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Abstract

In this paper, we examine the convergence rate of a wide range of regularized
methods for learning in games. To that end, we propose a unified algorithmic tem-
plate that we call “follow the generalized leader” (FTGL), and which includes as
special cases the canonical “follow the regularized leader” algorithm, its optimistic
variants, extra-gradient schemes, and many others. The proposed framework is
also sufficiently flexible to account for several different feedback models — from
full information to bandit feedback. In this general setting, we show that FTGL
algorithms converge locally to strict Nash equilibria at a rate which does not depend
on the level of uncertainty faced by the players, but only on the geometry of the
regularizer near the equilibrium. In particular, we show that algorithms based on
entropic regularization — like the exponential weights algorithm — enjoy a linear
convergence rate, while Euclidean projection methods converge to equilibrium in a
finite number of iterations, even with bandit feedback.

1 Introduction

In the presence of uncertainty, the players of a game may not have full knowledge of its structure, “or
the ability and inclination to go through any complex reasoning process to calculate an equilibrium.
But the participants are still supposed to adapt by accumulating empirical information on the relative
advantages of the various pure strategies at their disposal”. This aphorism — originally due to Nash
[36, p. 21] — constitutes the driving principle of game-theoretic learning, and highlights one of the
field’s most central questions: Does learning with empirical observations lead to a Nash equilibrium?
And, if so, at what rate?

These questions have been at the forefront of game-theoretic research ever since the early days
of the field, and they have recently received renewed attention via their connection to multi-agent
reinforcement learning [45], generative adversarial networks [18], auctions [46], and many other
applications where online decision-making plays a major role. Still, any attempt to provide a positive
answer to these questions must wrestle with a major roadblock: the well-known impossibility result
of Hart and Mas-Colell [20] shows that there are no uncoupled dynamics that converge to Nash
equilibrium in al/l games, thus shattering any hope of obtaining a universal convergence result.

In view of the above, contemporary research on game-theoretic learning has focused on relaxing
the feedback requirements of the players’ learning processes, and understanding the stability — and
instability — properties of different kinds of equilibria under popular learning algorithms. One
property that stands out in this regard is the so-called “folk theorem” of evolutionary game theory
[21], which can be stated as follows: Under the replicator dynamics — the continuous-time limit of
the multiplicative / exponential weights (EW) algorithm [2, 31, 47] — a Nash equilibrium is stable
and attracting if and only if it is strict (i.e., if and only if each player has a unique best response).
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The replicator dynamics are the most widely studied model for evolution in population games, so
the above equivalence essentially delineates what is and what isn’t achievable in an evolutionary
setting. In the context of online learning (our paper’s main focus), a similar equivalence was obtained
only recently [11, 15, 32], but it extends to the entire family of “follow the regularized leader”
(FTRL) dynamics [43, 44], in both continuous [11, 32] and discrete time [15]. In particular, [15]
studied the convergence of discrete-time FTRL models in the presence of uncertainty, and proved
a high-probability, stochastic version of this equivalence that holds for several different types of
feedback (full information, bandit, etc.). Thus, coupled with the prominence of FTRL in online and
game-theoretic learning, strict Nash equilibria emerge as the only stable limit points of regularized
learning under uncertainty.

Our contributions. One important limitation of the above results is that they are qualitative in
nature. Indeed, even though asymptotic stability guarantees that a learning process converges locally
to a strict equilibrium, it provides no information about the speed of this convergence. In particular,
especially for discrete-time models of regularized learning, asymptotic stability does not provide any
guidance on how to tune the algorithm’s hyperparameters (learning rate, mixing, etc.), and/or what to
expect in terms of the number of iterations required to reach a neighborhood of a Nash equilibrium.

Our paper aims to provide quantitative answers to these questions for a wide array of regularized
learning methods in the presence of uncertainty and limited information. To do so, we first introduce a
flexible algorithmic framework — dubbed “follow the generalized leader” (FTGL) — that incorporates
a broad spectrum of action choice mechanisms and feedback models. In more detail (and in analogy
to FTRL), the FTGL template maintains a cumulative estimate for the payoff of each action available
to the learner, and then selects a mixed strategy via a suitable “regularized” choice map. Specifically:

1. In terms of regularization, the FTGL template includes as special cases the standard logit choice
and Euclidean projection methods (as well as all other standard regularizers used in practice).

2. In terms of the information used to update the “aggregate score” of each pure strategy, FTGL
includes “vanilla” FTRL, its optimistic variants [10, 40-42], extra-gradient and mirror-prox
methods [25, 27, 37], with either full, oracle-based, or bandit feedback.

In this general context, our main result may be summarized as follows. First, we introduce a ‘“rate
function” ¢ that depends only on the regularizer defining the learning process, and which captures
the sensitivity of the induced choice map to external stimuli: for example, ¢(x) = exp(x) for
entropic / logit choice models, whereas ¢(x) = [x]; for methods run with Euclidean projections. We
then show that, with probability at least 1 — ¢, the algorithm’s local rate of convergence to a strict
equilibrium x* is of the form ||X,, — x*|| < ¢(d — ¢ X_, vs), where y,, is the method’s learning rate
and ¢, d are constants with ¢ > 0.

This result shows that the convergence speed of FTGL methods depends only on the choice of
regularizer and learning rate: for example, EW methods run with a constant step size converge to an
equilibrium at an exponential rate, whereas Euclidean regularization attains convergence in a finite
number of iterations. From a regret-theoretic point of view, this is somewhat surprising because
the regret guarantees of entropic FTRL (the EW algorithm) are far superior to those of FTRL with
Euclidean regularization [5, 43].

Equally surprising is the fact that the type of feedback employed does not affect the method’s rate of
convergence: ceteris paribus, an FTGL method attains the same rate of convergence to strict Nash
equilibria, whether run with full, partial, or bandit / payoft-based feedback. This comes into stark
contrast with the corresponding rates of regret minimization, which depend crucially on the type of
feedback received [6, 29]; in a certain, precise sense, this robustness in the face of uncertainty shows
that regret minimization and convergence to Nash equilibrium are fundamdentally different questions.

Related work. The convergence speed of methods based on the FTRL template — “vanilla”, opti-
mistic, or otherwise — have been studied extensively in the context of monotone games and variational
inequalities; for a (highly incomplete) list of recent references, see [9, 10, 16, 17, 22, 24, 30, 33-35]
and references therein. In this branch of the literature, there are two distinct threads: results con-
cerning the convergence of the “time-average” of the process [16, 25, 35, 37], and those focusing
on the algorithm’s “last-iterate” [9, 10, 17, 22, 24, 30]. In the latter case (which is the one closest to
our setting), the fastest achievable speed of convergence is exponential when the method is run with
a finetuned constant step-size, perfect payoff gradient observations, and the operator defining the
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problem is strongly monotone and Lipschitz smooth. When run with stochastic gradients, the corre-
sponding min-max optimal rate is O(1/T) under the same assumptions (zeroth-order rates are usually
much worse). The apparent gulf between the rates of convergence obtained for monotone games and
those obtained herein have to do with two crucial factors: first, we are studying finite games, which
are typically not monotone; second, we are examining the algorithm’s rate of convergence to strict
equilibria, which are corner points of the problem’s domain. This means that the geometry of the
problem around a strict equilibrium is fundamentally sharper than the geometry around a solution of
a generic monotone variational inequality, a fact which in turn explains the qualitatively different
nature of the rates we obtain.

In the context of finite games, there have been several works examining the speed of convergence to
the game’s set of coarse correlated equilibria (CCE) by leveraging the algorithm’s regret minimization
properties, cf. [3, 4, 12, 13, 38, 46] and references therein. However, in addition to examining the
algorithm’s empirical average — as opposed to the induced day-to-day sequence of play — these results
focus almost exclusively on CCE, which means that it is not possible to draw any conclusions about
convergence to the game’s Nash set — qualitatively or quantitatively. To the best of our knowledge,
the closest work to our own in the literature is the paper of Cohen et al. [8] who showed that the
EXP3 algorithm with explicit exploration converges at a sub-geometric rate in potential games; our
analysis allows for a wider range of learning rates, so we are able to obtain faster convergence rates
than Cohen et al. [8]. We are not aware of any other comparable results in the literature.

2 Preliminaries

Finite games. Throughout this work we consider N-players finite games in normal form. Formally,
each player, indexed by i € A" = {1,..., N}, has a finite set of pure strategies a; € A; = {1,...,A;},
and a payoff function u;: A — R, where A = []; A; is the space of all pure strategy profiles. For
concision, we will denote such a game as a tuple ' = (N, A, u).

During play, players can also play mixed strategies, i.e., probability distributions x; € X; = A(A;)
over their pure strategies. In this case, we will write x;,, for the probability that player i € N selects
a; € A; under x;, x = (x1,...,xy) for the players’ mixed strategy profile, and X := []; X; for the
set thereof. Finally, when focusing on the mixed strategy of a particular player i € A/, we will use the
shorthand (x;;x_;) := (x1,...,%;,...,xy) — and, similarly, (a;; @_;) for pure strategies.

Now, the expected payoff of player i/ in a mixed strategy profile x € X is given by

wi(x) = wi(x;30-) = Z Z ui(ai,...,aN)  Xi,a; " " XN,an (1)
[e3] E.Al (XNG.AN
where u;(ay,...,ay) is the payoff of player i in the action profile @ = (ay,...,an) € A. For

posterity, we will also write v;,, (x) = u; (a;;x—;) for the payoff that player i would have gotten by
playing @; € A; against the mixed strategy profile x_; of all other players. In this way, the mixed
payoff vector of the i-th player can be seen as a vector field v;: X — ); = R which can be written
in components as

Vi(x) = (Vig; (X)) ared; - 2

Again, we will write v(x) = (vi(x),...,vn(x)) for the ensemble of payoff vectors of all players
and Y = [[; ) for the space of payoff vectors respectively. Finally, in a slight abuse of notation,
we will identify @; with the mixed strategy that assigns all probability to @;, and we will write
vi(@) = (u;(@;; @—;)) o, e, for the corresponding pure payoff vector.

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash
equilibrium i.e., a (possibly) mixed strategy profile x* € X’ that discourages unilateral deviations;
formally, x* € X is said to be a Nash equilibrium of T" if

ui(x*) > ui(x;;x*;) forallx; € X;andalli € N. (NE)

The set of pure strategies supported at the equilibrium component x; € &; of each player will
be denoted by supp(x;) = {a; € A; : x/, > 0}. In turn, the size of the support of x* leads to
the following dichotomy: x* is called pure if supp(x}) = [1;cn supp(x}) is a singleton and mixed
otherwise.



136
137
138
139
140
141

142

143
144
145
146
147
148
149

151

152
153
154
155

156
157
158
159
160

161

162
163
164
165
166

167
168
169
170
171

172
173

174
175
176
177

Finally, we will also say that a Nash equilibrium x* is strict if (NE) holds as a strict inequality
whenever x; # x}; obviously, strict equilibria are also pure, but the converse need not hold. Strict
Nash equilibria play a key role in game theory because any unilateral deviation incurs a strict loss
to the deviating player; put differently, if x* is strict, every player has a unique best response. In
addition, they are the only equilibria that remain invariant under small generic perturbations of the
game [14]; these robustness properties of strict equilibria will play a key role in the sequel.

3 Regularized learning

Throughout our paper, we will focus on a wide family of learning schemes that unfold as follows:
At each stage n = 1,2, ..., every player maintains a “score vector” ¥; , € J; whose components
indicate the player’s propensity to play a given pure strategy. More formally, this is captured by a
player-specific “regularized choice” map Q;: Y; — X; which outputs the player’s mixed strategy
Xin=0;(Y:,) as a function of ¥; ,, (see below for a detailed definition). Then, after selecting their
actions and collecting their rewards, players also receive — or otherwise construct — an estimate V; ,,
of their mixed payoff vectors, which is used to increment their score variables and continue playing.

Formally, this learning process, which we call “follow the generalized leader” (FTGL), can be
described via the round-by-round recursive rule

Xi = 0i(Yin)
’ ’ (FTGL)
Yi,n+1 = Yi,n + ynVi,n
where vy, > 0 is a “learning rate” parameter such that ), y,, = co. The terminology FTGL alludes
to the widely known “follow the regularized leader” algorithm, which is, historically speaking, the
parent-scheme of FTGL. The link to regularization is provided by the method’s choice map, which
we detail below; the assumptions for the signal sequence V; ,, are provided right after.

3.1. The choice map. The guiding principle behind the definition of the players’ choice maps
Q;: Vi = X, i € N, as follows: Because the players’ score variables Y; ,, are assumed to represent
an estimate of each strategy’s cumulative payoff over time, Q; is defined as a “regularized” version
of the best-response correspondence y; > argmax,, ¢ x, (yi»x;).! On that account, we will consider
regularized best responses of the general form

Qi(yi) = argmax{{y;, x;) — h;(x;)} 3)

Xi €X;

where h; : X; — R denotes the i-th player’s regularization function.

For concreteness, we will focus on a class of decomposable regularizers of the form h;(x;) =
Ya e, 0i(xi) where the so-called “kernel function” 6;: [0,1] — R is assumed continuous on
[0, 1], twice differentiable on (0, 1], and strongly convex, i.e., inf 0,11 67" > 0. Of course, different
regularizers give rise to different instances of (FTGL); two of the most widely used and cited examples
are as follows:

Example 3.1 (Entropic regularization and multiplicative/exponential weights). Perhaps the most
common representative of regularization functions is given by the entropic kernel 8(x) = xlogx
i.e., h(x;) = Xg,eA; Xia; 10€Xiq;. This choice of regularizer is well-known to provide the logit
choice map A;(yi) = (exp(Yia;))are; | Y a;eA; €Xp(Viq; ). The resulting algorithm is known in the
literature as the multiplicative/exponential weights algorithm [1, 2, 31, 43, 47].

Example 3.2 (Euclidean projection). Another popular regularizer is the quadratic penalty A(x) =
> uXa’/2, which yields the payoff projection map TI(y) = argmin .||y — x||?, cf. [28, 48].

Remark 3.1. Examples 3.1 and 3.2 are archetypes of a fundamental dichotomy between regularization
functions: in the former case, we have 6’(0) = —oo, so & becomes steep at the boundary of the
player’s strategy space; in the later case, 6 is differentiable at 0, so & is non-steep. We will see that
this steep/non-steep dichotomy has a crucial impact on the method’s rate of convergence.

UIn this context, regularization can be seen as a means to reinforce exploration so as to avoid committing prematurely to a
given strategy.
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3.2. The feedback model. As we mentioned in the beginning of the section, the “payoff signal”
V,, contains information about the structure of the algorithm as well as the setting under consideration.
Thus to account for as broad a range of algorithms as possible, we will assume that the players’ signal
sequence is of the general form

Vi =v(Xpn) +Z, 4

for some abstract error process Z,, = (Z; ,)ien- Tp be clear though, we should stress that we do not
assume that V,, is directly correlated to — or obtained by — the chosen mixed strategy X,,; this will be
made clear in the range of models we present below.

To distinguish between random (zero-mean) and systematic (non-zero-mean) errors, we will further
decompose Z, as Z, = U, + b,,, where

ban[Zn|]:n] and ]E[Unl]:n] =0 (5)

with F,, denoting the history of X,, up to stage n (inclusive). Notice that, since the feedback signal
is generated only after the player chooses a strategy, V,, is not F,,-measurable in general. On this
account, we will make the following blanket assumptions for the input signal sequence V,,:

1. Vanishing bias: b, converges uniformly to 0 as n — oo. (AD)
2. Bounded variance: E[|U,||? | Fn] < o for some g > 2. (A2)

In the above o7, is assumed to be a deterministic, stage-specific, and possibly increasing bound on
the variance of the noise component U,,; our precise assumptions for its growth (relative to b,, or
otherwise) will be detailed later in this section.

Specific models. So far, the formulation of (FTGL) has been kept intentionally abstract and devoid
of any modeling assumptions for how the players’ payoff signals are generated or estimated. To
illustrate the width and breadth of (FTGL), we present of series of specific models below, including
the popular FTRL and optimistic FTRL methods:

Model 1 (FTRL with oracle-based feedback). Assume that each player chooses an action based on a
given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round n = 1,2, . . ., each player chooses a
pure strategy «; , € A; based on a mixed strategy X; , € A; and subsequently observes the payoff
vector

V'l',n =V (an) = (ui(a'i;a—i,n))d[EA[' (6)
Thus, in this case, (FTGL) boils down to the standard “follow the regularized leader” (FTRL)

algorithm of [43, 44]. As for our basic feedback assumptions, we readily see that b; , = 0 and
Ui = vi(a,) — vi(Xy); hence:

* (Al) is trivially satisfied since b; , = 0.
* (A2) is again satisfied because |U; , ||+ = ||vi(@n) — vi(Xn)ll« < 2maxqeallvi(a@)]l., so Uy, has
uniformly bounded moments for all g € [1, oo]. §

Model 2 (FTRL with bandit feedback). If the players only observe their realized rewards, they
have to construct a model for V,, based on incomplete information. This is the standard setting for
multi-armed bandits [5, 6, 29], so it is often referred to as the “bandit feedback™ model. In this case,
the players’ action selection process is as in Model 1 above, but the feedback signal sequence V, is
now reconstructed by means of the importance-weighted estimator

L{ain = a;i}

Viajn = X—Mi(a'n) (IWE)
i@i,n

where X; , = (1 — £,)X;.n + &,/|A;| is the mixed strategy of the i-th player at stage n. Compared to
X; » the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
&, — 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under X, it will still be sampled with positive probability
thanks to the mixing factor &,,.

The importance-weighted estimator (IWE) estimator may be seen as a special case of the model
(4) with U; ,, = Vi, — vi(Xy) and b;, = v;(X,) — vi(X,,). Both assumptions (A1),(A2) are again
satisfied; indeed:
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Feedback FTRL OptFTRL EG/MP
Full information b, =0 1bnlls = O(yn) 15 Il = O(yn)
op = o, =0 on=0
Oracle-based b, = [1brll« = O(yn) 16nll« = O(yn)
o =0(1) o =0(1) o =0(1)
Bandit Ibnlls = O(en) 1bn |l = O(en) Ibrll = O(en)
(payoff-based) o, =0(1/g,) on=0(1/g,) o, =0(1/g,)

Table 1: Recasting different online learning algorithms within the general template of (FTGL).

» For (Al): A standard calculation performed in Appendix D reveals that ||b; ,||« = O(e,). Thus
our assumption is satisfied since €, — 0.

* For (A2): Again a standard calculation presented in Appendix D reveals that ||V; ,, — v; X))l =
O(1/&,) and thus the noise has bounded moments, o7, = @(1/g,) for all g € [1, ].

Model 3 (OptFTRL with oracle-based feedback). Following Rakhlin and Sridharan [42], the so-
called “optimistic” variant of FTRL is given by the recursive formula:

Vin=Yin+¥aVin-t  Xin=Qi(Yin)  Yins1 =Yin+¥nVin (OptFTRL)
In the above the payoff signal V; ,, which depends on the state X,,, is generated as follows: at each
round n = 1,2,..., every player i € N picks an action «; ,, € A; based on Xi,n € X; and observes

the pure payoff vector v;(an) = (u;(@i; @i n))a;c4,. At first glance, it seems difficult to reconcile
the above update structure with that of (FTGL); however, it is indeed possible to integrate (OptFTRL)
within (FTGL) by considering the auxiliary states X,, = Q(Y,) (which are never played and are only
used here for the analysis).

Indeed, each player’s input signal is a special case of (4) with payoff feedback V; ,, = v;(ay), zero-
mean noise U; , = v;(a,) —v;(X,) and bias b; ,, = v;(X,) —v;(X,,) that satisfy both the assumptions
(A1),(A2). In more detail, we have:

s For (A1): ||binlls = Ivi(Xy) = vi(Xn)]l« = O(yn), which goes uniformly to O whenever y,, — 0.

s For (A2): [|Uinlls = [Ivi(an) = vi(Xu)ls < 2maxgeqllvi(a)|l. and thus the noise has bounded
moments for all g € [1, oo].

Remark 3.2. Based on the structure of the aforementioned algorithms, it is easy to check that we

capture a-fortiori the model of a full-information payoff signal; for a more complete account of the

different algorithms and feedback models see Table 1.

4 Analysis & Results

We are now in a position to state our main convergence results for (FTGL). We begin with a precise
statement and discussion in Section 4.1; subsequently, we present the main proof techniques in
Section 4.2.

4.1. Statement and discussion of our main results. Our analysis will focus exclusively on strict
Nash equilibria. As we discussed in the introduction, the reason for this is that only strict Nash equi-
libria can be asymptotically stable under FTRL [11, 15], so they are the only reasonable candidates
to consider when examining the rate of convergence of a regularized learning algorithm.?

To proceed, we will need one technical assumption linking the learning rate of (FTGL) and the
bias/variance parameters of the driving feedback sequence V,,. This is as follows:

1+4
ket Vi O}

[22:1 Vk] repal?

2 As a sidenote, we should remark here that FTGL also contains the optimistic FTRL algorithm, which does converge to
mixed Nash equilibria in bilinear zero-sum games with perfect, deterministic feedback [16, 27, 34]. At first glance, this would
seem to contradict the results of [11, 15], but one needs to bear in mind that the convergence of (OptFTRL) to mixed equilibria
only occurs in settings with perfect information (i.e., V,, = v(Xy) foralln = 1,2, .. .). In the presence of uncertainty, this
convergence is destroyed [7, 23], so there is no contradiction with the results of [15]. Because we are primarily interested in
learning with limited information and/or under uncertainty, we will not treat this somewhat fragile case.

The sequence ¢,, := is summable for some 8 < 1. (A3)
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Assumption (A3) imposes a growth condition on the method’s learning rate relative to the bias and
variance parameters of the input signal sequence V,,, but it is otherwise a technical prerequisite for
the analysis to come. What is more important for our purposes is that the concrete models that we
discussed in the previous section satisfy it for a wide range of the player-chosen parameters y,, (and
&, in the case of bandit-based algorithms); to streamline our presentation, we postpone a more precise
discussion of this issue until after the statement of our main results.

The last element that we need to introduce concerns the players’ choice of regularizer: clearly, since
propensities are transformed to strategies via each player’s individual choice map Q;: V; — A, it
stands to reason that the underlying regularization function % plays a major role in the method’s
rate of convergence. Indeed, given an update of the form Y, « Y, +v,,V,,, the method’s strategy
variable will move forward as X,,4; < X,, + y,JQ(V)V,, + O(y2), where JQ denotes the Jacobian
matrix of Q. Thus, to leading order in vy, the update X,,.; < X, is dominated by the first derivatives

of 0.

By a relatively straightforward application of the Legendre identity from convex analysis (Q = (0h)~!
in our context; see below for a precise statement), this rate of change is related to the inverse mapping
of the derivative each 6; (the kernel of the underlying regularizer). Motivated by this observation, we
introduce below the algorithm’s so-called rate function:

@)1 ift > 0/(0%),

¢:(1) = {0 otherwise. ™

The definition of the rate function ¢ captures the sensitivity of the choice map Q in a very precise
way: If the score difference corresponding to two pure strategies @, 8 € A; grows as yg — yo =t
for some ¢ > 0, then the probability of playing the strategy with the lesser score must be less than
the probabiity of playing the strategy with the higher score. The precise amount of this disparity of
course depends on the player’s choice function Q and ¢ acts as a “transfer” function in this regard.
Specifically, as we show in detail later, we have x, = ¢(—0(?)), i.e., ¢ determines the rate at which
xo vanishes. For different regularizers we present the corresponding rates in Table 2.

With all this in hand, our main result can be stated as follows:

Theorem 1. Let x* be a strict Nash equilibrium of T, and fix some confidence level 5 > 0. If
Assumptions (A1)—(A3) hold, there exists an unbounded open set of initial conditions Winiy € Y and
constants d;, c; with ¢; > 0 such that, if Y1 € Wiy, we have:

1. X, converges to x* with probability at least 1 — 6.
2. Conditioned on the above, the rate of convergence for each player i € N is given by

R (g — et S
WXon =3 S 23 o dildi= e DT ). (®)

Armed with this general result, we readily obtain the following immediate consequences thereof:

Corollary 1. If the regularizer employed is non-steep (i.e., 6; is differentiable at 0), X,, converges to
x* in a finite number of iterations.

Corollary 2. Suppose that FTRL is run with oracle-based feedback as per Model 1 and a learning
rate of the form y,, o« 1/nP, p € [0, 1]. Then the conclusion of Theorem 1 holds.

Corollary 3. Suppose that FTRL is run with bandit feedback as per Model 2, a learning rate of the
form vy, oc 1/nP, p € [0, 1] and a mixing parameter €, < 1/n", r € (0, 1/2). Then the conclusion of
Theorem 1 holds.

Corollary 4. Suppose that Optimistic FTRL is run with oracle-based feedback as per Model 3 and a
learning rate of the form vy, o< 1/n?, p € (0, 1]. Then the conclusion of Theorem 1 holds.

More generally, we show in the supplement that the conclusion of Theorem 1 holds for all algorithms
and feedback models presented in Table 1: in all cases therein, players can employ step-size policies
of the form vy,, o< 1/nP, p € [0, 1], and a mixing parameter &, o« 1/n” with r € (0, 1/2) for the bandit
models. The only case that does not follow as an immediate corollary of Theorem 1 is the case of
constant step-sizes for Optimistic FTRL and EG/MP; however, a slightly more refined argument (that
we present in the Appendix C) shows that constant step-sizes are also covered by the convergence
rate guarantee (8) of Theorem 1.
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ALGORITHM KERNEL 6 (x) RATE ¢(-y)

Multiplicative Weight Updates xlog x exp(—y)
Projection Gradient Descent x2/2 -y
Inverse Updates —logx -1/y
g-Replicatorg g [q(1-q)]7! (x - x9) g7+ (1 —gq)y]Va!

Table 2: Regularizers & correspinding rates.

4.2. Sketch of proof and main techniques. At a high level, the main idea of the proof of The-
orem 1 relies on a tandem application of martingale limit theory and convex analysis in order to
exploit the specific structure of (FTGL). While martingale limit theory emerges naturally to control
the components of the noise, a delicate analysis of the contribution of 4; in the solution of the convex
constrained optimization problem, that x = Q;(y) induces, is necessary to derive the aforementioned
generic rates. Below we provide a sketch of the main steps in this analysis

Step 1. Our starting point is to explore the geometric properties that are induced by the existence of a
strict Nash equilibrium. Indeed, the fact that (NE) holds as a strict inequality for each pure strategy
against the equilibrium’s strategy, ensures convergence properties for strict Nash equilibria. More
precisely, an immediate implication of (NE) is that there exist neighborhood ¢/ of x* and constants
Ci,-...,CpN such that

Via (x) = Vig;(x) > ¢c; forallx e and @; # @], @; € Aj,i € N “
In other words, in the neighborhood U/ the payoff of the equilibrium’s strategy strictly dominates
all other strategies’ payoffs for each player. However, since the linchpin of (FTGL) is the interplay

between X and ), for the purpose of our analysis, we need to investigate the variational structure of
U in both spaces.

Informal Lemma 1. There exists a neighborhood U, constants cy,...,cn and My, ..., My for
which (9) holds such that [1;cnr Qi(Whas,) € U, where Wy, are open sets of the form >
Wu, ={Y; : Yia: = Yia; > M; forall a; # o}, a; € Aj} for M; > 0,i e N (10)

Step 2. We now focus on one player i € N and drop the index i altogether. First we prove that there
exists an open set of initializations Wi of (FTGL), for which with arbitrary high probability the
dual variable (Y3 )ren never exits W), and thus its image remains in the desired neighborhood U/.
We start by writing the score differences between eagh pure strategy @ € A and a* € supp(x™)

Yanet = Yarnet = Ya1 = Yar 1+ > yi(drifte +noise + biasy) (11)
k=1
where drifty = vo(Xk) — vor (Xk),noisex = Ug.k — Uqg+ k,biasg = bo k — o+ k. We will prove by
induction our forward-invariant statement; let Y, € W, and thus X, € U forall k =1, ..., n then

* By (9) we have 3} _, yxdrifty < —c X}, yx forallk =1,...,n.

* By the triangle inequality and (A1), the term }}}'_, yxbiasy is dominated by the term X} _, yrdrifty
foralln=1,2,....

* Subsequently, by leveraging the machinery of martingale’s maximal inequalities and assumption
(A2), which we present in Appendix A and using learning rates that respect (A3), we prove that with
probability at least 1 — &, for any fixed confidence level 8, 3.} _, yxnoisex, which is a martingale, is
also dominated by the term Y 7_, yxdrifty foralln =1,2,...

* We now define the open set of initial conditions W,yi;, which is of the form described in (10), with
constant Mp;. By choosing* M > M + i1 Yk (noisey + biasy) — (¢ — ¢’) X}_, vk, for any
¢’ < candanyn > 1, since Y1 € Wipj we have that Yy 41 — Yo ne1 < —M foralln > 1.

By substituting the inequality for Min; in (11) we get Yo ni1 — Yorne1 < =M — ¢’ X7_, vk and
convergence occurs as an immediate consequence; Indeed X+ ,, — 1, since whenever Y, — Yo« —
—oo, it holds that each @ € A \ supp(x*) becomes extinct i.e., X, — O.

Step 3. We now proceed to the delineation of the rates of convergence. Using the KKT conditions
(Lemma B.1) combined with Eq. (11),Eq. (9) and the fact that Y; € Wj,;x we have

n n
9/(Xa,n+1) - gl(xa*,nﬂ) = Ya,n+1 - Y(x*,n+1 < =Mt — ¢ Z Yk + Z Yk (noisey, + biasy)
k=1 k=1

31t is worth mentioning that the images of these open sets belong to neighborhoods of x*, which are nested as M; increases.
4such a Mig;; exists since both the bias and the noise terms are dominated by the term — (¢ — ¢’) 22:1 Vi-
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(a) Battle of the Sexes (b) Pigou Network

Figure 1: For the Battle of the Sexes experiment, we initialize uniformly randomly our executions from
Yinit € [-1,1] X [-1, 1] and examine the instantiations of Model 1-3 using constant-step size and exploration
rate &, o 1/+/n. For the Pigou’s game, our setup includes two alternative disjoint paths for N = 1000 drivers.
The first path has linear latency ¢ (x) = x/N while the second one has constant unit congestion, £, (x) = 1,
where x denotes the population of the drivers that uses the corresponding path.

Recall that 6 is strong convex, or equivalently 6’ is strictly increasing; by rearranging and substituting
to the above inequality we get

n n
0'(Xans1) 0’ (X)) =M =¢' Yy <d=¢' Y vk (12)
k=1 k=1
where d = -M +60’(1) and @ € A, @ # a*. By aggregating over all @ € A, a # a*

e = Xnerl =201 = Xar i) €20 ) ld =" > i) (13)
=1

acA+a* k=

which indicates the rate of convergence and completes our proof.

S Numerical experiments

In this section we perform a series of numerical experiments to validate our theoretical findings.
Specifically we are interested in verifying both the correctness in the computation of the rates via ¢;
for different regularizers and at the same time the fact that convergence speed is invariant to different
feedback models and algorithmic variants of (FTGL).

To do this, we start by examining variations of (FTGL) in the archetypal game of Battle of the Sexes,
a popular two-player benchmark of the coordination games, which however involves elements of
conflict as well. This game exhibits two strict Nash equilibria and one mixed equilibrium (for the
exact definition, see Appendix E). We then seek to experimentally study the performance of (FTGL)
while the number of the players scales up. To do this we use the atomic version of classical Pigou’s
congestion game [39], where N units of traffic (e.g., rush-hour drivers) leave from O (origin) to D
(destination) at the same time and each driver has the same dominant pure strategy/path for this trip.
Accordingly to Table 2 the decay rate for the entropic regularization is exponential while for the case
of euclidean is linear, which indeed yield linear and constant-time convergence as Fig. 16 illustrates.

We defer a detailed exposition of various configurations with different step-sizes, alternative dis-
cretization methods like MirrorProx and ExtraGradient and feedback models with the presence (or
not) of extra heavy-tailed/uniform/gaussian noise again to the paper’s supplement.
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A Martingale limit theory

Our analysis leverages tools from martingale limit theory. Below we present the two main theorems that

we utilize in the main body of our proofs.

¢ (Doob’s inequality), also known as Kolmogorov’s submartingale inequality gives a bound on the
probability that a stochastic process exceeds any given value over a given interval of time.

* (Burkholder’s inequality), also known the Burkholder-Davis-Gundy inequality is a remarkable result
relating the maximum of a local martingale with its quadratic variation.

Theorem A.1 (Doob’s inequality). Let S, be a martingale with respect to the filtration JF,,, then for
eache >0and g > 1,

P( sup |Sk| = &) <

1<k<n

E|S,|? . .

L (Doob’s inequality)
&4

Theorem A.2 (Burkholder’s inequality). Let S,, be a martingale with respect to the filtration F,, and

X, =8n — Sn-1. Then for all 1 < g < oo, there exists constant Cy depending only on q such that

n q/2

E|S.? < C,E|> X} (Burkholder’s inequality)

k=1

Proofs for these two theorems can be found in [19].

B A dichotomy between the regularizers

Our main result (Theorem 1) provides a mechanism to compute the convergence rate to a strict Nash
Equilibrium universally for all smooth convex regularizers h; (x) = ¥ o, ¢4, 0i(Xq;). An important
implication of our main theorem (Corollary 1) is that for the case of non-steep kernels (i.e., 6; is
differentiable at 0), X, converges to x* in a finite number of iterations. Below we give some intuition
for the interested reader about the differences between the steep and non-steep case.

Steep vs non-steep. In this section we elaborate in detail the dichotomy among the different
regularizers mentioned in Sections 3.1 and 4. As we established in Section 3.1, different players may
apply different regularizers A; in their choice maps Q;(y;). Depending on the regularizer chosen, the
behavior of (FTGL) could vary significantly. To investigate more this diversity, we start by describing
formally the strategy-choice step x; = Q;(y;) as a convex constrainted minimization problem.

Qi(y;) = —argmin {A; (x;) = (xi, i)} (B.1)
Xi EX,'
Following also the folklore convention from convex analysis, we express & as an extended-real valued
function 4 : ¥V — R U {oo} with value oo outside of the simplex X. Additionally, the subdifferential
of hatx € V is defined as:

Oh(x)={y eV :h(x") 2 h(x) + (y,x" —x) Vx € V} (B.2)

If dh(x) is nonempty, then 4 is called subdifferentiable at x € X'. When x € ri(X’) then dh(x) is
always non-empty or more compactly ri(X) € domdh = {x € X : dh(x) # 0} C domh C X.
Notice that when the gradient of & exists, then its subgradient always contains it. Leveraging the
property that local and global minima coincides in the case of convex function, Fermat’s rule provides
a simple characterization of the minimizers of a function as the zeros of its subdifferential:

Fact (Fermat’s Rule). For a proper convex function f, argminf = zerdf = {x e X |0 € df(x)}

With these in mind, we present a typical separation between the different regularizers,, focusing on
the more simple case of decomposable ones /(x) = 3 ,c 4 6o (x). On the one hand, steep regularizers
have differentiable kernels on (0, 1] and become infinitely steep as x approaches the boundary or
0’(0) = —co. On the other hand, for the non-steep case the kernel is differentiable in all of [0, 1].
As a result of Fermat’s Rule, when a steep regularizer is employed the points of the boundary are
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Figure 2: Steep vs. non-steep regularizers (note in particular the singular behavior of the gradient at the
boundary in the case of steep regularizers).

infeasible not only as initial conditions but also as part of the sequence of play, while non-steep ones
allow completely the sequence of play to transfer between the different faces of the simplex. The
qualititative difference in behavior between these cases is illustrated in Fig. 2 (which shows the very
different behavior of the derivates of & near the boundary of the state space).

Having discussed the connection between the choice map and the properties of the regularizer, the
following lemma quantifies the gulf between the steep and non-steep case and provides the relation
between mixed strategies and score vectors and the mirror map (3) that defines the dynamics (FTGL).
More precisely, we focus on the perspective of an arbitrary player, say i, and for ease of notation we
write Q, x and y instead of Q;, x; and y; respectively.

Lemma B.1. x = Q(y) if and only if there exist u € R and v, € R, such that, for all @ € A, we
have: a) yqo = % + U — Vo, and b) xqvo = 0 In particular, if h is steep, we have v, = 0 for all

a € A

Proof. Recall that
O(y) = arg max {(ylx) = h(x)}

=argmax{z YaXa — h(x) : ZxazlandVaE.A:xn 20}

acA acA

The result follows by applying the Karash-Kuhn Tucker (KKT) conditions to this optimization
problem and noting that, since the constraints are affine, the KKT conditions are sufficient for
optimality. Our Langragian is

LOpY) = () Yaxa =h() =u( Y xa =D+ ) vaxa

acA acA acA

where the set of constraints (i) of the statement of the lemma are the stationarity constraints, which in
ourcaseare VL(x, 1, v) =0 & V(X gea YaXa —h(x)) = uV(X geaXa—1) =D aeca VaVXa , While
the set of constraints (ii) of the statement of the lemmas are the complementary slackness constraints.
Note that complementary slackness implies that whenever v, > 0 whenever « ¢ supp(x). Finally, if
h is steep, we have |04 h(x)| — oo as x — bd(X), which implies that the KKT conditions admit a
solution with v, = 0. [ |
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C Proof of Main Theorem

Our first lemma shows a property of strict Nash equilibria. More precisely, we prove the existence
of a neighborhood U/ in which each player’s payoff corresponding to the strategy of the equilibrium
outweighs the payoff of any other pure strategy.

Lemma C.1. Let x* = (a’f, e, a}i,) € A be a strict Nash equilibrium. Then there exists a neighbor-
hood U of x* and constants c; such that for each playeri € N':
Via: (X) = Vig;(x) 2 ¢; forallx e and a; # @}, a; € A;. (C.1)

Proof. Our claim is a consequence of the definition of strict Nash equilibria. Specifically, from (NE)
for each player i € N we have that

Via (x") > vig,(x") forall a; € A, a; # @} (C.2)

By continuity there exists a neighborhood U € X and ¢; > 0 for each player i € NV such that
Via (X) = Vig;(x) = c; forallx e U (C.3)
[ ]

¥y The following lemma plays a central role in the proof of our
main theorem (Theorem 1). More precisely, Lemma C.2 pro-

* vides a detailed analysis of the topology of a neighborhood U/
where variational inequality (C.1) holds both in primal space
X and dual space ). In order to achieve that we introduce
~ the notion of “(a;, M;)-score-dominant” open set for a player
xt=(af, ... ay) Mi <Y or ~Yia; | € N, which we denote W; (M;).
Definition (Score-Dominant Collection). Letx* = (aj,...,a}) € Abe a strict Nash equilibrium of

a finite game T'. Then a collection is said to be “(a}, M;);c nr-score-dominant” if there exist positive
constants M; > 0 corresponding open sets W; (M;) of the form

Wi (M;) ={Y; : Y,-a;« —Yiq, > M; forall a; # o}, a; € A;} for each player i € N (C4)

Lemma C.2. Let x* = (aj,...,ay) € A be a strict Nash equilibrium. Then for every & € (0, 1),
there exist constants M; . and the corresponding score-dominant open sets for each playeri € N
such that: [l;en QiWi(Mi.s)) € Ug, where Uy = {x € X : Xia; > 1 — & for every playeri € N}

Proof. For an arbitrary player i € N let W;(M;_ ) be a score-dominant open set. We will show that
any M; o > 0/(1) - ef(lTsi\) > ( satisfies the desideratum. Indeed, again by using Lemma B.1 for a

Y; € Wi (M, ¢) with x; = Q;(Y;) we have that
Yiar = Yia; > M« (C.5)
0’ (xia:) = 6} (xia)) = (Var = Vay) > M. )
with v, > 0 and x;o, = 0 whenever x;o, > 0. Notice that since M; o > 0 and 6; is strictly increasing,

it holds that x;o, < Xiat- Indeed, assume by contradiction that x;,, > Xia; for some «;, then we
examine two different cases:

(i) If xjq; = 0, then x;q; > Xjo; forall a; € A; with x;o, > 0 for at least one @; € A;,a; # a;
which is a contradiction to (C.6).

(ii) if Xia; > 0, then (C.6) implies that M; o < 0’(xm;f) —0!(xiq;) < 0 which is again a contradic-
tion.

Therefore Var = 0 and (C.6) can be rewritten for all @; # o with x;q; > 0 as
6} (Xiay) < ~Mj.e+ 6 (iar) < ~Mj o +6'(1) < 0(1%7) (ek)
where last inequality holds by the choice of M; . > 6;(1) - 9;(@) > 0. Again, since 6’ is strictly

increasing, this implies that for all @; # a; either x;4; = 0 0r 0 < x4, < ITE,»I' By union bound, this

implies that x;o: > 1 — & and equivalently thatx € U,. [
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Remark C.1. Itis easy to check that as M increases the score-dominant sets and their corresponding
images are nested. Indeed if M’ > M, = W(M) C W(M’) = QW (M)) € Q(W(M’)), since
Yiar =Yia; > M > M, forall ; # o}, a; € A;.

Remark C.2. Notice that since the above analysis is for each strategy a; € A; of player i, it implies
that not only the images Q; (W, ) are nested, but also that if x; = Q;(Y;), ¥; € Why, all x;4, — 0 for
a; #a;asM; — oo.

Theorem 1. Let x* be a strict Nash equilibrium of T, and fix some confidence level 5 > 0. If
Assumptions (A1)—(A3) hold, there exists an unbounded open set of initial conditions Wit € Y and
constants d;, ¢, with ¢; > 0 such that, if Y1 € Wiy, we have:

1. X,, converges to x* with probability at least 1 — 0.
2. Conditioned on the above, the rate of convergence for each playeri € N is given by

* , n
Won =il S 23 o dildi= e DT ). (®)

Remark C.3. The probability guarantee is over only the potential randomness that the payoff oracle.
i.e., when players have access to a perfect payoff oracle; the results hold with probability 1.

Proof. Fix a confidence level ¢ and the parameters of the algorithm respecting (A1)—(A3). We will
prove that there exists a “score-dominant” open set of initial conditions Wiyt

Whnit = {Y : Minit < Yor — Yo forall @ # a*,a € A} C Y for some M, > 0

such that whenever Y; € Wi then with probability at least 1 — § the sequence of play generated by
(FTGL) converges to x* with rate given by the function ¢;

e i a0,
9:(1) = {0 otherwise.

which depends on the choice of the kernel 6; of each player and the payoff matrix of the game.

(C.8)

For convenience of notation we focus on an arbitrary player in the proof, without loss of generality let
it be the i-th one, and we completely drop the index i. Since the equilibrium is strict by Lemmas C.1
and C.2 there exist a neighborhood Usyict, Cstrict > 0 and Myice > 0 such that

Var(X) = ve(x) = csuiee forall @ # @, a € A and x € Usgyict (C.9
Y, — Yo > Myice foralla #a",@ € Aand x = Q(Y) € Usgrict (C.10)
We start by proving the following claim:

Claim 1. Let W(M) be a “score-dominant” open set for the strict Nash equilibrium x* . Then there
exists Minic > 0 such that if Y1 € W(Minit) = Whnit then with probability at least 1 — § the sequence
of play (Yn)nen stays in W(Myicy)-

Proof of Claim. By definition of (FTGL) for the score differences we have

n
Yont1 = Yornt1 =Ya1 —Yor 1 + Z vk (drifty + noisey + biasg) (C.11)
k=1
where drifty = v (Xk) — v+ (Xk), noisex = Uy k — Ug~ k. biasg = by k — b o+ k. Notice that

* (Bias) By (Al): 35_, yxbiasg < 230 villbrlls = o(Xi_; &) (C.12)
* (Payoff) By Lemma C.1: 3} _, yxdrifty < —c X7, vk (C.13)
* (Zero-mean Noise) For the remaining term, R,, = 3} _, yxnoisey, firstly notice that it is trivially
a martingale. We will prove that with probability at least 1 — § this martingale is bounded
above by a term &, which is dominated by the term }.}_, yx. Consider the event D, s, =

{sup;<x <n|Rk| = &, }; we will show that the union of these events £ = ;| D, &, occurs with
probability at most 6 when &, = £(X;_, yx)® with a < 1. Using Theorem A.1 and Theorem A.2

we have ) e
[1RA7] _ o ELSin v IULIR)*]
&1 T &l

P(D,.z,) < E (C.14)
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612 Fact (Generalized Holder’s Inequality). We will now consider a variation of the
613 Holder’sinequality

r r—1
n n ur n
Zakbk) < (Z a,;l) Za;‘*’”’b;forazzr > 1,ue(0,1) (GH)
k=1 k=1 k=1
614 Applying (GH) for ay = y,%, br = |Ukll2, r =q/2and u = (r — 1)/2r = (q — 2)/2q, we get
q-2 1+q/2 q
c Zn_ q2 n_ q ElU 4
]P(Dn,fn) < q( k=1 V) k;l Yi U] (C.15)
’ &n
q-2 2
¢q(Sia 70T Ty v ELELULN? | Fill 16
< 27 .
q-2 1+q/2 _q
cg(Zia v T iy, e
PRACIS g k=17 k C.17)
1+4
a . Cq Zn— y 2 a.ll
615 Recall that &, = £(X7_, vk)” with @ < 1 and let us denote 6, = — —=*=Lk_—Lk_ or
4 &9 (2 v
2 q

1+
C_‘I T v 2oy

616 equivalently §,, = AR 5.7 for some B < 1. By assumption (A3), 6,, is summable and
617 by controlling the parameter £ we can ensure that
3 8, =6 (C.18)
618 Applying union bound to all the events Dn,n;l we have that with probability at least 1 — ¢ it is
S yinoisey < &, forallm=1,2,... (C.19)

k=1

619 For the rest of the proof we condition to the event £¢. Let us define a constant Mjyj, such that
620 My > max{Myict, Mgurict + SUp,»1{25_; vk (noisex + biasy) — (¢ — ¢’) X}, v« }, for any arbitray
21 choice of 0 < ¢’ < cgrict - . Let us recall the definition of a “score-dominant” open set

WM)={Y :Y, - Yo >Mforall @ # o, € A}.
622 We will prove by strong induction that Y,, € W(Mgyic), for all n > 1.

623 * For the base of the induction, we have that Y; € W(Miy) and by the choice of M, trivially we
624 get that Y] € W(Myict)-

625 * For the inductive step, let us assume that Yy € W(Mgyier) for all k = 1,2, ..., n, we will show
626 below that Y,,+1 € W(Mgyict)-

627 Combining (C.12),(C.13),(C.19) for the terms >} _, yxdrifty, 3}_, yxknoisex, >;_, yibiasy the
628 claim’s assumption Y| € W(Mgyict) and the choice of Miyit, (C.11) can be bounded as

n
Yot = Yar a1 = Yai = Yor1 + Z v (drift, + noisey + bias) (C.20)
k=1
n n
Ya,n+1 - Y(t*,n+l < Ya,l - Ya/*,l — Cstrict Z Yk + ‘fn +2 Z 7k||bk||* (Czl)
k=1 k=1
n n n
Yot = Yar et € —Minic = (Corict = ') ) ve+én+2 ) yellballo=¢' Yy (C22)
k=1 k=1 k=1
n
Ya,n+1 - Ya*,n+l < _Mslricl - C, Z Yk < _Mstrict (C23)
k=1
629 and thus Y,11 € W(Mgyict). [ |

Ssuch a Mipjc > 0 exists since both the bias and the noise terms are dominated by the term the terms 2 2’;:1 Vi 1B N+, En
and consequently by —(c - ¢’) X3 _; Y-
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The above claim immediately implies that X,, € I/ foralln = 1,2, .... We will now prove that the
sequence of play converges to x*.

Proof of Convergence. Let’s assume that ad absordum that there exists at least one strategy a #
a*, @ € A such that limsup,,_,, Xo,n = € > 0. for all sufficiently large n. Recall also that for
X € Usgrict, it holds that X« > 0 by construction in Lemma C.2.

Then by Lemma B.1 we have
Yo =0 (Xg)+tu—ve (C.24)

where u € R and v, > 0 while v, = 0 whenever X, > 0. Leveraging that i) the sequence of play is
contained in U, ii) by descending to a subsequence if necessary X, ,, > 0 and iii) recall (C.20) for
the subsequence we have

n
Y(l,mi+1 - Ya/*,m,url = 9,(Xa,mi+1) - 0,(Xaf*,mi+1) < _MSlI‘iCl - C, Z mG (CZS)
k=1

However, the RHS of the above inequality goes to —co as n — oo, while the LHS of the above
inequality is bounded by the constant §’(g) — 6’(1) since @’ is strictly increasing, which is a contra-
diction®. [

Proof of Rate. We now proceed to the delineation of the exact rates achieved. Consider the function

'@ ifr>6'(0%),
= 2
() {0 otherwise. (€26)
where (0”)7!(z) is the inverse function of the kernel ”7. Focusing on (C.25) we can derive that
0'(Xani1) < ~Mrict + 0’ (Xao 1) =’ > i (c.27)
k=1
n
< ~Mia+0'(1) = ¢' Y v (C.28)
k=1

forallw € A; andn=1,2,.... As aresult

Xanst < 6(~Masict +6'(1) =’ > y1) (C.29)
k=1

Aggregating over all strategies @ € A, a # a* we have

Ix* = Xpsrlli =2(1 - Xot n+1) (C.30)
n
< D H(-Maia+0' (1) =" > i) (C31)
acA+a* k=1
n
< D ed=c Y v (C.32)
acA+a* k=1
where d = —Mgic + 0’ (1). [}
[

6The aforementioned by contradiction argument also provides a short proof of Remark C.2.
70’ is strictly increasing and so does its inverse.
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Corollary 1. If the regularizer employed is non-steep (i.e., 0; is differentiable at 0), X,, converges to
x* in a finite number of iterations.

Proof. Additionally, in the case of non-steep regularizers we can prove that convergence occurs
in finite time. More precisely, focusing on (C.28) and bearing in mind that X, ,+; > O for all
n=1,2,...wehave

n
0'(0) < ' (Xana1) < ~Masicr +6'(1) = ¢’ > % (C.33)
k=1

At the same time for finite 7 it holds

n
D vk 2 (~Mgiei +6'(1) = 0/ (0)) /<’ (C.34)
k=1
since #’(0) is finite for non-steep regularizers. Rearranging the above inequality we have
n
~ Mi+0'(1) = ¢' Y vk < 0/(0) (C.35)
k=1
which inevitably implies that X n+1 = 0. [ |

D Models

We start by presenting the well-known algorithms Follow the Regularized Leader (FTRL), Optimistic
Follow the Regularized Leader (OptFTRL) and Mirror Prox (MP), as special cases of our general
algorithmic framework.

Yi,n+1 = Yi,n + ynVi,n
Xi,n = Qi(yi,n)
Yi,n = Yi,n + ')/nvi,n—l Xi,n = Qi(Yi,n) Yi,n+] = Yi,n + '}’nvi,n (OPtFTRL)

(FTRL)

Remark D.1. (OptFTRL) requires two initializations and then at each stage the previous payoff signal
is stored and is utilized to calculate the auxiliary cumulative payoff Y; ,.

Yi,n+1/2 = Yi,n + 7n‘/i,n Yi,n+l = Yi,n + ynvi,n+1/2

(MirrorProx)
Xin+1/2 = Qi(Yi ne1/2) Xine1 = Qi (Yi n+1)

Remark D.2. (MirrorProx) requires only one initialization, but at each stage the algorithm generates
two different states and correspondingly two payoff signals are needed.

For both the algorithms (OptFTRL),(MirrorProx) we can prove that for the cases of full information,
oracle based feedback and noisy payoff feedback, the implicit bias for modeling their intermediate steps
is ||6; nll« = O(yn). The bias is the same in all of the three cases and thus we only present the case of
full information.

Proof. Full information:

* (OptFTRL): V., = vi(Xy) + (vi(X,) = vi(X,)). Thus

1Bi,nll = [Vi(Xn) = vi(Xu)ll« < CllXp = Xl (D.1)
= CllQi(¥Yn) = Qi(Yn)|l < C'||¥ = Yol (D.2)
=O(yn) (D.3)
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* (MirrorProx): V; , = vi(X,) + (vi(Xp+172) — vi(Xn)). The proof is similar to the above and
15i.nlls = Oyn).

Below, we explain how the proof of Theorem 1 can be oriented to the specific structure of both
(OptFTRL) and (MirrorProx), in order to achieve all the permitted step-sizes. We will not make an exact
proof but we will thoroughly describe how the proof of Theorem 1 should be altered for the case of full
information; the reader can follow similar steps for the case of oracle based feedback.

o Optimistic Follow the Regularized Leader ~
(OptFTRL) has an extra auxiliary cumulative payoff Y,,. We will first prove that if the two
initializations of (OptFTRL) are appropriate then Theorem 1 holds without introducing any

bias term.
Step 1: Notice that for the score differences of the auxiliary cumulative payoffs we have
?a,n+l - ?a*,n+l =Yon—Yor,ntyn (Va(anl) —Va* (anl)) (D.4)
By substituting all the ¥,, terms we have
n—1
Ya/,n+1 - Ya*,n+1 = Ya,l - Ya*,l + Z Yk (Va(Xk) —Va* (Xk)) +Yn (Va(Xn—l) —Var (Xn—l))
k=1
_ ~ (D.5)
Step 2: Assume that Y, € W), as described ~in Theorem 1 and thus X; € y for all
k =1,...,n. We will prove by induction that Y,,;; € W),. Notice that since X; € U it
holds that _ ~
Va(Xk) = ve(Xp) < —cforallk=1,...,n (D.6)
Step 3: From Eq. (D.5) we have
n
Ya,n+l - Y(y*,n+l < Ya,l - Ya/*,l —-C Z Yk D.7)

k=1

By choosing Mi,iy > M our claim follows. We stress here that we have implicitly assumed
that for the second initialization of (OptFTRL) it holds Y e W.

Step 4: The rest of the proof holds as the one in Theorem 1, as all of the states X,, remain in
the desired neighborhood ¢/ in which the variational inequality holds.

* Mirror Prox
This algorithm, as we have already mentioned, calculates two different cumulative payoffs
and primal states at each round.
Step 1:We will first prove by induction that that the cumulatve payoffs ¥,.1,2 € W), for all
n=1,2,.... Assume that Y;,(,» € Wy, and thus Xz, € U forall k = 1,...,n then for
the score differences we have

Ya/,n+1/2 - Ya/*,n+1/2 = Ya,n - Ya*,n + Yn(va(xn) —Va* (Xn)) (D8)
n—1
=Yo1— Yo 1+ Z Yk (Ve (Xk-1/2) = Var (Xk-1/2)) (D.9)
k=1
+Yn(Va(Xn) = v (Xn)) (D.10)
n—1
<You —Yer,1—c ) vk +ynmax|v(a)ll (D.11)
o acA

Step 2: Choose Mjnix > M + v, max,e4{||v(a@)||+} which is feasible for step-size of the
form vy, o 1/nP, p € [0, 1] and our claim follows.
Step 3: Continue with the proof as presented in Theorem 1.

Below we prove some properties concerning the case of payoff oracle/bandit feedback.
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Proposition D.1. In the bandit case, let X,, be the state such that }A(l-,n is the mixed strategy of the
i'" player at round n i.e., X; , = (1 — £,)Xi + £a/| A, based on which the pure strategy a; ,, is
selected. Then the following properties hold

1. E[U; | Fu] =0.

2. lUinlls = O(1/&n).

3. binll« = O(en).
Remark D.3. In the case of (MirrorProx) )?i,n is the state X; ,_1/2.

Proof. The payoff signal which is estimated through the (IWE) can be rewritten as V; ,, = v;(X,,) +
U,"n + bi,na where Ui,n =Vin— V,'(Xn) and b,"n = vi(X'n) - Vi(Xn).

1. Let A; = {1, ..., a4, } be the pure strategies of player i € N; then
E[Vi.] = Z (uilar;a), ... ui(apa,)) Xoin = vi(Xn) (D.12)
(1-,'6.4-,'

where with X_; , we symbolize the joint probability distribution for all players except for the i*"
player.

2. We move on to the second part of this proposition.

Ui nlls = Vi = Vl(}?n)”* (D.13)
< WVialls + lvi (Xl (D.14)
< max|u; (@)||.A;|/ e, + max|u; (@)] (D.15)
acA acA
=0(1/&y) (D.16)
3. Finally for the norm of the bias term, let again A; = {ay,...,a)4,;} be the pure strategies of
player i € \; then
1Bi.nlle = 11vi(Xn) = vi (Xa)ls (D.17)

= [l (uiar; Xoin) — ui(@r; Xoin), - - ui(@pa, s Xoim) — ui(@a,; X-in)|ls - (D.18)

It is sufficient to examine one of the elements of the vector b; ,:

lui (r; Xoin) — uiars Xoi )l (D.19)

= | Z Z (XZQg,n--~XNQN,n_X2a2,n--~XNQN,n)M,'(CY],...,a’N)| (D.20)
(le.Az (YNE.AN

< Z Z |X2(1’2,I’l"'XN(lN,}’L_X2(1’2,I’L'"XN(lN,I’l||ui(al7""aN)| (D21)
(lzGAz (XNG.AN

= O(en) (D.22)

|

In this section we provide different algorithms and feedback models which connect to our general
algorithm (FTGL) and model described in Section 3.2. We first present a useful proposition in order
to calculate the permitted parameters of the algorithm in order for assumption A3 to be satisfied.

Proposition D.2. 1. For all step sizes of the formy,, = y/nP, with p < 1 and noise bounds o, = on”
assumption A3 is satisfied if

§—p+2r<,8(l—p)f0rs0meﬁ< 1 (D.23)

Furthermore, it holds that
1/g+r<1/2 (D.24)

2. For all step-sizes of the form v, = y/n and o, = on”, assumption A3 holds as long as

l/g+r<1/2 (D.25)
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720 Proof. 1. Since vy, = y/nP and 0, = on”, assumption A3 is restated as

n I+q/2 _q
L Y oy

On = —[2221 Sl (D.26)
n n g
= Cy(Q 1/kPyTI PN jep(145) ra (D.27)
k=1 k=1
< C;nu—p)<—1—%">n1—p<1+%>+rq (D.28)
< Cyn e p- g (D.29)
< Cyn T (D.30)
721 Thus ¢,, is summable if the exponent of 7 is less than —1:
—%+%—%+rq<—l (D.31)
2
——p+2r<pB(l-p) (D.32)
q
722 The second expression of the proposition can be derived if we only keep the variable a in the RHS
723 of the above inequality
2
——p+2r<pB(l-p) (D.33)
q
2
(==p+2r)/(1-p)<B<l (D.34)
q
2
——p+2r<l-p (D.35)
q
l/g+r<1/2 (D.36)
724 2. Lety, =y/nand o, = on”, then for assumption A3 we have
2
_ ke 7’/1<+q/ o}
"= o T (D.37)
[Zkzl 7k] *Bal
Shot ek’
=c, k=1 ktral2 7 (D.38)
(X7, %]Hﬁq/z
< C)(log(n + 1))~ "Pal2p!=1a/2+ra (D.39)
< C)(log(n+ 1)) "Pal2p=alzra (D.40)
725 Since the sum | 1/(log!* ¢ (n)n'+¢") is finite for all &, &’ > 0; assumption A3 is satisfied as
726 long as
—q2+rg<-1=1/g+r<1/2 (D.41)
727 |

728 Model D.1 (FTRL) & Full information). In this case players have access to their full payoff vector
729 v(X,) for each round n = 1,2,... and thus V; , = v;(X,) for alli € N. All of the assumptions

730 A1-A3 are satisfied; indeed

731 ¢ (Al): Trivially satisfied since b; ;, = 0.
732 ¢ (A2): Trivially satisfied since U; ,, = 0.

733 ¢ (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, < 1/n?, p € [0,1]. §

73¢ Model D.2 ((FTRL) & Noisy payoff feedback). In this setting at each round n = 1,2, ... players
735 have access to a perturbed version of their full payoff vector v(X,,) with a zero-mean noise U,,. Two
736 examples of such noises that we consider in the experimental section are a zero-mean guassian noise
737 and a uniform noise at [—1.1]. Both these noises satisfy (A2) with deterministic constant bounds for

738 all g € [1, co]. Thus

22



739
740
741

742
743
744
745
746

747

748
749
750
751

752

754
755
756

769

770
771

772
773
774

775
776
77
778
779

780
781
782
783

784
785
786

* (Al): Trivially satisfied since b; , = 0.
* (A2): Satisfied for all g € [1, oo].
* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, o 1/n?, p € [0,1]. §

Model D.3 ((FTRL) & Oracle-based feedback). Assume that each player chooses an action based on
a given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round n = 1,2, . . ., each player chooses a
pure strategy «@; , € A; based on a mixed strategy X; , € X; and subsequently observes the payoff
vector

Vi,n = Vi(an) = (ui(ai;a—i,n))n,-eAi~ (D.42)
Regarding our basic assumptions, we readily have b; , = 0 and U; , = vi(an) — vi(Xy); hence:

* (Al): Trivially satisfied since b; , = 0.

* (A2): Satisfied because ||U; p ||« = ||vi(@n) —vi(Xn)|l« £ 2maxgeal|vi(@)]s, so U, has uniformly
bounded moments for all g € [1, oo].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, o 1/nP, p € [0,1]. §

Model D.4 ((FTRL) & Payoff-based feedback). If the players only observe their realized rewards,
they have to construct a model for V,, based on incomplete information. This is the standard setting
for multi-armed bandits, so it is often referred to as the “bandit feedback™ model. In this case, the
players’ action selection process is as in Model D.3 above, but the feedback signal sequence V, is
now reconstructed by means of the importance-weighted estimator

_ ]l{a'i,n = ai}

Via/i,n
Xiai,n

ui(an) (IWE)

where )A(i,n = (1 — &,)Xin + €0 /| A;] is the mixed strategy of the i-th player at stage n. Compared to
X; » the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
&, — 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under X, it will still be sampled with positive probability
thanks to the mixing factor &,,.

The IWE estimator may be seen as a special case of the model (4) with U; ,, = V; , — vi(Xn) and
bin= vi(X,) = vi(X,). All of the assumptions (A1)-(A3) are again satisfied; indeed:

* (Al): From Proposition D.1 ||b; , ||« = O(&,). Thus our assumption is satisfied since €, — 0.

* (A2): Again from Proposition D.1 ||V; , — vi(X,)|ls = O(1/€,) and thus the noise has bounded
moments, 0, = O(1/g,) forall g € [1, c0].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, oc 1/n”, p € [0, 1] and
gy 1/n”,re(0,1/2).

§
Model D.5 ((OptFTRL) & Full information). In this case the full payoff vector of each player is
Vin =vi(X,) foralli € N. As we proved above the state X,, can be treated separately and thus

* (Al): Trivially satisfied since b; , = 0.
* (A2): Trivially satisfied since U; ;, = 0.
* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, o 1/n?, p € [0,1]. §

Model D.6 ((OptFTRL) & Noisy payoff feedback). Again in this setting at eachround n = 1,2, . ..
players have access to a perturbed version of their full payoff vector v(X,,) with a zero-mean noise
U,. Two examples of such noises that we consider in the experimental section are a zero-mean
guassian noise and a uniform noise at [—1.1]. Both these noises satisfy (A2) with deterministic
constant bounds for all ¢ € [1, oo]. Thus

* (Al): Trivially satisfied since b; , = 0.
* (A2): Satisfied for all g € [1, oo].
* (A3): From Proposition D.2 and our specific analysis for (OptFTRL) is satisfied for all the step-sizes

of the form y,, «< 1/n?, p € [0, 1]. §
Model D.7 ((OptFTRL) & Oracle-based feedback). In this case the payoff signal V; ,, which depends
on the state X,,, is generated as follows: ateachroundn = 1,2, ..., every player i € N picks an action

@; . € A; based on X; ,, € X; and observes the pure payoff vector v;(a,) = (u; (@3 @—i.n)) a;e ;-
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Each player’s input signal is a special case of (4) with payoff feedback V;, = v;(@,), zero-mean
noise U; , = vi(a,) — vi(X,) and bias bi » = 0 that satisfy all of the assumptions Al - A3. In more
detail, we have:

* (Al): trivially satisfied since b; , = 0.
o (A2): ||Uinlls = lvi(an) = vi(Xp)|l« < 2maxgeqllvi(@)|l. and thus the noise has bounded
moments for all g € [1, co].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form vy, o< 1/nP, p € [0,1]. §
Model D.8 ((OptFTRL) & Payoff-based feedback). As we mentioned in Model D.4, in this case
players only observe their realized rewards; thus they have to construct a model for V,, based on
incomplete information. The players’ action selection process is as in Model D.7 above, but the
feedback signal sequence V,, is now reconstructed by means of the importance-weighted estimator

Haip=a;
Vi = 00 =0 ) (IWE)
ia/i,n
where X; , = (1 — £,)Xi., + £,/|.A;| is the mixed strategy of the i-th player at stage n. Compared to
X » the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter

g, — 0.

This type of feedback may be seen as a special case of the model (4) with U; ,, = V; , — v;(X,)) and
bin= vi(X,) = vi(X,). All of the assumptions (A1)-(A3) are again satisfied; indeed:

* (Al): From Proposition D.1 ||b; ||« = O(&,). Thus our assumption is satisfied since €,, — 0.

* (A2): Again from Proposition D.1 ||V;,,, — v;(X,)|l« = O(1/&,) and thus the noise has bounded
moments, 0, = O(1/g,) forall g € [1, c0].
* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, «c 1/n?, p € [0, 1] and

gpoc1/n”,r e (0,1/2). §
Model D.9 ((MirrorProx) & Full information). In this case players have access to their full payoff
vector v(X,) for each round n = 1,2, ...; for the algorithm (MirrorProx) we observe two payoff

vectors at each round and as stated in the specific analysis above, for each one of v;(X,,,1,2) and
vi(X,), we have

* Assumption Al: Trivially satisfied since b; , = 0.

* (A2): Trivially satisfied since U; ;, = 0.

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y, o« 1/nP, p € [0,1]. §
Model D.10 ((MirrorProx) & Noisy payoff feedback). As before at each round n = 1,2, ... players
have access to a perturbed version of their full payoff vector v(X,,) with a zero-mean noise U,,. Two
examples of such noises that we consider in the experimental section are a zero-mean guassian noise

and a uniform noise at [—1.1]. Both these noises satisfy (A2) with deterministic constant bounds for
all g € [1, c0]. Thus

* (Al): Trivially satisfied since b; , = 0.

* (A2): Satisfied for all g € [1, oo].

* (A3): From Proposition D.2 and our specific analysis for (MirrorProx) is satisfied for all the
step-sizes of the form y,, « 1/n?, p € [0, 1]. §

We simply mention here that in the exact same way all of the assumptions (A1)-(A3) are satisfied for

the second “intermediate” state of (MirrorProx).

Model D.11 ((MirrorProx) & Oracle-based feedback). In this case, at each round n each playeri € A/

chooses two pure strategies @; , and @; 41 /2 successively based on the mixed strategies X; , Xi nv1/2

equivalently. Thus, the first payoft signal is V; , = v;(ay) with b; , = 0 and U; ,, = v; (@) — vi(X,).

Hence:

* (Al): Trivially satisfied since b; , = 0.

* (A2): Satisfied because ||U; ||« = |[vi(an) = vi(Xn)|l« £ 2maxgeallvi(a@)]l«, so Uy, has uniformly
bounded moments for all g € [1, oo].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, < 1/n?, p € [0, 1], by
also taking into account our specific analysis for (MirrorProx) presented above. §

The second payoff signal is V; 1172 = vi(@p41/2) With b piip2 = 0 and U; pe1/2 = Vi(@ns1/2) —
vi(Xne1/2)
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* (Al): Trivially satisfied since b; 172 = 0.

* (A2): Satisfied because ||U; nr1/2lx = [Vi(@ns12) = vi(Xnr12)|lx < 2maxgeallvi(a@)|ls, so Uy
has uniformly bounded moments for all g € [1, oo].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, o< 1/n?, p € [0, 1], by
also taking into account our specific analysis for (MirrorProx) presented above. §

Model D.12 ((MirrorProx) & Payoff-based feedback). In this case, as we have already mentioned,
players only observe their realized rewards and the feedback signal sequence V,, is now reconstructed
by means of the importance-weighted estimator
]l{ai,n = a'i}
Viain = ——F—ui(ay) (IWE)
X i Qi n

where X; , = (1 - &n)Xi n+1/2 + €n/]Ai| is the mixed strategy of the i-th player at stage n, with
en — 0.

The IWE estimator may be seen as a special case of the model (4) with U; ,, = V; ,, — vi(f(n) and
bin= vi(X,) = vi(X,). All of the assumptions (A1)-(A3) are again satisfied; indeed:

* (Al): From Proposition D.1 ||b; ,||. = O(&,). Thus our assumption is satisfied since €, — 0.

* (A2): Again from Proposition D.1 ||V; , — v;(X,)|l« = O(1/&,) and thus the noise has bounded
moments, 0, = O(1/g,) forall g € [1, co].

* (A3): From Proposition D.2 is satisfied for all the step-sizes of the form y,, o< 1/n”, p € [0, 1] and
gy oc1/n”,r e (0,1/2).

E Experiments

We start this section by explaining in detail the two main games that our experiments are conducted.

E.1. Games.

1. In the archetypal game of Battle of the Sexes, a couple argues over which music to listen over the
weekend. Both know that they want to spend the weekend together, but they cannot agree over
what to do. The partner (A) prefers to audit a Rock band concert, whereas the partner (B) prefers
a Pop music show. This is a classical example of a coordination game, analysed in game theory
for its applications in many fields, such as business management or military operations. For the
interested reader, check [26]. Since the couple wants to spend time together, if they go separate
ways, they will receive no utility (set of payoffs will be 0, 0). If they go either to a Rock or a Pop
musical, both will receive some utility from the fact that they’re together, but one of them will
actually enjoy the activity. The description of this game in strategic form is therefore as follows:

Battle of Sexes

Rock  Pop
Rock [ (2,1) | (0,0)
Pop | (0,0) | (1,2)

Figure 3: Equilibrium Structure: This game has two strict Nash equilibria, one where both go to the Rock
concert, and another where both go to the Pop concert. There is also a mixed Nash equilibrium, where the
players go to their preferred event more often than the other. For the described payoffs, each player attends their
preferred event with probability 3/5.

2. In the selfish routing game of Pigou’s Congestion Network, we consider the simple network shown

in Fig. 4. Two disjoint edges/paths connect a source vertex O to a destination vertex D. Each edge
is labeled with a cost function, which describes the cost (e.g., travel time) incurred by users of the
edge, as a function of the amount of traffic routed on the edge. In the atomic version of the game
the population of the drivers that uses a specific edge is an integer x € {0, - -- , N}. The upper edge
has the constant latency function ¢; (x) = 1, and thus it represents a route that is relatively long but
immune to congestion. In the linear latency setting, the cost of the lower edge, which is governed
by the function £,(x) = x/N, increases as the edge gets more congested. In particular, the lower
edge is cheaper than the upper edge if and only if less than N drivers uses it.
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Figure 4: Pigou’s Network

E.2. Experimental setup and methodology. Below, we will present separately the three archety-
pal instantiations of (FTGL) that we discussed in Appendix D, namely (FTRL),(OptFTRL) and
(MirrorProx). All algorithms were run on a) a game of the Battle of the Sexes; and b) Pigou’s
linear version with N = 1000 atomic drivers. For each algorithm and each model we will present
the performance of two well-studied regularizers: * entropic : 6,(x) = x,logx, * euclidean :
0o (x) = x2 /2.

We will group our models with the following way: The first collection of figures for each algorithmic
subsection will include the {oracle-based,payoff based/bandit} feedback model for the two aforemen-
tioned games for constant step-size and inverse-polynomial y,, o 1/n'/2. The latter one will present
the {perfect,uniform-noise,gaussian-noise} feedback. Finally, the shaded areas around the curves
represent the error bars in the execution for different random initializations.

Batte of the Sexes r* ~ X, - Pigou's Network " — X,

— FTRLMWU-racle

rounds rounds

(a) Battle of the Sexes (b) Pigou Network

Figure 5: FTRL: oracle-based, bandit; y, = 0.05

Batte of the Sexes r* ~ X, - Pigou's Netwerk " — Xu[l

—— FTRLMWU-Perfect

FTRL-MWU-u
— FTRLMWU-g
—F

0 P o 70 m ot 0 W0
rounds rounds

(a) Battle of the Sexes (b) Pigou Network

Figure 6: FTRL: uniform, gaussian; y, = 0.05.
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Figure 7: FTRL oracle, bandit; y,, o 1/ n!/2
" Battle of the Sexes ir” — X, " Pigou's Networke+* ~ Xl
e e
1 1 —— FTRL-(;-Perfect
eeitom
rounds rounds
(a) Battle of the Sexes (b) Pigou Network
Figure 8: FTRL: uniform, gaussian; y, o 1 /n1/2
T [
ot — ot
10 —— OptFTRL-{-bandit 1 —— OptFTRL-{-bandit
(a) Battle of the Sexes (b) Pigou Network
Figure 9: OptFTRL: oracle-based, bandit; y,, = 0.05
ot oSl [
—— OptFTRLMWU-Perfect — _— —— OptFTRLMWU-Perfect
T e — " oversaniomtn
0 ity - \\ — e

(a) Battle of the Sexes (b) Pigou Network

Figure 10: OptFTRL: uniform, gaussian; y, = 0.05
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Figure 11: OptFTRL: oracle-based, bandit; y,, 1/n'/2
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Figure 12: OptFTRL: uniform,
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Figure 13: MP: oracle-based, bandit;y,, = 0.05
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Figure 14: MP: uniform,
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Figure 15: MP: oracle-based, bandit; y, o 1 /nl/?
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Figure 16: MP: uniform, gaussian; y,, « l/nl/2
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