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Abstract

In this paper, we examine the convergence rate of a wide range of regularized
methods for learning in games. To that end, we propose a unified algorithmic tem-
plate that we call “follow the generalized leader” (FTGL), and which includes as
special cases the canonical “follow the regularized leader” algorithm, its optimistic
variants, extra-gradient schemes, and many others. The proposed framework is
also sufficiently flexible to account for several different feedback models – from
full information to bandit feedback. In this general setting, we show that FTGL
algorithms converge locally to strict Nash equilibria at a rate which does not depend
on the level of uncertainty faced by the players, but only on the geometry of the
regularizer near the equilibrium. In particular, we show that algorithms based on
entropic regularization – like the exponential weights algorithm – enjoy a linear
convergence rate, while Euclidean projection methods converge to equilibrium in a
finite number of iterations, even with bandit feedback.

1 Introduction

In the presence of uncertainty, the players of a game may not have full knowledge of its structure, “or
the ability and inclination to go through any complex reasoning process to calculate an equilibrium.
But the participants are still supposed to adapt by accumulating empirical information on the relative
advantages of the various pure strategies at their disposal”. This aphorism – originally due to Nash
[36, p. 21] – constitutes the driving principle of game-theoretic learning, and highlights one of the
field’s most central questions: Does learning with empirical observations lead to a Nash equilibrium?
And, if so, at what rate?

These questions have been at the forefront of game-theoretic research ever since the early days
of the field, and they have recently received renewed attention via their connection to multi-agent
reinforcement learning [45], generative adversarial networks [18], auctions [46], and many other
applications where online decision-making plays a major role. Still, any attempt to provide a positive
answer to these questions must wrestle with a major roadblock: the well-known impossibility result
of Hart and Mas-Colell [20] shows that there are no uncoupled dynamics that converge to Nash
equilibrium in all games, thus shattering any hope of obtaining a universal convergence result.
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In view of the above, contemporary research on game-theoretic learning has focused on relaxing
the feedback requirements of the players’ learning processes, and understanding the stability – and
instability – properties of different kinds of equilibria under popular learning algorithms. One
property that stands out in this regard is the so-called “folk theorem” of evolutionary game theory
[21], which can be stated as follows: Under the replicator dynamics – the continuous-time limit of
the multiplicative / exponential weights (EW) algorithm [2, 31, 47] – a Nash equilibrium is stable
and attracting if and only if it is strict (i.e., if and only if each player has a unique best response).

The replicator dynamics are the most widely studied model for evolution in population games, so
the above equivalence essentially delineates what is and what isn’t achievable in an evolutionary
setting. In the context of online learning (our paper’s main focus), a similar equivalence was obtained
only recently [11, 15, 32], but it extends to the entire family of “follow the regularized leader”
(FTRL) dynamics [43, 44], in both continuous [11, 32] and discrete time [15]. In particular, [15]
studied the convergence of discrete-time FTRL models in the presence of uncertainty, and proved
a high-probability, stochastic version of this equivalence that holds for several different types of
feedback (full information, bandit, etc.). Thus, coupled with the prominence of FTRL in online and
game-theoretic learning, strict Nash equilibria emerge as the only stable limit points of regularized
learning under uncertainty.

Our contributions. One important limitation of the above results is that they are qualitative in
nature. Indeed, even though asymptotic stability guarantees that a learning process converges locally
to a strict equilibrium, it provides no information about the speed of this convergence. In particular,
especially for discrete-time models of regularized learning, asymptotic stability does not provide any
guidance on how to tune the algorithm’s hyperparameters (learning rate, mixing, etc.), and/or what to
expect in terms of the number of iterations required to reach a neighborhood of a Nash equilibrium.

Our paper aims to provide quantitative answers to these questions for a wide array of regularized
learning methods in the presence of uncertainty and limited information. To do so, we first introduce a
flexible algorithmic framework – dubbed “follow the generalized leader” (FTGL) – that incorporates
a broad spectrum of action choice mechanisms and feedback models. In more detail (and in analogy
to FTRL), the FTGL template maintains a cumulative estimate for the payoff of each action available
to the learner, and then selects a mixed strategy via a suitable “regularized” choice map. Specifically:

1. In terms of regularization, the FTGL template includes as special cases the standard logit choice
and Euclidean projection methods (as well as all other standard regularizers used in practice).

2. In terms of the information used to update the “aggregate score” of each pure strategy, FTGL
includes “vanilla” FTRL, its optimistic variants [10, 40–42], extra-gradient and mirror-prox
methods [25, 27, 37], with either full, oracle-based, or bandit feedback.

In this general context, our main result may be summarized as follows. First, we introduce a “rate
function” q that depends only on the regularizer defining the learning process, and which captures
the sensitivity of the induced choice map to external stimuli: for example, q(G) = exp(G) for
entropic / logit choice models, whereas q(G) = [G]+ for methods run with Euclidean projections. We
then show that, with probability at least 1 − X, the algorithm’s local rate of convergence to a strict
equilibrium G∗ is of the form ‖-= − G∗‖ ≤ q(3 − 2

∑=
B=1 WB), where W= is the method’s learning rate

and 2, 3 are constants with 2 > 0.

This result shows that the convergence speed of FTGL methods depends only on the choice of
regularizer and learning rate: for example, EW methods run with a constant step size converge to an
equilibrium at an exponential rate, whereas Euclidean regularization attains convergence in a finite
number of iterations. From a regret-theoretic point of view, this is somewhat surprising because
the regret guarantees of entropic FTRL (the EW algorithm) are far superior to those of FTRL with
Euclidean regularization [5, 43].

Equally surprising is the fact that the type of feedback employed does not affect the method’s rate
of convergence: ceteris paribus, the base sequence of states generated by an FTGL method attains
the same rate of convergence to strict Nash equilibria, whether run with full, partial, or bandit
/ payoff-based feedback. This comes into stark contrast with the corresponding rates of regret
minimization, which depend crucially on the type of feedback received [6, 29]; in a certain, precise
sense, this robustness in the face of uncertainty shows that regret minimization and convergence to
Nash equilibrium are fundamdentally different questions.
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Related work. The convergence speed of methods based on the FTRL template – “vanilla”, opti-
mistic, or otherwise – have been studied extensively in the context of monotone games and variational
inequalities; for a (highly incomplete) list of recent references, see [9, 10, 16, 17, 22, 24, 30, 33–35]
and references therein. In this branch of the literature, there are two distinct threads: results con-
cerning the convergence of the “time-average” of the process [16, 25, 35, 37], and those focusing
on the algorithm’s “last-iterate” [9, 10, 17, 22, 24, 30]. In the latter case (which is the one closest to
our setting), the fastest achievable speed of convergence is exponential when the method is run with
a finetuned constant step-size, perfect payoff gradient observations, and the operator defining the
problem is strongly monotone and Lipschitz smooth. When run with stochastic gradients, the corre-
sponding min-max optimal rate is O(1/)) under the same assumptions (zeroth-order rates are usually
much worse). The apparent gulf between the rates of convergence obtained for monotone games and
those obtained herein have to do with two crucial factors: first, we are studying finite games, which
are typically not monotone; second, we are examining the algorithm’s rate of convergence to strict
equilibria, which are corner points of the problem’s domain. This means that the geometry of the
problem around a strict equilibrium is fundamentally sharper than the geometry around a solution of
a generic monotone variational inequality, a fact which in turn explains the qualitatively different
nature of the rates we obtain.

In the context of finite games, there have been several works examining the speed of convergence to
the game’s set of coarse correlated equilibria (CCE) by leveraging the algorithm’s regret minimization
properties, cf. [3, 4, 12, 13, 38, 46] and references therein. However, in addition to examining the
algorithm’s empirical average – as opposed to the induced day-to-day sequence of play – these results
focus almost exclusively on CCE, which means that it is not possible to draw any conclusions about
convergence to the game’s Nash set – qualitatively or quantitatively. To the best of our knowledge,
the closest work to our own in the literature is the paper of Cohen et al. [8] who showed that the
EXP3 algorithm with explicit exploration converges at a sub-geometric rate in potential games; our
analysis allows for a wider range of learning rates, so we are able to obtain faster convergence rates
than Cohen et al. [8]. We are not aware of any other comparable results in the literature.

2 Preliminaries

Finite games. Throughout this work we consider #-players finite games in normal form. Formally,
each player, indexed by 8 ∈ N = {1, . . . , #}, has a finite set of pure strategies U8 ∈ A8 = {1, . . . , �8},
and a payoff function D8 : A→ ℝ, where A B ∏

8 A8 is the space of all pure strategy profiles. For
concision, we will denote such a game as a tuple Γ = Γ(N ,A, D).
During play, players can also play mixed strategies, i.e., probability distributions G8 ∈ X8 B Δ(A8)
over their pure strategies. In this case, we will write G8U8 for the probability that player 8 ∈ N selects
U8 ∈ A8 under G8 , G = (G1, . . . , G# ) for the players’ mixed strategy profile, and X B ∏

8 X8 for the
set thereof. Finally, when focusing on the mixed strategy of a particular player 8 ∈ N , we will use the
shorthand (G8; G−8) B (G1, . . . , G8 , . . . , G# ) – and, similarly, (U8;U−8) for pure strategies.

Now, the expected payoff of player 8 in a mixed strategy profile G ∈ X is given by

D8 (G) ≡ D8 (G8; G−8) =
∑
U1∈A1

· · ·
∑

U# ∈A#

D8 (U1, . . . , U# ) · G1,U1 · · · G# ,U#
(1)

where D8 (U1, . . . , U# ) is the payoff of player 8 in the action profile U = (U1, . . . , U# ) ∈ A. For
posterity, we will also write E8U8 (G) = D8 (U8; G−8) for the payoff that player 8 would have gotten by
playing U8 ∈ A8 against the mixed strategy profile G−8 of all other players. In this way, the mixed
payoff vector of the 8-th player can be seen as a vector field E8 : X → Y8 = ℝA8 which can be written
in components as

E8 (G) = (E8U8 (G))U8 ∈A8
. (2)

Again, we will write E(G) = (E1 (G), . . . , E# (G)) for the ensemble of payoff vectors of all players
and Y =

∏
8 Y8 for the space of payoff vectors respectively. Finally, in a slight abuse of notation,

we will identify U8 with the mixed strategy that assigns all probability to U8 , and we will write
E8 (U) = (D8 (U8;U−8))U8 ∈A8

. for the corresponding pure payoff vector.

Nash equilibrium. The most widely used solution concept in game theory is that of a Nash
equilibrium i.e., a (possibly) mixed strategy profile G∗ ∈ X that discourages unilateral deviations;
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formally, G∗ ∈ X is said to be a Nash equilibrium of Γ if

D8 (G∗) ≥ D8 (G8; G∗−8) for all G8 ∈ X8 and all 8 ∈ N . (NE)

The set of pure strategies supported at the equilibrium component G∗
8
∈ X8 of each player will

be denoted by supp(G∗
8
) = {U8 ∈ A8 : G∗

8U8
> 0}. In turn, the size of the support of G∗ leads to

the following dichotomy: G∗ is called pure if supp(G∗
8
) ≡ ∏

8∈# supp(G∗
8
) is a singleton and mixed

otherwise.

Finally, we will also say that a Nash equilibrium G∗ is strict if (NE) holds as a strict inequality
whenever G8 ≠ G∗8 ; obviously, strict equilibria are also pure, but the converse need not hold. Strict
Nash equilibria play a key role in game theory because any unilateral deviation incurs a strict loss
to the deviating player; put differently, if G∗ is strict, every player has a unique best response. In
addition, they are the only equilibria that remain invariant under small generic perturbations of the
game [14]; these robustness properties of strict equilibria will play a key role in the sequel.

3 Regularized learning

Throughout our paper, we will focus on a wide family of learning schemes that unfold as follows:
At each stage = = 1, 2, . . . , every player maintains a “score vector” .8,= ∈ Y8 whose components
indicate the player’s propensity to play a given pure strategy. More formally, this is captured by a
player-specific “regularized choice” map &8 : Y8 → X8 which outputs the player’s mixed strategy
-8,= = &8 (.8,=) as a function of .8,= (see below for a detailed definition). Then, after selecting their
actions and collecting their rewards, players also receive – or otherwise construct – an estimate +8,=
of their mixed payoff vectors, which is used to increment their score variables and continue playing.

Formally, this learning process, which we call “follow the generalized leader” (FTGL), can be
described via the round-by-round recursive rule

-8,= = &8 (.8,=)
.8,=+1 = .8,= + W=+8,=

(FTGL)

where W= > 0 is a “learning rate” parameter such that
∑
= W= = ∞. The terminology FTGL alludes

to the widely known “follow the regularized leader” algorithm, which is, historically speaking, the
parent-scheme of FTGL. The link to regularization is provided by the method’s choice map, which
we detail below; the assumptions for the signal sequence +8,= are provided right after.

3.1. The choice map. The guiding principle behind the definition of the players’ choice maps
&8 : Y8 → X8 , 8 ∈ N , as follows: Because the players’ score variables .8,= are assumed to represent
an estimate of each strategy’s cumulative payoff over time, &8 is defined as a “regularized” version
of the best-response correspondence H8 ↦→ arg maxG8 ∈X8

〈H8 , G8〉.1 On that account, we will consider
regularized best responses of the general form

&8 (H8) = arg max
G8 ∈X8

{〈H8 , G8〉 − ℎ8 (G8)} (3)

where ℎ8 : X8 → ℝ denotes the 8-th player’s regularization function.

For concreteness, we will focus on a class of decomposable regularizers of the form ℎ8 (G8) =∑
U8 ∈A8

\8 (G8) where the so-called “kernel function” \8 : [0, 1] → ℝ is assumed continuous on
[0, 1], twice differentiable on (0, 1], and strongly convex, i.e., inf (0,1] \ ′′8 > 0. Of course, different
regularizers give rise to different instances of (FTGL); two of the most widely used and cited examples
are as follows:
Example 3.1 (Entropic regularization and multiplicative/exponential weights). Perhaps the most
common representative of regularization functions is given by the entropic kernel \ (G) = G log G
i.e., ℎ(G8) =

∑
U8 ∈A8

G8U8 log G8U8 . This choice of regularizer is well-known to provide the logit
choice map Λ8 (H8) = (exp(H8U8 ))U8 ∈A8

/ ∑
U8 ∈A8

exp(H8U8 ). The resulting algorithm is known in the
literature as the multiplicative/exponential weights algorithm [1, 2, 31, 43, 47].
Example 3.2 (Euclidean projection). Another popular regularizer is the quadratic penalty ℎ(G) =∑
0 G0

2/2, which yields the payoff projection map Π(H) = arg minG∈Δ‖H − G‖2, cf. [28, 48].
1In this context, regularization can be seen as a means to reinforce exploration so as to avoid committing prematurely to a

given strategy.
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Remark 3.1. Examples 3.1 and 3.2 are archetypes of a fundamental dichotomy between regularization
functions: in the former case, we have \ ′(0) = −∞, so ℎ becomes steep at the boundary of the
player’s strategy space; in the later case, \ is differentiable at 0, so ℎ is non-steep. We will see that
this steep/non-steep dichotomy has a crucial impact on the method’s rate of convergence.

3.2. The feedback model. As we mentioned in the beginning of the section, the “payoff signal”
+= contains information about the structure of the algorithm as well as the setting under consideration.
Thus to account for as broad a range of algorithms as possible, we will assume that the players’ signal
sequence is of the general form

+= = E(-=) + /= (4)
for some abstract error process /= = (/8,=)8∈N . Tp be clear though, we should stress that we do not
assume that += is directly correlated to – or obtained by – the chosen mixed strategy -=; this will be
made clear in the range of models we present below.

To distinguish between random (zero-mean) and systematic (non-zero-mean) errors, we will further
decompose /= as /= = *= + 1=, where

1= = �[/= |F=] and �[*= |F=] = 0 (5)

with F= denoting the history of -= up to stage = (inclusive). Notice that, since the feedback signal
is generated only after the player chooses a strategy, += is not F=-measurable in general. On this
account, we will make the following blanket assumptions for the input signal sequence +=:

1. Vanishing bias: 1= converges uniformly to 0 as =→∞. (A1)

2. Bounded variance: �[‖*=‖@∗ |F=] ≤ f@= for some @ > 2. (A2)

In the above f= is assumed to be a deterministic, stage-specific, and possibly increasing bound on
the variance of the noise component *=; our precise assumptions for its growth (relative to 1= or
otherwise) will be detailed later in this section.

Specific models. So far, the formulation of (FTGL) has been kept intentionally abstract and devoid
of any modeling assumptions for how the players’ payoff signals are generated or estimated. To
illustrate the width and breadth of (FTGL), we present of series of specific models below, including
the popular FTRL and optimistic FTRL methods:
Model 1 (FTRL with oracle-based feedback). Assume that each player chooses an action based on a
given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round = = 1, 2, . . . , each player chooses a
pure strategy U8,= ∈ A8 based on a mixed strategy -8,= ∈ X8 and subsequently observes the payoff
vector

+8,= = E8 (U=) = (D8 (U8;U−8,=))U8 ∈A8
. (6)

Thus, in this case, (FTGL) boils down to the standard “follow the regularized leader” (FTRL)
algorithm of [43, 44]. As for our basic feedback assumptions, we readily see that 18,= = 0 and
*8,= = E8 (U=) − E8 (-=); hence:

• (A1) is trivially satisfied since 18,= = 0.
• (A2) is again satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so *= has

uniformly bounded moments for all @ ∈ [1,∞]. §

Model 2 (FTRL with bandit feedback). If the players only observe their realized rewards, they
have to construct a model for += based on incomplete information. This is the standard setting for
multi-armed bandits [5, 6, 29], so it is often referred to as the “bandit feedback” model. In this case,
the players’ action selection process is as in Model 1 above, but the feedback signal sequence += is
now reconstructed by means of the importance-weighted estimator

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to
-8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
Y= → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under -=, it will still be sampled with positive probability
thanks to the mixing factor Y=.
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Feedback FTRL OptFTRL EG / MP

Full information 1= = 0
"= = 0

‖1= ‖∗ = O (W=)
"= = 0

‖1= ‖∗ = O (W=)
"= = 0

Oracle-based 1= = 0
"= = O (1)

‖1= ‖∗ = O (W=)
"= = O (1)

‖1= ‖∗ = O (W=)
"= = O (1)

Bandit
(payoff-based)

‖1= ‖∗ = O (Y=)
"= = Θ(1/Y=)

‖1= ‖∗ = O (Y=)
"= = Θ(1/Y=)

‖1= ‖∗ = O (Y=)
"= = Θ(1/Y=)

Table 1: Recasting different online learning algorithms within the general template of (FTGL).

The importance-weighted estimator (IWE) estimator may be seen as a special case of the model
(4) with *8,= = +8,= − E8 ( -̂=) and 18,= = E8 ( -̂=) − E8 (-=). Both assumptions (A1),(A2) are again
satisfied; indeed:

• For (A1): A standard calculation performed in Appendix D reveals that ‖18,=‖∗ = $ (Y=). Thus
our assumption is satisfied since Y= → 0.

• For (A2): Again a standard calculation presented in Appendix D reveals that ‖+8,= − E8 ( -̂=)‖∗ =
$ (1/Y=) and thus the noise has bounded moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].

Model 3 (OptFTRL with oracle-based feedback). Following Rakhlin and Sridharan [42], the so-
called “optimistic” variant of FTRL is given by the recursive formula:

.̃8,= = .8,= + W=+8,=−1 -̃8,= = &8 (.̃8,=) .8,=+1 = .8,= + W=+8,= (OptFTRL)

In the above the payoff signal +8,=, which depends on the state -̃=, is generated as follows: at each
round = = 1, 2, . . . , every player 8 ∈ N picks an action U8,= ∈ A8 based on -̃8,= ∈ X8 and observes
the pure payoff vector E8 (U=) ≡ (D8 (U8;U−8,=))U8 ∈A8

. At first glance, it seems difficult to reconcile
the above update structure with that of (FTGL); however, it is indeed possible to integrate (OptFTRL)
within (FTGL) by considering the auxiliary states -= = &(.=) (which are never played and are only
used here for the analysis).

Indeed, each player’s input signal is a special case of (4) with payoff feedback +8,= = E8 (U=), zero-
mean noise*8,= = E8 (U=) − E8 ( -̃=) and bias 18,= = E8 ( -̃=) − E8 (-=) that satisfy both the assumptions
(A1),(A2). In more detail, we have:

• For (A1): ‖18,=‖∗ = ‖E8 ( -̃=) − E8 (-=)‖∗ = $ (W=), which goes uniformly to 0 whenever W= → 0.
• For (A2): ‖*8,=‖∗ = ‖E8 (U=) − E8 ( -̃=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗ and thus the noise has bounded

moments for all @ ∈ [1,∞].
Remark 3.2. Based on the structure of the aforementioned algorithms, it is easy to check that we
capture a-fortiori the model of a full-information payoff signal; for a more complete account of the
different algorithms and feedback models see Table 1.

4 Analysis & Results

We are now in a position to state our main convergence results for (FTGL). We begin with a precise
statement and discussion in Section 4.1; subsequently, we present the main proof techniques in
Section 4.2.

4.1. Statement and discussion of our main results. Our analysis will focus exclusively on strict
Nash equilibria. As we discussed in the introduction, the reason for this is that only strict Nash equi-
libria can be asymptotically stable under FTRL [11, 15], so they are the only reasonable candidates
to consider when examining the rate of convergence of a regularized learning algorithm.2

2As a sidenote, we should remark here that FTGL also contains the optimistic FTRL algorithm, which does converge to
mixed Nash equilibria in bilinear zero-sum games with perfect, deterministic feedback [16, 27, 34]. At first glance, this would
seem to contradict the results of [11, 15], but one needs to bear in mind that the convergence of (OptFTRL) to mixed equilibria
only occurs in settings with perfect information (i.e., += = E (-=) for all = = 1, 2, . . . ). In the presence of uncertainty, this
convergence is destroyed [7, 23], so there is no contradiction with the results of [15]. Because we are primarily interested in
learning with limited information and/or under uncertainty, we will not treat this somewhat fragile case.
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To proceed, we will need one technical assumption linking the learning rate of (FTGL) and the
bias/variance parameters of the driving feedback sequence +=. This is as follows:

The sequence X= B

∑=
:=1 W

1+ @

2
:

f
@

:[∑=
:=1 W:

]1+V@/2 is summable for some V < 1. (A3)

Assumption (A3) imposes a growth condition on the method’s learning rate relative to the bias and
variance parameters of the input signal sequence +=, but it is otherwise a technical prerequisite for
the analysis to come. What is more important for our purposes is that the concrete models that we
discussed in the previous section satisfy it for a wide range of the player-chosen parameters W= (and
Y= in the case of bandit-based algorithms); to streamline our presentation, we postpone a more precise
discussion of this issue until after the statement of our main results.

The last element that we need to introduce concerns the players’ choice of regularizer: clearly, since
propensities are transformed to strategies via each player’s individual choice map &8 : Y8 → X8 , it
stands to reason that the underlying regularization function ℎ plays a major role in the method’s
rate of convergence. Indeed, given an update of the form .=+1 ← .= + W=+=, the method’s strategy
variable will move forward as -=+1 ← -= + W=�&(+)+= +O(W2

=), where �& denotes the Jacobian
matrix of &. Thus, to leading order in W=, the update -=+1 ← -= is dominated by the first derivatives
of &.

By a relatively straightforward application of the Legendre identity from convex analysis (& = (mℎ)−1

in our context; see below for a precise statement), this rate of change is related to the inverse mapping
of the derivative each \8 (the kernel of the underlying regularizer). Motivated by this observation, we
introduce below the algorithm’s so-called rate function:

q8 (C) =
{
(\ ′
8
)−1 (C) if C > \ ′

8
(0+),

0 otherwise.
(7)

The definition of the rate function q captures the sensitivity of the choice map & in a very precise
way: If the score difference corresponding to two pure strategies U, V ∈ A8 grows as HV − HU = C
for some C > 0, then the probability of playing the strategy with the lesser score must be less than
the probabiity of playing the strategy with the higher score. The precise amount of this disparity of
course depends on the player’s choice function & and q acts as a “transfer” function in this regard.
Specifically, as we show in detail later, we have GU = q(−Θ(C)), i.e., q determines the rate at which
GU vanishes. For different regularizers we present the corresponding rates in Table 2.

With all this in hand, our main result can be stated as follows:
Theorem 1. Let G∗ be a strict Nash equilibrium of Γ, and fix some confidence level X > 0. If
Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and
constants 38 , 2′8 with 2′

8
> 0 such that, if .1 ∈ Winit, we have:

1. -= converges to G∗ with probability at least 1 − X.
2. Conditioned on the above, the rate of convergence for each player 8 ∈ N is given by

‖-8,= − G∗8 ‖1 ≤ 2
∑

U8 ∈A8\supp(G∗
8
)
q8

(
38 − 2′8

∑=

:=1
W:

)
. (8)

Armed with this general result, we readily obtain the following immediate consequences thereof:
Corollary 1. If the regularizer employed is non-steep (i.e., \8 is differentiable at 0), -= converges to
G∗ in a finite number of iterations.
Corollary 2. Suppose that FTRL is run with oracle-based feedback as per Model 1 and a learning
rate of the form W= ∝ 1/=? , ? ∈ [0, 1]. Then the conclusion of Theorem 1 holds.
Corollary 3. Suppose that FTRL is run with bandit feedback as per Model 2, a learning rate of the
form W= ∝ 1/=? , ? ∈ [0, 1] and a mixing parameter Y= ∝ 1/=A , A ∈ (0, 1/2). Then the conclusion of
Theorem 1 holds.
Remark 4.1. We stress out here that for all the bandit-feedback derived results, the convergence
rates refer to -8,= instead of the explicit exporation term -̂8,= whose rate is always dominated by the
mixing parameter Y=.
Corollary 4. Suppose that Optimistic FTRL is run with oracle-based feedback as per Model 3 and a
learning rate of the form W= ∝ 1/=? , ? ∈ (0, 1]. Then the conclusion of Theorem 1 holds.
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ALGORITHM KERNEL \ (x) RATE q (−y)

Multiplicative Weight Updates G log G exp(−H)
Projection Gradient Descent G2/2 −H

Inverse Updates − log G −1/H
q-Replicator@>0 [@ (1 − @) ]−1 (G − G@) [@−1 + (1 − @)H ]1/@−1

Table 2: Regularizers & correspinding rates.

More generally, we show in the supplement that the conclusion of Theorem 1 holds for all algorithms
and feedback models presented in Table 1: in all cases therein, players can employ step-size policies
of the form W= ∝ 1/=? , ? ∈ [0, 1], and a mixing parameter Y= ∝ 1/=A with A ∈ (0, 1/2) for the bandit
models. The only case that does not follow as an immediate corollary of Theorem 1 is the case of
constant step-sizes for Optimistic FTRL and EG/MP; however, a slightly more refined argument (that
we present in the Appendix C) shows that constant step-sizes are also covered by the convergence
rate guarantee (8) of Theorem 1.

4.2. Sketch of proof and main techniques. At a high level, the main idea of the proof of The-
orem 1 relies on a tandem application of martingale limit theory and convex analysis in order to
exploit the specific structure of (FTGL). While martingale limit theory emerges naturally to control
the components of the noise, a delicate analysis of the contribution of ℎ8 in the solution of the convex
constrained optimization problem, that G = &8 (H) induces, is necessary to derive the aforementioned
generic rates. Below we provide a sketch of the main steps in this analysis
Step 1. Our starting point is to explore the geometric properties that are induced by the existence of a
strict Nash equilibrium. Indeed, the fact that (NE) holds as a strict inequality for each pure strategy
against the equilibrium’s strategy, ensures convergence properties for strict Nash equilibria. More
precisely, an immediate implication of (NE) is that there exist neighborhood U of G∗ and constants
21, . . . , 2# such that

E8U∗
8
(G) − E8U8 (G) ≥ 28 for all G ∈ U and U8 ≠ U∗8 , U8 ∈ A8 , 8 ∈ N (9)

In other words, in the neighborhood U the payoff of the equilibrium’s strategy strictly dominates
all other strategies’ payoffs for each player. However, since the linchpin of (FTGL) is the interplay
between X and Y , for the purpose of our analysis, we need to investigate the variational structure of
U in both spaces.
Informal Lemma 1. There exists a neighborhood U , constants 21, . . . , 2# and "1, . . . , "# for
which (9) holds such that

∏
8∈N &8 (W"8

) ⊆ U , where W"8
are open sets of the form 3

W"8
= {.8 : .8U∗

8
− .8U8 > "8 for all U8 ≠ U∗8 , U8 ∈ A8} for "8 > 0, 8 ∈ N (10)

Step 2. We now focus on one player 8 ∈ N and drop the index 8 altogether. First we prove that there
exists an open set of initializations Winit of (FTGL), for which with arbitrary high probability the
dual variable (.: ):∈ℕ never exits W" and thus its image remains in the desired neighborhood U .
We start by writing the score differences between each pure strategy U ∈ A and U∗ ∈ supp(G∗)

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (11)

where drift: = EU (-: ) − EU∗ (-: ), noise: = *U,: −*U∗ ,: , bias: = 1U,: − 1U∗ ,: . We will prove by
induction our forward-invariant statement; let .: ∈ W" and thus -: ∈ U for all : = 1, . . . , = then

• By (9) we have
∑=
:=1 W:drift: ≤ −2

∑=
:=1 W: for all : = 1, . . . , =.

• By the triangle inequality and (A1), the term
∑=
:=1 W:bias: is dominated by the term

∑=
:=1 W:drift:

for all = = 1, 2, . . ..
• Subsequently, by leveraging the machinery of martingale’s maximal inequalities and assumption

(A2), which we present in Appendix A and using learning rates that respect (A3), we prove that with
probability at least 1 − X, for any fixed confidence level X,

∑=
:=1 W:noise: , which is a martingale, is

also dominated by the term
∑=
:=1 W:drift: for all = = 1, 2, . . .

• We now define the open set of initial conditions Winit, which is of the form described in (10), with
constant "init. By choosing4 "init ≥ " +

∑=
:=1 W: (noise: + bias: ) − (2 − 2′)

∑=
:=1 W: , for any

2′ < 2 and any = ≥ 1, since .1 ∈ Winit we have that .U,=+1 − .U∗ ,=+1 ≤ −" for all = ≥ 1.
3It is worth mentioning that the images of these open sets belong to neighborhoods of G∗, which are nested as "8 increases.
4such a "init exists since both the bias and the noise terms are dominated by the term −(2 − 2′) ∑=

:=1 W: .
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By substituting the inequality for "init in (11) we get .U,=+1 − .U∗ ,=+1 ≤ −" − 2′
∑=
:=1 W: and

convergence occurs as an immediate consequence; Indeed -U∗ ,= → 1, since whenever .U − .U∗ →
−∞, it holds that each U ∈ A \ supp(G∗) becomes extinct i.e., -U → 0.
Step 3. We now proceed to the delineation of the rates of convergence. Using the KKT conditions
(Lemma B.1) combined with Eq. (11),Eq. (9) and the fact that .1 ∈ Winit we have

\ ′(-U,=+1) − \ ′(-U∗ ,=+1) = .U,=+1 − .U∗ ,=+1 ≤ −"init − 2
=∑
:=1

W: +
=∑
:=1

W: (noise: + bias: )

Recall that \ is strong convex, or equivalently \ ′ is strictly increasing; by rearranging and substituting
to the above inequality we get

\ ′(-U,=+1) ≤ \ ′(-U∗ ,=+1) − " − 2′
=∑
:=1

W: ≤ 3 − 2′
=∑
:=1

W: (12)

where 3 = −" + \ ′(1) and U ∈ A, U ≠ U∗. By aggregating over all U ∈ A, U ≠ U∗

‖G∗ − -=+1‖1 = 2(1 − -U∗ ,=+1) ≤ 2
∑

U∈A≠U∗
q(3 − 2′

=∑
:=1

W: ) (13)

which indicates the rate of convergence and completes our proof.
Remark 4.2. The bounds we provide are indeed sharp. To see this, consider a single-player game
with two actions “0” and “1”, and payoffs D(0) = 0, D(1) = 1. Then, if e.g., FTRL is run with “full
information” feedback, the probability that the player plays “1” at time C is exactly equal to

-C = 1 − q(2 −
C∑
B=1

WBD(1)) = 1 − q(2 −
C∑
B=1

WB)

where q is the rate function of Eq. (7) and 2 is an initialization constant. This simple derivation
shows that MWU converges to the game’s (strict) equilibrium at a rate of exactly exp(−Θ(∑C

B=1 WB)),
whereas Euclidean methods achieve an equilibrium after a finite number of iterations – in particular,
as soon as

∑C
B=1 WB exceeds 2. It thus follows that the rates provided by Theorem 1 are, in general,

unimprovable.

5 Numerical experiments

In this section we perform a series of numerical experiments to validate our theoretical findings.
Specifically we are interested in verifying both the correctness in the computation of the rates via q8
for different regularizers and at the same time the fact that convergence speed is invariant to different
feedback models and algorithmic variants of (FTGL).

To do this, we start by examining variations of (FTGL) in the archetypal game of Battle of the Sexes,
a popular two-player benchmark of the coordination games, which however involves elements of
conflict as well. This game exhibits two strict Nash equilibria and one mixed equilibrium (for the
exact definition, see Appendix E). We then seek to experimentally study the performance of (FTGL)
while the number of the players scales up. To do this we use the atomic version of classical Pigou’s
congestion game [39], where # units of traffic (e.g., rush-hour drivers) leave from $ (origin) to �
(destination) at the same time and each driver has the same dominant pure strategy/path for this trip.
Accordingly to Table 2 the decay rate for the entropic regularization is exponential while for the case
of euclidean is linear, which indeed yield linear and constant-time convergence as Fig. 1 illustrates.

We defer a detailed exposition of various configurations with different step-sizes, alternative dis-
cretization methods like MirrorProx and ExtraGradient and feedback models with the presence (or
not) of extra heavy-tailed/uniform/gaussian noise again to the paper’s supplement.

It is worth mentioning that the sharpness of the provided rates of Theorem 1 can clearly be observed
in the list of the extensive numerical experiments we present in Fig. 1 and Appendix E. In particular,
the faster convergence rate of Euclidean algorithms is somewhat surprising since a regret-based
viewpoint would suggest the use of entropic regularization (which, ceteris paribus, has much better
regret guarantees) as optimal in this regard. Interestingly, however our analysis shows that a Euclidean
regularizer is much more suitable for achieving convergence to equilibrium in a game-theoretic setting.
It is for this reason that we insisted on the comparison between entropic and Euclidean regularization
in the simulations. (The Pigou network example of Fig. 1b is especially telling in this regard.)
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(a) Battle of the Sexes
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(b) Pigou Network

Figure 1: For the Battle of the Sexes experiment, we initialize uniformly randomly our executions from
.8=8C ∈ [−1, 1] × [−1, 1] and examine the instantiations of Model 1-3 using constant-step size and exploration
rate Y= ∝ 1/ 3√=. For the Pigou’s game, our setup includes two alternative disjoint paths for # = 1000 drivers.
The first path has linear latency ℓ1 (G) = G/# while the second one has constant unit congestion, ℓ2 (G) = 1,
where G denotes the population of the drivers that uses the corresponding path.

6 Concluding remarks

A key take-away from this study is that the questions of regret minimization and convergence to Nash
equilibrium are fundamentally different. In particular, much of the conventional wisdom that has
been accrued for regret-minimization strategies (such as which regularizer to use, with what learning
rate, etc.) ceases to apply when the figure of merit is convergence to an equilibrium. Because the
only states that are stable under leader-following policies are the game’s strict Nash equilibria, the
agents can be significantly more firm and confident in their choices, without compromising their final
limit state; as a result, this extra degree of "confidence" allows for rates of convergence that are well
beyond the operational envelope of regret minimization problems. We believe that this polar shift
in perspective constitutes an important - and under-explored - issue in game-theoretic learning, and
charting out its ramifications for multi-agent learning is a particularly fruitful direction for future
research.
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A Martingale limit theory

Our analysis leverages tools from martingale limit theory. Below we present the two main theorems that
we utilize in the main body of our proofs.
• (Doob’s inequality), also known as Kolmogorov’s submartingale inequality gives a bound on the

probability that a stochastic process exceeds any given value over a given interval of time.
• (Burkholder’s inequality), also known the Burkholder-Davis-Gundy inequality is a remarkable result

relating the maximum of a local martingale with its quadratic variation.

Theorem A.1 (Doob’s inequality). Let (= be a martingale with respect to the filtration F=, then for
each Y > 0 and @ ≥ 1,

ℙ( sup
1≤:≤=

|(: | ≥ Y) ≤
� |(= |@
Y@

(Doob’s inequality)

Theorem A.2 (Burkholder’s inequality). Let (= be a martingale with respect to the filtration F= and
-= = (= − (=−1. Then for all 1 < @ < ∞, there exists constant �@ depending only on @ such that

� |(= |@ ≤ �@ �
����� =∑
:=1

-2
:

�����@/2 (Burkholder’s inequality)

Proofs for these two theorems can be found in [19].

B A dichotomy between the regularizers

Our main result (Theorem 1) provides a mechanism to compute the convergence rate to a strict Nash
Equilibrium universally for all smooth convex regularizers ℎ8 (G) =

∑
U8 ∈A8

\8 (GU8 ). An important
implication of our main theorem (Corollary 1) is that for the case of non-steep kernels (i.e., \8 is
differentiable at 0), -= converges to G∗ in a finite number of iterations. Below we give some intuition
for the interested reader about the differences between the steep and non-steep case.

Steep vs non-steep. In this section we elaborate in detail the dichotomy among the different
regularizers mentioned in Sections 3.1 and 4. As we established in Section 3.1, different players may
apply different regularizers ℎ8 in their choice maps &8 (H8). Depending on the regularizer chosen, the
behavior of (FTGL) could vary significantly. To investigate more this diversity, we start by describing
formally the strategy-choice step G8 = &8 (H8) as a convex constrainted minimization problem.

&8 (H8) = − arg min
G8 ∈X8

{ℎ8 (G8) − 〈G8 , H8〉} . (B.1)

Following also the folklore convention from convex analysis, we express ℎ as an extended-real valued
function ℎ : V → ℝ ∪ {∞} with value∞ outside of the simplex X . Additionally, the subdifferential
of ℎ at G ∈ V is defined as:

mℎ(G) = {H ∈ V∗ : ℎ(G ′) ≥ ℎ(G) + 〈H, G ′ − G〉 ∀G ′ ∈ V} (B.2)

If mℎ(G) is nonempty, then ℎ is called subdifferentiable at G ∈ X . When G ∈ ri(X ) then mℎ(G) is
always non-empty or more compactly ri(X ) ⊆ dom mℎ ≡ {G ∈ X : mℎ(G) ≠ ∅} ⊆ dom ℎ ⊆ X .
Notice that when the gradient of ℎ exists, then its subgradient always contains it. Leveraging the
property that local and global minima coincides in the case of convex function, Fermat’s rule provides
a simple characterization of the minimizers of a function as the zeros of its subdifferential:
Fact (Fermat’s Rule). For a proper convex function 5 , argmin 5 ≡ zerm 5 = {G ∈ X | 0 ∈ m 5 (G)}

With these in mind, we present a typical separation between the different regularizers„ focusing on
the more simple case of decomposable ones ℎ(G) = ∑

U∈A \U (G). On the one hand, steep regularizers
have differentiable kernels on (0, 1] and become infinitely steep as G approaches the boundary or
\ ′(0) = −∞. On the other hand, for the non-steep case the kernel is differentiable in all of [0, 1].
As a result of Fermat’s Rule, when a steep regularizer is employed the points of the boundary are
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Figure 2: Steep vs. non-steep regularizers (note in particular the singular behavior of the gradient at the
boundary in the case of steep regularizers).

infeasible not only as initial conditions but also as part of the sequence of play, while non-steep ones
allow completely the sequence of play to transfer between the different faces of the simplex. The
qualititative difference in behavior between these cases is illustrated in Fig. 2 (which shows the very
different behavior of the derivates of ℎ near the boundary of the state space).

Having discussed the connection between the choice map and the properties of the regularizer, the
following lemma quantifies the gulf between the steep and non-steep case and provides the relation
between mixed strategies and score vectors and the mirror map (3) that defines the dynamics (FTGL).
More precisely, we focus on the perspective of an arbitrary player, say 8, and for ease of notation we
write &, G and H instead of &8 , G8 and H8 respectively.

Lemma B.1. G = &(H) if and only if there exist ` ∈ ℝ and aU ∈ ℝ+ such that, for all U ∈ A, we
have: a) HU = mℎ

mGU
+ ` − aU; and b) GUaU = 0 In particular, if ℎ is steep, we have aU = 0 for all

U ∈ A.

Proof. Recall that

&(H) = arg max
G∈K

{〈H |G〉 − ℎ(G)}

= arg max

{ ∑
U∈A

HUGU − ℎ(G) :
∑
U∈A

GU = 1 and ∀U ∈ A : GU ≥ 0

}
The result follows by applying the Karash-Kuhn Tucker (KKT) conditions to this optimization
problem and noting that, since the constraints are affine, the KKT conditions are sufficient for
optimality. Our Langragian is

L(G, `, a) = (
∑
U∈A

HUGU − ℎ(G)) − `(
∑
U∈A

GU − 1) +
∑
U∈A

aUGU

where the set of constraints (i) of the statement of the lemma are the stationarity constraints, which in
our case are ∇L(G, `, a) = 0⇔ ∇(∑U∈A HUGU − ℎ(G)) = `∇(

∑
U∈A GU −1) −∑

U∈A aU∇GU , while
the set of constraints (ii) of the statement of the lemmas are the complementary slackness constraints.
Note that complementary slackness implies that whenever aU > 0 whenever U ∉ supp(G). Finally, if
ℎ is steep, we have |mUℎ(G) | → ∞ as G → bd(X ), which implies that the KKT conditions admit a
solution with aU = 0. �
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C Proof of Main Theorem

Our first lemma shows a property of strict Nash equilibria. More precisely, we prove the existence
of a neighborhood U in which each player’s payoff corresponding to the strategy of the equilibrium
outweighs the payoff of any other pure strategy.

Lemma C.1. Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium. Then there exists a neighbor-

hood U of G∗ and constants 28 such that for each player 8 ∈ N :
E8U∗

8
(G) − E8U8 (G) ≥ 28 for all G ∈ U and U8 ≠ U∗8 , U8 ∈ A8 . (C.1)

Proof. Our claim is a consequence of the definition of strict Nash equilibria. Specifically, from (NE)
for each player 8 ∈ N we have that

E8U∗
8
(G∗) > E8U8 (G∗) for all U8 ∈ A8 , U8 ≠ U∗8 (C.2)

By continuity there exists a neighborhood U ⊆ X and 28 > 0 for each player 8 ∈ N such that
E8U∗

8
(G) − E8U8 (G) ≥ 28 for all G ∈ U (C.3)

�

"8 < .8,U∗
8
−.8,U8

Y

G∗ = (U∗1 , . . . , U
∗
#
)

U

X

The following lemma plays a central role in the proof of our
main theorem (Theorem 1). More precisely, Lemma C.2 pro-
vides a detailed analysis of the topology of a neighborhood U
where variational inequality (C.1) holds both in primal space
X and dual space Y . In order to achieve that we introduce
the notion of “(U∗

8
, "8)-score-dominant” open set for a player

8 ∈ N , which we denote W8 ("8).

Definition (Score-Dominant Collection). Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium of

a finite game Γ. Then a collection is said to be “(U∗
8
, "8)8∈N -score-dominant” if there exist positive

constants "8 > 0 corresponding open sets W8 ("8) of the form

W8 ("8) = {.8 : .8U∗
8
− .8U8 > "8 for all U8 ≠ U∗8 , U8 ∈ A8} for each player 8 ∈ N (C.4)

Lemma C.2. Let G∗ = (U∗1, . . . , U
∗
#
) ∈ A be a strict Nash equilibrium. Then for every Y ∈ (0, 1),

there exist constants "8, Y and the corresponding score-dominant open sets for each player 8 ∈ N
such that:

∏
8∈N &8 (W8 ("8, Y)) ⊆ UY , where UY = {G ∈ X : G8U∗

8
> 1 − Y for every player 8 ∈ N }

Proof. For an arbitrary player 8 ∈ N let W8 ("8, Y) be a score-dominant open set. We will show that
any "8, Y > \ ′8 (1) − \ ′8 (

Y
|A8 | ) > 0 satisfies the desideratum. Indeed, again by using Lemma B.1 for a

.8 ∈ W8 ("8, Y) with G8 = &8 (.8) we have that
.8U∗

8
− .8U8 > "8, Y (C.5)

\ ′(G8U∗
8
) − \ ′8 (G8U8 ) − (aU∗8 − aU8 ) > "8, Y . (C.6)

with aU8 ≥ 0 and G8U8 = 0 whenever G8U8 > 0. Notice that since "8, Y > 0 and \ ′
8

is strictly increasing,
it holds that G8U8 < G8U∗

8
. Indeed, assume by contradiction that G8U8 ≥ G8U∗8 for some U8 , then we

examine two different cases:

(i) If G8U∗
8
= 0, then G8U8 ≥ G8U∗8 for all U8 ∈ A8 with G8U8 > 0 for at least one U8 ∈ A8 , U8 ≠ U∗8

which is a contradiction to (C.6).
(ii) if G8U∗

8
> 0, then (C.6) implies that "8, Y ≤ \ ′(G8U∗

8
) − \ ′

8
(G8U8 ) < 0 which is again a contradic-

tion.

Therefore aU∗
8
= 0 and (C.6) can be rewritten for all U8 ≠ U∗8 with G8U8 > 0 as

\ ′8 (G8U8 ) < −"8, Y + \ ′(G8U∗8 ) < −"8, Y + \
′(1) < \ ′8 ( Y

|A8 | ) (C.7)

where last inequality holds by the choice of "8, Y > \ ′8 (1) − \ ′8 (
Y
|A8 | ) > 0. Again, since \ ′ is strictly

increasing, this implies that for all U8 ≠ U∗8 either G8U8 = 0 or 0 < G8U8 < Y
|A8 | . By union bound, this

implies that G8U∗
8
> 1 − Y and equivalently that G ∈ UY . �
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Remark C.1. It is easy to check that as " ′
8

increases the score-dominant sets and their corresponding
images are nested. Indeed if " ′ ≥ "Y ⇒ W (") ⊆ W (" ′) ⇒ &(W (")) ⊆ &(W (" ′)), since
.8U∗

8
− .8U8 > " > "Y for all U8 ≠ U∗8 , U8 ∈ A8 .

Remark C.2. Notice that since the above analysis is for each strategy U8 ∈ A8 of player 8, it implies
that not only the images &8 (W"8

) are nested, but also that if G8 = &8 (.8), .8 ∈ W"8
all G8U8 → 0 for

U8 ≠ U
∗
8

as "8 →∞.
Theorem 1. Let G∗ be a strict Nash equilibrium of Γ, and fix some confidence level X > 0. If
Assumptions (A1)–(A3) hold, there exists an unbounded open set of initial conditions Winit ⊆ Y and
constants 38 , 2′8 with 2′

8
> 0 such that, if .1 ∈ Winit, we have:

1. -= converges to G∗ with probability at least 1 − X.
2. Conditioned on the above, the rate of convergence for each player 8 ∈ N is given by

‖-8,= − G∗8 ‖1 ≤ 2
∑

U8 ∈A8\supp(G∗
8
)
q8

(
38 − 2′8

∑=

:=1
W:

)
. (8)

Remark C.3. The probability guarantee is over only the potential randomness that the payoff oracle.
i.e., when players have access to a perfect payoff oracle; the results hold with probability 1.

Proof. Fix a confidence level X and the parameters of the algorithm respecting (A1)–(A3). We will
prove that there exists a “score-dominant” open set of initial conditions Winit

Winit ≡ {. : "init < .U∗ − .U for all U ≠ U∗, U ∈ A} ⊆ Y for some "init > 0
such that whenever .1 ∈ Winit then with probability at least 1 − X the sequence of play generated by
(FTGL) converges to G∗ with rate given by the function q8

q8 (C) =
{
(\ ′
8
)−1 (C) if C > \ ′

8
(0+),

0 otherwise.
(C.8)

which depends on the choice of the kernel \8 of each player and the payoff matrix of the game.

For convenience of notation we focus on an arbitrary player in the proof, without loss of generality let
it be the 8-th one, and we completely drop the index 8. Since the equilibrium is strict by Lemmas C.1
and C.2 there exist a neighborhood Ustrict, 2strict > 0 and "strict > 0 such that

EU∗ (G) − EU (G) ≥ 2strict for all U ≠ U∗, U ∈ A and G ∈ Ustrict (C.9)
. ∗U − .U > "strict for all U ≠ U∗, U ∈ A and G = &(. ) ∈ Ustrict (C.10)

We start by proving the following claim:

Claim 1. Let W (") be a “score-dominant” open set for the strict Nash equilibrium G∗ . Then there
exists "init > 0 such that if .1 ∈ W ("init) =Winit then with probability at least 1 − X the sequence
of play (.=)=∈ℕ stays in W ("strict).

Proof of Claim. By definition of (FTGL) for the score differences we have

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (C.11)

where drift: = EU (-: ) − EU∗ (-: ), noise: = *U,: −*U∗ ,: , bias: = 1U,: − 1U∗ ,: . Notice that

• (Bias) By (A1):
∑=
:=1 W:bias: ≤ 2

∑=
:=1 W: ‖1: ‖∗ = >(

∑=
:=1 W: ) (C.12)

• (Payoff ) By Lemma C.1:
∑=
:=1 W:drift: ≤ −2

∑=
:=1 W: (C.13)

• (Zero-mean Noise) For the remaining term, '= =
∑=
:=1 W:noise: , firstly notice that it is trivially

a martingale. We will prove that with probability at least 1 − X this martingale is bounded
above by a term b= which is dominated by the term

∑=
:=1 W: . Consider the event �=, b= =

{sup1≤:≤= |': | ≥ b=}; we will show that the union of these events E = ⋃∞
==1 �=, b= occurs with

probability at most X when b= = b (
∑=
:=1 W: )0 with 0 < 1. Using Theorem A.1 and Theorem A.2

we have

ℙ(�=, b= ) ≤
�[|'= |@]
b=
@ ≤

2@ �[(
∑=
:=1 W

2
:
‖*: ‖2∗)@/2]

b
@
=

(C.14)
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Fact (Generalized Hölder’s Inequality). We will now consider a variation of the
Hölder’sinequality(

=∑
:=1

0:1:

)A
≤

(
=∑
:=1

0
`A

A−1
:

)A−1 =∑
:=1

0
(1−`)A
:

1A: for all A > 1, ` ∈ (0, 1) (GH)

Applying (GH) for 0: = W2
:
, 1: = ‖*: ‖2∗, A = @/2 and ` = (A − 1)/2A = (@ − 2)/2@, we get

ℙ(�=, b= ) ≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

�[‖*: ‖@∗ ]
b
@
=

(C.15)

≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

�[�[‖*: ‖@∗ |F: ]]
b
@
=

(C.16)

≤
2@ (

∑=
:=1 W: )

@−2
2

∑=
:=1 W

1+@/2
:

f
@

:

b
@
=

(C.17)

Recall that b= = b
(∑=

:=1 W:
)0 with 0 < 1 and let us denote X= =

2@

b@

∑=
:=1 W

1+ @2
:

f
@

:

[∑=
:=1 W:]1+(20−1)@/2 or

equivalently X= =
2@

b@

∑=
:=1 W

1+ @2
:

f
@

:

[∑=
:=1 W:]1+V@/2

for some V < 1. By assumption (A3), X= is summable and

by controlling the parameter b we can ensure that
∞∑
==1

X= = X (C.18)

Applying union bound to all the events �=, b= we have that with probability at least 1 − X it is
=∑
:=1

W:noise: ≤ b= for all = = 1, 2, . . . (C.19)

For the rest of the proof we condition to the event E2 . Let us define a constant "init, such that
"init ≥ max{"strict, "strict + sup=≥1{

∑=
:=1 W: (noise: + bias: ) − (2 − 2′)

∑=
:=1 W: }, for any arbitray

choice of 0 < 2′ < 2strict
5 . Let us recall the definition of a “score-dominant” open set
W (") = {. : . ∗U − .U > " for all U ≠ U∗, U ∈ A}.

We will prove by strong induction that .= ∈ W ("strict), for all = ≥ 1.

• For the base of the induction, we have that .1 ∈ W ("init) and by the choice of "strict, trivially we
get that .1 ∈ W ("strict).

• For the inductive step, let us assume that .: ∈ W ("strict) for all : = 1, 2, . . . , =, we will show
below that .=+1 ∈ W ("strict).

Combining (C.12),(C.13),(C.19) for the terms
∑=
:=1 W:drift: ,

∑=
:=1 W:noise: ,

∑=
:=1 W:bias: the

claim’s assumption .1 ∈ W ("strict) and the choice of "init, (C.11) can be bounded as

.U,=+1 − .U∗ ,=+1 = .U,1 − .U∗ ,1 +
=∑
:=1

W: (drift: + noise: + bias: ) (C.20)

.U,=+1 − .U∗ ,=+1 ≤ .U,1 − .U∗ ,1 − 2strict

=∑
:=1

W: + b= + 2
=∑
:=1

W: ‖1: ‖∗ (C.21)

.U,=+1 − .U∗ ,=+1 ≤ −"init − (2strict − 2′)
=∑
:=1

W: + b= + 2
=∑
:=1

W: ‖1: ‖∗ − 2′
=∑
:=1

W: (C.22)

.U,=+1 − .U∗ ,=+1 ≤ −"strict − 2′
=∑
:=1

W: ≤ −"strict (C.23)

and thus .=+1 ∈ W ("strict). �

5such a "init > 0 exists since both the bias and the noise terms are dominated by the term the terms 2
∑=

:=1 W: ‖1: ‖∗,b=
and consequently by −(2 − 2′) ∑=

:=1 W: .

17



The above claim immediately implies that -= ∈ U for all = = 1, 2, . . .. We will now prove that the
sequence of play converges to G∗.

Proof of Convergence. Let’s assume that ad absordum that there exists at least one strategy U ≠
U∗, U ∈ A such that lim sup=→∞ -U,= ≥ Y > 0. for all sufficiently large =. Recall also that for
- ∈ Ustrict, it holds that -U∗ > 0 by construction in Lemma C.2.

Then by Lemma B.1 we have
.U = \

′(-U) + ` − EU (C.24)
where ` ∈ ℝ and EU ≥ 0 while EU = 0 whenever -U > 0. Leveraging that i) the sequence of play is
contained in U , ii) by descending to a subsequence if necessary -U,<8

> 0 and iii) recall (C.23) for
the subsequence we have

.U,<8+1 − .U∗ ,<8+1 = \
′(-U,<8+1 ) − \ ′(-U∗ ,<8+1 ) ≤ −"strict − 2′

<8∑
:=1

W: (C.25)

However, the RHS of the above inequality goes to −∞ as <8 → ∞, while the LHS of the above
inequality is bounded by the constant \ ′(Y) − \ ′(1) since \ ′ is strictly increasing, which is a contra-
diction6. �

Proof of Rate. We now proceed to the delineation of the exact rates achieved. Consider the function

q(C) =
{
(\ ′)−1 (C) if C > \ ′(0+),
0 otherwise.

(C.26)

where (\ ′)−1 (I) is the inverse function of the kernel \ ′7. Focusing on (C.25) we can derive that

\ ′(-U,=+1) ≤ −"strict + \ ′(-U∗ ,=+1) − 2′
=∑
:=1

W: (C.27)

≤ −"strict + \ ′(1) − 2′
=∑
:=1

W: (C.28)

for all U ∈ A8 and = = 1, 2, . . .. As a result

-U,=+1 ≤ q(−"strict + \ ′(1) − 2′
=∑
:=1

W: ) (C.29)

Aggregating over all strategies U ∈ A, U ≠ U∗ we have

‖G∗ − -=+1‖1 = 2(1 − -U∗ ,=+1) (C.30)

≤
∑

U∈A≠U∗
q(−"strict + \ ′(1) − 2′

=∑
:=1

W: ) (C.31)

≤
∑

U∈A≠U∗
q(3 − 2′

=∑
:=1

W: ) (C.32)

where 3 = −"strict + \ ′(1). �

�

6The aforementioned by contradiction argument also provides a short proof of Remark C.2.
7 \′ is strictly increasing and so does its inverse.
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Corollary 1. If the regularizer employed is non-steep (i.e., \8 is differentiable at 0), -= converges to
G∗ in a finite number of iterations.

Proof. Additionally, in the case of non-steep regularizers we can prove that convergence occurs
in finite time. More precisely, focusing on (C.28) and bearing in mind that -U,=+1 ≥ 0 for all
= = 1, 2, . . . we have

\ ′(0) ≤ \ ′(-U,=+1) ≤ −"strict + \ ′(1) − 2′
=∑
:=1

W: (C.33)

At the same time for finite = it holds
=∑
:=1

W: ≥ (−"strict + \ ′(1) − \ ′(0))/2′ (C.34)

since \ ′(0) is finite for non-steep regularizers. Rearranging the above inequality we have

− "strict + \ ′(1) − 2′
=∑
:=1

W: ≤ \ ′(0) (C.35)

which inevitably implies that -U,=+1 = 0. �

D Models

We start by presenting the well-known algorithms Follow the Regularized Leader (FTRL), Optimistic
Follow the Regularized Leader (OptFTRL) and Mirror Prox (MP), as special cases of our general
algorithmic framework.

.8,=+1 = .8,= + W=+8,=
-8,= = &8 (.8,=)

(FTRL)

.̃8,= = .8,= + W=+8,=−1 -̃8,= = &8 (.̃8,=) .8,=+1 = .8,= + W=+8,= (OptFTRL)

Remark D.1. (OptFTRL) requires two initializations and then at each stage the previous payoff signal
is stored and is utilized to calculate the auxiliary cumulative payoff .̃8,=.

.8,=+1/2 = .8,= + W=+8,= .8,=+1 = .8,= + W=+8,=+1/2
-8,=+1/2 = &8 (.8,=+1/2) -8,=+1 = &8 (.8,=+1)

(MirrorProx)

Remark D.2. (MirrorProx) requires only one initialization, but at each stage the algorithm generates
two different states and correspondingly two payoff signals are needed.

For both the algorithms (OptFTRL),(MirrorProx) we can prove that for the cases of full information,
oracle based feedback and noisy payoff feedback, the implicit bias for modeling their intermediate steps
is ‖18,=‖∗ = O(W=). The bias is the same in all of the three cases and thus we only present the case of
full information.

Proof. Full information:

• (OptFTRL): +8,= = E8 (-=) + (E8 ( -̃=) − E8 (-=)). Thus

‖18,=‖∗ = ‖E8 ( -̃=) − E8 (-=)‖∗ ≤ �‖ -̃= − -=‖ (D.1)

= �‖&8 (.̃=) −&8 (.=)‖ ≤ � ′‖.̃= − .=‖∗ (D.2)
= O(W=) (D.3)
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• (MirrorProx): +8,= = E8 (-=) + (E8 (-=+1/2) − E8 (-=)). The proof is similar to the above and
‖18,=‖∗ = O(W=).

�

Below, we explain how the proof of Theorem 1 can be oriented to the specific structure of both
(OptFTRL) and (MirrorProx), in order to achieve all the permitted step-sizes. We will not make an exact
proof but we will thoroughly describe how the proof of Theorem 1 should be altered for the case of full
information; the reader can follow similar steps for the case of oracle based feedback.

• Optimistic Follow the Regularized Leader
(OptFTRL) has an extra auxiliary cumulative payoff .̃=. We will first prove that if the two
initializations of (OptFTRL) are appropriate then Theorem 1 holds without introducing any
bias term.
Step 1: Notice that for the score differences of the auxiliary cumulative payoffs we have

.̃U,=+1 − .̃U∗ ,=+1 = .U,= − .U∗ ,= + W=
(
EU ( -̃=−1) − EU∗ ( -̃=−1)

)
(D.4)

By substituting all the .= terms we have

.̃U,=+1 − .̃U∗ ,=+1 = .U,1 −.U∗ ,1 +
=−1∑
:=1

W:
(
EU ( -̃: ) − EU∗ ( -̃: )

)
+ W=

(
EU ( -̃=−1) − EU∗ ( -̃=−1)

)
(D.5)

Step 2: Assume that .̃: ∈ W" as described in Theorem 1 and thus -̃: ∈ U for all
: = 1, . . . , =. We will prove by induction that .̃=+1 ∈ W" . Notice that since -̃: ∈ U it
holds that

EU ( -̃: ) − EU∗ ( -̃: ) ≤ −2 for all : = 1, . . . , = (D.6)
Step 3: From Eq. (D.5) we have

.̃U,=+1 − .̃U∗ ,=+1 ≤ .U,1 − .U∗ ,1 − 2
=∑
:=1

W: (D.7)

By choosing "init > " our claim follows. We stress here that we have implicitly assumed
that for the second initialization of (OptFTRL) it holds .̃1 ∈ W .
Step 4: The rest of the proof holds as the one in Theorem 1, as all of the states -̃= remain in
the desired neighborhood U in which the variational inequality holds.

• Mirror Prox
This algorithm, as we have already mentioned, calculates two different cumulative payoffs
and primal states at each round.
Step 1:We will first prove by induction that that the cumulatve payoffs .=+1/2 ∈ W" for all
= = 1, 2, . . .. Assume that .:+1/2 ∈ W" and thus -:+1/2 ∈ U for all : = 1, . . . , = then for
the score differences we have

.U,=+1/2 − .U∗ ,=+1/2 = .U,= − .U∗ ,= + W= (EU (-=) − EU∗ (-=)) (D.8)

= .U,1 − .U∗ ,1 +
=−1∑
:=1

W:
(
EU (-:−1/2) − EU∗ (-:−1/2)

)
(D.9)

+ W= (EU (-=) − EU∗ (-=)) (D.10)

≤ .U,1 − .U∗ ,1 − 2
=−1∑
:=1

W: + W= max
U∈A
‖E(U)‖∗ (D.11)

Step 2: Choose "init > " + W= maxU∈A{‖E(U)‖∗} which is feasible for step-size of the
form W= ∝ 1/=? , ? ∈ [0, 1] and our claim follows.
Step 3: Continue with the proof as presented in Theorem 1.

Below we prove some properties concerning the case of payoff oracle/bandit feedback.
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Proposition D.1. In the bandit case, let -̃= be the state such that -̂8,= is the mixed strategy of the
8Cℎ player at round = i.e., -̂8,= = (1 − Y=) -̃8,= + Y=/|A8 |, based on which the pure strategy U8,= is
selected. Then the following properties hold

1. �[*8,= |F=] = 0.
2. ‖*8,=‖∗ = O(1/Y=).
3. ‖18,=‖∗ = O(Y=).

Remark D.3. In the case of (MirrorProx) -̃8,= is the state -8,=−1/2.

Proof. The payoff signal which is estimated through the (IWE) can be rewritten as +8,= = E8 (-=) +
*8,= + 18,=, where*8,= = +8,= − E8 ( -̂=) and 18,= = E8 ( -̂=) − E8 (-=).

1. Let A8 = {U1, . . . , U |A8 |} be the pure strategies of player 8 ∈ N ; then

�[+8,=] =
∑

U−8 ∈A−8
(D8 (U1;U−8), . . . , D8 (U |A8 |)) -̂−8,= = E8 ( -̂=) (D.12)

where with -̂−8,= we symbolize the joint probability distribution for all players except for the 8Cℎ
player.

2. We move on to the second part of this proposition.

‖*8,=‖∗ = ‖+8,= − E8 ( -̂=)‖∗ (D.13)

≤ ‖+8,=‖∗ + ‖E8 ( -̂=)‖∗ (D.14)
≤ max
U∈A
|D8 (U) | |A8 |/Y= +max

U∈A
|D8 (U) | (D.15)

= O(1/Y=) (D.16)

3. Finally for the norm of the bias term, let again A8 = {U1, . . . , U |A8 |} be the pure strategies of
player 8 ∈ N ; then

‖18,=‖∗ = ‖E8 ( -̂=) − E8 (-=)‖∗ (D.17)

= ‖(D8 (U1; -̂−8,=) − D8 (U1; -−8,=), . . . , D8 (U |A8 |; -̂−8;=) − D8 (U |A8 |; -−8;=))‖∗ (D.18)

It is sufficient to examine one of the elements of the vector 18,=:

|D8 (U1; -̂−8,=) − D8 (U1; -−8,=) | (D.19)

= |
∑
U2∈A2

· · ·
∑

U# ∈A#

( -̂2U2 ,= . . . -̂# U# ,= − -2U2 ,= . . . -# U# ,=)D8 (U1, . . . , U# ) | (D.20)

≤
∑
U2∈A2

· · ·
∑

U# ∈A#

| -̂2U2 ,= . . . -̂# U# ,= − -2U2 ,= . . . -# U# ,= | |D8 (U1, . . . , U# ) | (D.21)

= O(Y=) (D.22)

�

In this section we provide different algorithms and feedback models which connect to our general
algorithm (FTGL) and model described in Section 3.2. We first present a useful proposition in order
to calculate the permitted parameters of the algorithm in order for assumption A3 to be satisfied.
Proposition D.2. 1. For all step sizes of the form W= = W/=? , with ? < 1 and noise bounds f= = f=A

assumption A3 is satisfied if

2
@
− ? + 2A < V(1 − ?) for some V < 1 (D.23)

Furthermore, it holds that
1/@ + A < 1/2 (D.24)

2. For all step-sizes of the form W= = W/= and f= = f=A , assumption A3 holds as long as

1/@ + A < 1/2 (D.25)
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Proof. 1. Since W= = W/=? and f= = f=A , assumption A3 is restated as

X= =

∑=
:=1 W

1+@/2
:

f
@

:

[∑=
:=1 W: ]1+V@/2

(D.26)

= �@ (
=∑
:=1

1/: ?)−1−V@/2
=∑
:=1

1/: ? (1+
@

2 ) :A@ (D.27)

≤ � ′@=(1−?) (−1− V@

2 )=1−? (1+ @

2 )+A@ (D.28)

≤ � ′@=−1− V@

2 +?+
?V@

2 +1−?−
?@

2 +A@ (D.29)

≤ � ′@=−
V@

2 +
?V@

2 −
?@

2 +A@ (D.30)

Thus X= is summable if the exponent of = is less than −1:

− V@
2
+ ?V@

2
− ?@

2
+ A@ < −1 (D.31)

2
@
− ? + 2A < V(1 − ?) (D.32)

The second expression of the proposition can be derived if we only keep the variable 0 in the RHS
of the above inequality

2
@
− ? + 2A < V(1 − ?) (D.33)

( 2
@
− ? + 2A)/(1 − ?) < V < 1 (D.34)

2
@
− ? + 2A < 1 − ? (D.35)

1/@ + A < 1/2 (D.36)

2. Let W= = W/= and f= = f=A , then for assumption A3 we have

X= =

∑=
:=1 W

1+@/2
:

f
@

:

[∑=
:=1 W: ]1+V@/2

(D.37)

= �@

∑=
:=1

1
:1+@/2 :

A@

[∑=
:=1

1
:
]1+V@/2

(D.38)

≤ � ′@ (log(= + 1))−1−V@/2=1−1−@/2+A@ (D.39)

≤ � ′@ (log(= + 1))−1−V@/2=−@/2+A@ (D.40)

Since the sum
∑∞
==1 1/(log1+Y (=)=1+Y′) is finite for all Y, Y′ > 0; assumption A3 is satisfied as

long as
− @/2 + A@ < −1⇒ 1/@ + A < 1/2 (D.41)

�

Model D.1 ((FTRL) & Full information). In this case players have access to their full payoff vector
E(-=) for each round = = 1, 2, . . . and thus +8,= = E8 (-=) for all 8 ∈ N . All of the assumptions
A1-A3 are satisfied; indeed

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Trivially satisfied since*8,= = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

Model D.2 ((FTRL) & Noisy payoff feedback). In this setting at each round = = 1, 2, . . . players
have access to a perturbed version of their full payoff vector E(-=) with a zero-mean noise*=. Two
examples of such noises that we consider in the experimental section are a zero-mean guassian noise
and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for
all @ ∈ [1,∞]. Thus
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• (A1): Trivially satisfied since 18,= = 0.
• (A2): Satisfied for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

Model D.3 ((FTRL) & Oracle-based feedback). Assume that each player chooses an action based on
a given mixed strategy, and once every player has chosen an action, an oracle reveals to each player
their corresponding pure payoff vector. Formally, at each round = = 1, 2, . . . , each player chooses a
pure strategy U8,= ∈ A8 based on a mixed strategy -8,= ∈ X8 and subsequently observes the payoff
vector

+8,= = E8 (U=) = (D8 (U8;U−8,=))U8 ∈A8
. (D.42)

Regarding our basic assumptions, we readily have 18,= = 0 and*8,= = E8 (U=) − E8 (-=); hence:

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so*= has uniformly

bounded moments for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

Model D.4 ((FTRL) & Payoff-based feedback). If the players only observe their realized rewards,
they have to construct a model for += based on incomplete information. This is the standard setting
for multi-armed bandits, so it is often referred to as the “bandit feedback” model. In this case, the
players’ action selection process is as in Model D.3 above, but the feedback signal sequence += is
now reconstructed by means of the importance-weighted estimator

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to
-8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
Y= → 0 whose role is to stabilize the learning process. The idea behind this adjustment is that even if
a strategy has zero probability to be chosen under -=, it will still be sampled with positive probability
thanks to the mixing factor Y=.

The IWE estimator may be seen as a special case of the model (4) with *8,= = +8,= − E8 ( -̂=) and
18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.
• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and
Y= ∝ 1/=A , A ∈ (0, 1/2).

§

Model D.5 ((OptFTRL) & Full information). In this case the full payoff vector of each player is
+8,= = E8 ( -̃=) for all 8 ∈ N . As we proved above the state -̃= can be treated separately and thus

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Trivially satisfied since*8,= = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

Model D.6 ((OptFTRL) & Noisy payoff feedback). Again in this setting at each round = = 1, 2, . . .
players have access to a perturbed version of their full payoff vector E( -̃=) with a zero-mean noise
*=. Two examples of such noises that we consider in the experimental section are a zero-mean
guassian noise and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic
constant bounds for all @ ∈ [1,∞]. Thus

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Satisfied for all @ ∈ [1,∞].
• (A3): From Proposition D.2 and our specific analysis for (OptFTRL) is satisfied for all the step-sizes

of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

Model D.7 ((OptFTRL) & Oracle-based feedback). In this case the payoff signal+8,=, which depends
on the state -̃=, is generated as follows: at each round = = 1, 2, . . . , every player 8 ∈ N picks an action
U8,= ∈ A8 based on -̃8,= ∈ X8 and observes the pure payoff vector E8 (U=) ≡ (D8 (U8;U−8,=))U8 ∈A8

.
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Each player’s input signal is a special case of (4) with payoff feedback +8,= = E8 (U=), zero-mean
noise*8,= = E8 (U=) − E8 ( -̃=) and bias 18,= = 0 that satisfy all of the assumptions A1 - A3. In more
detail, we have:

• (A1): trivially satisfied since 18,= = 0.
• (A2): ‖*8,=‖∗ = ‖E8 (U=) − E8 ( -̃=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗ and thus the noise has bounded

moments for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §
Model D.8 ((OptFTRL) & Payoff-based feedback). As we mentioned in Model D.4, in this case
players only observe their realized rewards; thus they have to construct a model for += based on
incomplete information. The players’ action selection process is as in Model D.7 above, but the
feedback signal sequence += is now reconstructed by means of the importance-weighted estimator

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=) -̃8,= + Y=/|A8 | is the mixed strategy of the 8-th player at stage =. Compared to
-̃8,= the player’s actual sampling strategy is now recalibrated by an explicit exploration parameter
Y= → 0.

This type of feedback may be seen as a special case of the model (4) with*8,= = +8,= − E8 ( -̂=) and
18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.
• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and
Y= ∝ 1/=A , A ∈ (0, 1/2). §

Model D.9 ((MirrorProx) & Full information). In this case players have access to their full payoff
vector E(-=) for each round = = 1, 2, . . .; for the algorithm (MirrorProx) we observe two payoff
vectors at each round and as stated in the specific analysis above, for each one of E8 (-=+1/2) and
E8 (-=), we have

• Assumption A1: Trivially satisfied since 18,= = 0.
• (A2): Trivially satisfied since*8,= = 0.
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §
Model D.10 ((MirrorProx) & Noisy payoff feedback). As before at each round = = 1, 2, . . . players
have access to a perturbed version of their full payoff vector E(-=) with a zero-mean noise*=. Two
examples of such noises that we consider in the experimental section are a zero-mean guassian noise
and a uniform noise at [−1.1]. Both these noises satisfy (A2) with deterministic constant bounds for
all @ ∈ [1,∞]. Thus

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Satisfied for all @ ∈ [1,∞].
• (A3): From Proposition D.2 and our specific analysis for (MirrorProx) is satisfied for all the

step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1]. §

We simply mention here that in the exact same way all of the assumptions (A1)-(A3) are satisfied for
the second “intermediate” state of (MirrorProx).
Model D.11 ((MirrorProx) & Oracle-based feedback). In this case, at each round = each player 8 ∈ N
chooses two pure strategies U8,= and U8,=+1/2 successively based on the mixed strategies -8,=, -8,=+1/2
equivalently. Thus, the first payoff signal is +8,= = E8 (U=) with 18,= = 0 and*8,= = E8 (U=) − E8 (-=).
Hence:

• (A1): Trivially satisfied since 18,= = 0.
• (A2): Satisfied because ‖*8,=‖∗ = ‖E8 (U=) − E8 (-=)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so*= has uniformly

bounded moments for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1], by

also taking into account our specific analysis for (MirrorProx) presented above. §

The second payoff signal is +8,=+1/2 = E8 (U=+1/2) with 18,=+1/2 = 0 and *8,=+1/2 = E8 (U=+1/2) −
E8 (-=+1/2)
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• (A1): Trivially satisfied since 18,=+1/2 = 0.
• (A2): Satisfied because ‖*8,=+1/2‖∗ = ‖E8 (U=+1/2) − E8 (-=+1/2)‖∗ ≤ 2 maxU∈A‖E8 (U)‖∗, so *=

has uniformly bounded moments for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1], by

also taking into account our specific analysis for (MirrorProx) presented above. §

Model D.12 ((MirrorProx) & Payoff-based feedback). In this case, as we have already mentioned,
players only observe their realized rewards and the feedback signal sequence += is now reconstructed
by means of the importance-weighted estimator

+8U8 ,= =
1{U8,= = U8}

-̂8U8,=
D8 (U=) (IWE)

where -̂8,= = (1 − Y=)-8,=+1/2 + Y=/|A8 | is the mixed strategy of the 8-th player at stage =, with
Y= → 0.

The IWE estimator may be seen as a special case of the model (4) with *8,= = +8,= − E8 ( -̂=) and
18,= = E8 ( -̂=) − E8 (-=). All of the assumptions (A1)-(A3) are again satisfied; indeed:

• (A1): From Proposition D.1 ‖18,=‖∗ = $ (Y=). Thus our assumption is satisfied since Y= → 0.
• (A2): Again from Proposition D.1 ‖+8,= − E8 ( -̂=)‖∗ = $ (1/Y=) and thus the noise has bounded

moments, f= = Θ(1/Y=) for all @ ∈ [1,∞].
• (A3): From Proposition D.2 is satisfied for all the step-sizes of the form W= ∝ 1/=? , ? ∈ [0, 1] and
Y= ∝ 1/=A , A ∈ (0, 1/2).

E Experiments

We start this section by explaining in detail the two main games that our experiments are conducted.

E.1. Games.

1. In the archetypal game of Battle of the Sexes, a couple argues over which music to listen over the
weekend. Both know that they want to spend the weekend together, but they cannot agree over
what to do. The partner (A) prefers to audit a Rock band concert, whereas the partner (B) prefers
a Pop music show. This is a classical example of a coordination game, analysed in game theory
for its applications in many fields, such as business management or military operations. For the
interested reader, check [26]. Since the couple wants to spend time together, if they go separate
ways, they will receive no utility (set of payoffs will be 0, 0). If they go either to a Rock or a Pop
musical, both will receive some utility from the fact that they’re together, but one of them will
actually enjoy the activity. The description of this game in strategic form is therefore as follows:

Figure 3: Equilibrium Structure: This game has two strict Nash equilibria, one where both go to the Rock
concert, and another where both go to the Pop concert. There is also a mixed Nash equilibrium, where the
players go to their preferred event more often than the other. For the described payoffs, each player attends their
preferred event with probability 3/5.

2. In the selfish routing game of Pigou’s Congestion Network, we consider the simple network shown
in Fig. 4. Two disjoint edges/paths connect a source vertex $ to a destination vertex �. Each edge
is labeled with a cost function, which describes the cost (e.g., travel time) incurred by users of the
edge, as a function of the amount of traffic routed on the edge. In the atomic version of the game
the population of the drivers that uses a specific edge is an integer G ∈ {0, · · · , #}. The upper edge
has the constant latency function ℓ1 (G) = 1, and thus it represents a route that is relatively long but
immune to congestion. In the linear latency setting, the cost of the lower edge, which is governed
by the function ℓ2 (G) = G/# , increases as the edge gets more congested. In particular, the lower
edge is cheaper than the upper edge if and only if less than # drivers uses it.

25



Figure 4: Pigou’s Network

E.2. Experimental setup and methodology. Below, we will present separately the three archety-
pal instantiations of (FTGL) that we discussed in Appendix D, namely (FTRL),(OptFTRL) and
(MirrorProx). All algorithms were run on a) a game of the Battle of the Sexes; and b) Pigou’s
linear version with # = 1000 atomic drivers. For each algorithm and each model we will present
the performance of two well-studied regularizers: • entropic : \U (G) = GU log GU • euclidean :
\U (G) = G2

U/2.

We will group our models with the following way: The first collection of figures for each algorithmic
subsection will include the {oracle-based,payoff based/bandit} feedback model for the two aforemen-
tioned games for constant step-size and inverse-polynomial W= ∝ 1/=1/2. The latter one will present
the {perfect,uniform-noise,gaussian-noise} feedback. Finally, the shaded areas around the curves
represent the error bars in the execution for different random initializations.
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Figure 5: FTRL: oracle-based, bandit; W= = 0.05
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Figure 6: FTRL: uniform, gaussian; W= = 0.05.
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Figure 7: FTRL oracle, bandit; W= ∝ 1/=1/2
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Figure 8: FTRL: uniform, gaussian; W= ∝ 1/=1/2
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Figure 9: OptFTRL: oracle-based, bandit; W= = 0.05
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Figure 10: OptFTRL: uniform, gaussian; W= = 0.05
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Figure 11: OptFTRL: oracle-based, bandit; W= ∝ 1/=1/2
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Figure 12: OptFTRL: uniform, gaussian; W= ∝ 1/=1/2
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Figure 13: MP: oracle-based, bandit;W= = 0.05
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Figure 14: MP: uniform, gaussian; W= = 0.05

28



0 200 400 600 800 1000 1200 1400

rounds

10−10

10−8

10−6

10−4

10−2

100
Battle of the Sexes-‖x∗ −Xk‖1

MirrorProx-MWU-oracle

MirrorProx-MWU-bandit

MirrorProx-`2-oracle

MirrorProx-`2-bandit

(a) Battle of the Sexes

0 200 400 600 800 1000 1200 1400

rounds

10−10

10−8

10−6

10−4

10−2

100
Pigou’s Network-‖x∗ −Xk‖1

MirrorProx-MWU-oracle

MirrorProx-MWU-bandit

MirrorProx-`2-oracle

MirrorProx-`2-bandit

(b) Pigou Network

Figure 15: mirror-prox (MP): oracle-based, bandit; W= ∝ 1/=1/2
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Figure 16: MP: uniform, gaussian; W= ∝ 1/=1/2
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