797

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=) -̃8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to798

-̃8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter799

Y= → 0.800

This type of feedback may be seen as a special case of the model (4) with*8,= = +8,= − E8 ( -̂=) and801

18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:802

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.803

• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded804

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].805

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and806

Y= ∝ 1/=A , A ∈ (0, 1/2). §807

Model D.9 ((MirrorProx) & Full information). In this case players have access to their full payoff808

vector E(-=) for each round = = 1, 2, . . .; for the algorithm (MirrorProx) we observe two payoff809

vectors at each round and as stated in the specific analysis above, for each one of E8 (-=+1/2) and810

E8 (-=), we have811

• Assumption A1: Trivially satisfied since 18,= = 0.812

• (A2): Trivially satisfied since*8,= = 0.813

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §814

Model D.10 ((MirrorProx) & Noisy payoff feedback). As before at each round = = 1, 2, . . . players815

have access to a perturbed version of their full payoff vector E(-=) with a zero-mean noise*=. Two816

examples of such noises that we consider in the experimental section are a zero-mean guassian noise817

and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for818

all @ ∈ [1,∞]. Thus819

• (A1): Trivially satisfied since 18,= = 0.820

• (A2): Satisfied for all @ ∈ [1,∞].821

• (A3): From Proposition D.2 and our specific analysis for (MirrorProx) is satisfied for all the822

step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §823

We simply mention here that in the exact same way all of the assumptions (A1)-(A3) are satisfied for824

the second “intermediate” state of (MirrorProx).825

Model D.11 ((MirrorProx) & Oracle-based feedback). In this case, at each round = each player 8 ∈ N826

chooses two pure strategies U8,= and U8,=+1/2 successively based on the mixed strategies -8,=, -8,=+1/2827

equivalently. Thus, the first payoff signal is +8,= = E8 (U=) with 18,= = 0 and*8,= = E8 (U=) − E8 (-=).828

Hence:829

• (A1): Trivially satisfied since 18,= = 0.830

• (A2): Satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so*= has uniformly831

bounded moments for all @ ∈ [1,∞].832

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1], by833

also taking into account our specific analysis for (MirrorProx) presented above. §834

The second payoff signal is +8,=+1/2 = E8 (U=+1/2) with 18,=+1/2 = 0 and *8,=+1/2 = E8 (U=+1/2) −835

E8 (-=+1/2)836
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• (A1): Trivially satisfied since 18,=+1/2 = 0.837

• (A2): Satisfied because ‖*8,=+1/2‖∗ = ‖E8 (U=+1/2) − E8 (-=+1/2)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so *=838

has uniformly bounded moments for all @ ∈ [1,∞].839

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1], by840

also taking into account our specific analysis for (MirrorProx) presented above. §841

Model D.12 ((MirrorProx) & Payoff-based feedback). In this case, as we have already mentioned,842

players only observe their realized rewards and the feedback signal sequence += is now reconstructed843

by means of the importance-weighted estimator844

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,=+1/2 + Y=/|A8 | is the mixed strategy of the 8-th player at stage =, with845

Y= → 0.846

The IWE estimator may be seen as a special case of the model (4) with *8,= = +8,= − E8 ( -̂=) and847

18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:848

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.849

• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded850

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].851

• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and852

Y= ∝ 1/=A , A ∈ (0, 1/2).853

E Experiments854

We start this section by explaining in detail the two main games that our experiments are conducted.855

E.1. Games.856

1. In the archetypal game of Battle of the Sexes, a couple argues over which music to listen over the857

weekend. Both know that they want to spend the weekend together, but they cannot agree over858

what to do. The partner (A) prefers to audit a Rock band concert, whereas the partner (B) prefers859

a Pop music show. This is a classical example of a coordination game, analysed in game theory860

for its applications in many fields, such as business management or military operations. For the861

interested reader, check [26]. Since the couple wants to spend time together, if they go separate862

ways, they will receive no utility (set of payoffs will be 0, 0). If they go either to a Rock or a Pop863

musical, both will receive some utility from the fact that they’re together, but one of them will864

actually enjoy the activity. The description of this game in strategic form is therefore as follows:

Figure 3: Equilibrium Structure: This game has two strict Nash equilibria, one where both go to the Rock
concert, and another where both go to the Pop concert. There is also a mixed Nash equilibrium, where the
players go to their preferred event more often than the other. For the described payoffs, each player attends their
preferred event with probability 3/5.

865

2. In the selfish routing game of Pigou’s Congestion Network, we consider the simple network shown866

in Fig. 4. Two disjoint edges/paths connect a source vertex $ to a destination vertex �. Each edge867

is labeled with a cost function, which describes the cost (e.g., travel time) incurred by users of the868

edge, as a function of the amount of traffic routed on the edge. In the atomic version of the game869

the population of the drivers that uses a specific edge is an integer G ∈ {0, · · · , #}. The upper edge870

has the constant latency function ℓ1 (G) = 1, and thus it represents a route that is relatively long but871

immune to congestion. In the linear latency setting, the cost of the lower edge, which is governed872

by the function ℓ2 (G) = G/# , increases as the edge gets more congested. In particular, the lower873

edge is cheaper than the upper edge if and only if less than # drivers uses it.874
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Figure 4: Pigou’s Network

E.2. Experimental setup and methodology. Below, we will present separately the three archety-875

pal instantiations of (FTGL) that we discussed in Appendix D, namely (FTRL),(OptFTRL) and876

(MirrorProx). All algorithms were run on a) a game of the Battle of the Sexes; and b) Pigou’s877

linear version with # = 1000 atomic drivers. For each algorithm and each model we will present878

the performance of two well-studied regularizers: • entropic : \U (G) = GU log GU • euclidean :879

\U (G) = G2
U/2.880

We will group our models with the following way: The first collection of figures for each algorithmic881

subsection will include the {oracle-based,payoff based/bandit} feedback model for the two aforemen-882

tioned games for constant step-size and inverse-polynomial W= ∝ 1/=1/2. The latter one will present883

the {perfect,uniform-noise,gaussian-noise} feedback. Finally, the shaded areas around the curves884

represent the error bars in the execution for different random initializations.885
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Figure 5: FTRL: oracle-based, bandit; W= = 0.05
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Figure 6: FTRL: uniform, gaussian; W= = 0.05.
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Figure 7: FTRL oracle, bandit; W= ∝ 1/=1/2

0 250 500 750 1000 1250 1500 1750 2000

rounds

10−10

10−8

10−6

10−4

10−2

100
Battle of the Sexes-‖x∗ −Xk‖1

FTRL-MWU-Perfect

FTRL-MWU-uniform

FTRL-MWU-gaussian

FTRL-`2-Perfect

FTRL-`2-uniform

FTRL-`2-gaussian

(a) Battle of the Sexes

0 250 500 750 1000 1250 1500 1750 2000

rounds

10−10

10−8

10−6

10−4

10−2

100
Pigou’s Network-‖x∗ −Xk‖1

FTRL-MWU-Perfect

FTRL-MWU-uniform

FTRL-MWU-gaussian

FTRL-`2-Perfect

FTRL-`2-uniform

FTRL-`2-gaussian

(b) Pigou Network

Figure 8: FTRL: uniform, gaussian; W= ∝ 1/=1/2
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Figure 9: OptFTRL: oracle-based, bandit; W= = 0.05
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Figure 10: OptFTRL: uniform, gaussian; W= = 0.05
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Figure 11: OptFTRL: oracle-based, bandit; W= ∝ 1/=1/2
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Figure 12: OptFTRL: uniform, gaussian; W= ∝ 1/=1/2
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Figure 13: MP: oracle-based, bandit;W= = 0.05
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Figure 14: MP: uniform, gaussian; W= = 0.05
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Figure 15: MP: oracle-based, bandit; W= ∝ 1/=1/2
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Figure 16: MP: uniform, gaussian; W= ∝ 1/=1/2
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