
Under review as a conference paper at ICLR 2024

A RELATED WORKS

A.1 SPARSE TRAINING SIGNALS AND REPRESENTATION

The concept of frame-masked RL has distinctive characteristics that set it apart from other related
topics in the field:

1. Sparse Reward Problems: Sparse reward problems, as studied in prior work (Fu et al., 2017;
Riedmiller et al., 2018), involve scenarios where the environment provides meaningful
reward signals only rarely, often resulting in a lack of guidance for learning agents. In
contrast, frame-masked RL, as discussed in this paper, focuses on training agents more
efficiently by utilizing fewer visual observations (high-dimensional) rather than dealing
with the scarcity of reward signals.

2. Partially Observable Markov Decision Process (POMDP; Monahan (1982); Ghosh et al.
(2021)): POMDP is a variant of the regular MDP where the agent receives observations
from the observation space (o ∈ Ω) instead of directly sensing the states (s ∈ S). While
POMDP addresses the issue of partial observability, frame-masked RL emphasizes the loss
of temporal information and the approximation of the original transition structure. It is
distinct from focusing solely on the mismatch between state and observation spaces.

3. Sparse Representation Learning for RL: Sparse representation learning for RL, explored
in earlier studies (Liu et al., 2019; Le et al., 2017), involves leveraging techniques such
as dictionary learning or sparsity-inducing regularization terms to obtain compact repre-
sentations within neural networks. In contrast, frame-masked RL’s primary objective is
not sparse representation learning; instead, it aims to learn a meaningful latent space using
sparse state signals, focusing on the quality of the representation rather than its sparsity.

In summary, while there are overlapping themes in these related areas, frame-masked RL stands out
by addressing the challenges associated with training RL agents efficiently when they have limited
access to high-dimensional visual observations while preserving the quality of the learned latent
space.

A.2 CLUSTERING METHODS

SelfDreamer introduces a novel clustering approach to group actions for the purpose of state space
regularization. In this section, we compare our method to established clustering methods that address
similar challenges:

1. Centroid-based Clustering: Centroid-based clustering, as introduced by MacQueen (1967),
partitions data into k non-overlapping clusters by minimizing the sum of squared distances
between each point and the centroid of its assigned cluster. While this method minimizes
distances within the same cluster and maximizes distances between different clusters, it
can struggle with entangled boundaries when centroids are initialized closely. In contrast,
SelfDreamer focuses on learning robust prototypes by enforcing greater distance between
each pair of prototypes.

2. Density-based Clustering: Density-based clustering, as outlined by Ester et al. (1996),
groups data points that are spatially close with high density while identifying noise points.
However, in the context of RL, the density of action groups can vary significantly, making
clustering based solely on density less flexible in accommodating the distribution.

3. Distribution-based Clustering: Distribution-based clustering, following the work
of McLachlan & Basford (1988), assumes that each cluster follows a specific probability
distribution and uses statistical methods to estimate distribution parameters that best fit the
data. This approach typically requires a predefined number of clusters, which can be chal-
lenging to determine without domain knowledge or extensive trial-and-error. In contrast,
SelfDreamer employs a larger number of prototypes and automatically retires redundant
ones, offering more flexibility.

4. Connectivity-based Clustering (Hierarchical Clustering): Connectivity-based clustering,
often referred to as hierarchical clustering and introduced by Defays (1977), builds a hi-
erarchy of clusters by iteratively merging or dividing clusters based on a distance metric.

13

Under review as a conference paper at ICLR 2024

However, in RL, the distribution of actions dynamically evolves throughout training, and
action groups must be consistent across batches. Static results produced by hierarchical
clustering may not be as applicable as the learnable prototypes in SelfDreamer.

In summary, SelfDreamer’s approach to clustering actions and coupling them with transition proto-
types provides a distinct advantage in addressing the challenges of action grouping and state space
regularization compared to traditional clustering methods, offering greater flexibility, adaptability,
and robustness in the RL context.

B DETAILED ALGORITHM OF SELFDREAMER

We present our proposed algorithm, SelfDreamer, in Algorithm 2.

Algorithm 2: SelfDreamer

Initialize the dataset D with S random seed
episodes.

Initialize model parameters θ, ϕ, ψ, cA, cT
randomly.

while not converged do
/* Collect Experience */
Reset environment o1 = env.reset()
for time step t = 1..T do

Compute current state
st ∼ pθ(st|st−1, at−1, ot)

Sample action at ∼ qϕ(at|st)
Conduct sampled action
rt, ot+1 ← env.step(at)

Store experience to the dataset
D ← D ∪ {(ot, at, rt)}Tt=1.

for update step c = 1..C do
Sample training sequence
{(ot, at, rt)}k+Lt=k ∼ D.
/* Representation

Learning */
Compute model states
st ∼ pθ(st|st−1, at−1, ot)

Update θ by SelfDreamer loss
described in Sec. 3.
/* Behavior Learning */

Imagine trajectories {(sτ , aτ)}t+Hτ=t
from each state st

Predict rewards and values
{qθ(sτ), vψ(sτ)}t+Hτ=t

Compute the λ-return Vλ(sτ)
Update actor
ϕ← ϕ+ α∇ϕ

∑t+H
τ=t Vλ(sτ)

Update critic ψ ← ψ −
α∇ψ

∑t+H
τ=t

1
2 ||vψ(sτ)− Vλ(sτ)||

2

Notations
ot
st
at
rt

Observation
Model state
Action
Reward

Model components
pθ(st|st−1, at−1, ot)
qθ(st|st−1, at−1)
qθ(rt|st)
qϕ(at|st)
vψ(st)

Representation
Transition
Reward
Action
Value

Hyperparameters
S
T
C
L
H
α

Seed episodes
Length of interaction
Collect interval
Sequence length
Imagination horizon
Learning rate

C HYPERPARAMETERS

Table 5 shows the hyperparameters we adopted in our experiments.

14

Under review as a conference paper at ICLR 2024

Table 5: Hyperparameters used in our experiments. These hyperparameters are shared by all meth-
ods, except for the batch size of TPC, which is set to 150 to have a similar training time as Self-
Dreamer. We also set the scale of reward head loss to 8 and 64 specifically for SelfDreamer with
frame-masking period set to 2 and 3, and keep the scale to 1 for the baseline methods as this setting
does not improve their final results.

Name Symbol Value
World Model

Dataset size - 2 ∗ 106
Batch size B 50
Sequence length L 50
RSSM number of units - 200
KL balancing - 0.8
World model learning rate - 3 ∗ 10−4

Reward loss scale - 1
Reward loss scale (natural background) - 1000
SelfDreamer number of prototpyes - 2dim(A)+1

SelfDreamer loss scale - 0.5

Behavior

Imagination horizon H 15
Discount factor γ 0.99
λ-target parameter λ 0.95
Actor gradient mixing ρ 0
Actor entropy loss scale η 1 ∗ 10−4

Actor learning rate - 8 ∗ 10−5

Critic learning rate - 8 ∗ 10−5

Slow critic update interval - 100

Common

Policy steps per gradient step - 5
Optimizer - Adam
Gradient clipping - 100
Epsilon ϵ 10−5

Weight decay - 10−6

MLP number of layers - 4
MLP number of units - 400
Activation function - ELU

D FURTHER EMPIRICAL RESULTS

D.1 ABLATION STUDY

In Figure 3, we conduct an ablation study to examine the individual contributions of action and
transition prototypes to the overall SelfDreamer algorithm. This analysis involves two scenarios:

1. Fixed Action Prototypes: In this scenario, we keep the randomly initialized action pro-
totypes fixed and do not update them during training. Only the transition prototypes are
allowed to learn and adapt.

2. Direct Cosine Distance Minimization: In this scenario, we bypass the use of transition
prototypes and directly minimize the pairwise cosine distances between transitions caused
by similar actions, as described in Equation 6.

The results of the ablation study reveal the following insights:

• Easier Tasks with Smaller Action Spaces: In tasks such as Cartpole Swingup Sparse and
Reacher Easy, which have smaller action spaces, both the fixed action prototypes and direct

15

Under review as a conference paper at ICLR 2024

2 3 4 5 6 7 8
1e5

200

400

600

800
Cartpole Swingup Sparse

2 3 4 5 6 7 8
1e5

200

400

600

800
Cheetah Run

2 3 4 5 6 7 8
1e5

600

800

Cup Catch

2 3 4 5 6 7 8
1e5

400

600

800

Finger Spin

2 3 4 5 6 7 8
1e5

400

600

800

Reacher Easy

2 3 4 5 6 7 8
1e5

100

200

300

400
Walker Run

SelfDreamer fixed action prototypes w/o prototypes

Figure 3: Ablation study under frame-masked DMC (3x less state signals).

cosine distance minimization methods exhibit similar performance to the fully equipped
SelfDreamer. Additionally, in the Cup Catch task, despite SelfDreamer’s initial cold start,
after the convergence of dual prototypes, the final returns become nearly identical for all
three methods. SelfDreamer even achieves near-optimal behavior on one of the seeds, while
the other two methods converge to sub-optimal policies on all seeds.

• Tasks with Larger Action Spaces: In contrast, for tasks featuring larger action spaces, such
as Cheetah Run and Walker Run, SelfDreamer provides significant performance improve-
ments. In particular, SelfDreamer outperforms the ablated methods by 9% and 33% in
Cheetah Run and Walker Run, respectively. This emphasizes the essential role played by
both action and transition prototypes in SelfDreamer’s success, especially in more complex
tasks with larger action spaces.

These results underscore the significance of both action and transition prototypes in SelfDreamer’s
ability to effectively capture and leverage action-transition relationships, particularly in challenging
RL scenarios with larger action spaces.

D.2 FRAME-MASKED DMC (4X AND 5X LESS STATE SIGNALS)

In Tables 6 and 7, we present the results for frame-masked DMC with larger masking periods set to
4 and 5, respectively. These experiments aim to evaluate the impact of even greater frame masking
on performance compared to the smaller masking periods presented in Table 2 and Table 3.

As observed in the tables, increasing the frame-masking period leads to significant performance
drops across all tasks compared to the smaller masking periods. In some cases, the performance
degradation is severe, resulting in unacceptable or trivial solutions, such as in the case of Walker
Run.

It’s important to note that our method, SelfDreamer, struggles to benefit from the dual-prototypical
design in these scenarios where the number of padded frames greatly outnumbers the genuine
frames. This imbalance in frame distribution makes it challenging for SelfDreamer to create a
meaningful representation with action-consistent transitions, leading to the observed performance
drops.

16

Under review as a conference paper at ICLR 2024

These results serve as references for future research in the context of frame-masked reinforcement
learning, highlighting the challenges and limitations associated with larger frame-masking periods.

Table 6: Final performance in frame-masked DMC (4x less state signals).

Task Dreamer DreamerPro SelfDreamer

Cartpole Swingup Sparse 816± 34 751± 23 773± 27
Cheetah Run 680± 163 765± 11 738± 92
Cup Catch 946± 12 951± 7 943± 7
Finger Spin 658± 229 644± 147 696± 191
Reacher Easy 702± 21 926± 47 894± 97
Walker Run 71± 10 265± 43 271± 32

Table 7: Final performance in frame-masked DMC (5x less state signals).

Task Dreamer DreamerPro SelfDreamer

Cartpole Swingup Sparse 832± 13 640± 79 694± 101
Cheetah Run 568± 126 686± 68 581± 69
Cup Catch 888± 48 924± 5 949± 11
Finger Spin 613± 77 624± 108 567± 74
Reacher Easy 950± 5 810± 38 879± 68
Walker Run 52± 23 192± 38 209± 21

D.3 VISUALIZATION

In Figures 4 to 7, we provide visualizations of the final policies trained by four different algorithms:
Dreamer, DreamerPro, TPC, and our proposed algorithm, SelfDreamer. These visualizations are
focused on the Walker Run environment, where we have applied a frame-masking period of 2,
resulting in significant differences in performance.

Here are the observations from the visualizations:

• Figure 4: The agent trained by Dreamer sometimes exhibits a running behavior with its
knees on the ground, which may not resemble natural walking or running.

• Figure 5: The agent trained by TPC encounters difficulty and gets stuck at the starting
point, indicating challenges in learning an effective policy for the task.

• Figure 6: The agent trained by DreamerPro occasionally stumbles harshly during its run,
suggesting instability in its learned policy.

• Figure 7: In contrast, the agent trained by SelfDreamer demonstrates a smooth and natural
running behavior, which appears more consistent with the desired locomotion task.

These visualizations provide qualitative evidence of SelfDreamer’s ability to learn policies that result
in more natural and stable behaviors in the Walker Run environment compared to the other baselines,
emphasizing the efficacy of our proposed approach.

17

Under review as a conference paper at ICLR 2024

Figure 4: Visualization for Dreamer on Walker Run, trained with frame-masking period set to 2.

Figure 5: Visualization for TPC on Walker Run, trained with frame-masking period set to 2.

18

Under review as a conference paper at ICLR 2024

Figure 6: Visualization for DreamerPro on Walker Run, trained with frame-masking period set to 2.

Figure 7: Visualization for SelfDreamer on Walker Run, trained with frame-masking period set to 2.

19

