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A COMPLEXITY ANALYSIS

We represent the overall algorithmic flow of the model as follows. Furthermore, the time complexity
of our model is analyzed.

A.1 TIME COMPLEXITY OF LOW-HIGH FREQUENCY SIGNAL DISENTANGLEMENT

For the low- and high-frequency filter module, the number of nodes N , the number of edges |E|, the
feature dimension F of each graph, and the operation of each layer are considered when calculating
the time complexity. For the operation of each layer, the time complexity is O(|E|+N ×F 2)

)
, and

the model has L layers, so the overall time complexity is O
(
L × (|E| + N × F 2)

)
. It can be seen

that the overall time complexity of the low- and high-frequency filter module is mainly related to
the structure of the graph, that is, it is positively correlated with the number of nodes and the feature
dimension.

A.2 TIME COMPLEXITY OF LOW-FREQUENCY INTRA-CLASS CONSISTENCY

For the part of low-frequency intra-class consistency, the calculation of time complexity mainly
involves the number of samples Ns and Nt of the source domain and the target domain, and the
number of classification classes C of the task, and the overall time complexity is O(Ns×C+Nt×C).

A.3 TIME COMPLEXITY OF HIGH-FREQUENCY CONTRASTIVE LEARNING

For high-frequency contrastive learning, the computational time complexity mainly involves calcu-
lating the similarity matrix and the cyclic traversal to find positive and negative samples. For the
number of source domain and target domain graphs are Ns and Nt respectively, the time complexity
of computing the similarity matrix is O(Ns ×Nt × F ), and the time complexity of cyclic traversal
of positive and negative samples is O

(
(Ns +Nt)×max(Ns, Nt)

)
.

Algorithm 1 The training process of SnLH model
Input: The labeled graph in the source domain Ds; Unlabeled graph in the target domain Dt.
Output: All the predicted values of the target domain graph along with the accuracy.

1: Initialize the parameters of the model randomly.
2: while the model is not convergence do
3: Sample batches of data from Ds and Dt, respectively;
4: The sampled data is fed into a low- and high-frequency filter and a graph-level representation

is obtained by a readout function;
5: Maximizing cross-domain low-frequency mutual information and contrastive learning of

cross-domain high-frequency Information;
6: Calculate the overall loss function L = Lce+Lcl

high+Lkd
low, and backpropagation, and update

the model parameters.
7: end while

B BASELINES

The baseline models for all comparisons are introduced as follows:

• WL subtree: The method is based on the Weisfeiler-Lehman algorithm, and the main idea is to
construct the feature representation of a node by recursively aggregating the information of the
node and its neighbors.

• GCN: The GCN model continuously updates the node information by aggregating the informa-
tion of neighbors and uses an iterative way to generate coding vectors to capture cross-domain
information.

• GIN: GIN is an architecture for graph neural networks that enhances graph representation by de-
signing a specific aggregation mechanism that enables it to capture more complex graph structural
information.
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• GMT: GMT is a deep learning method for graph learning that combines the advantages of graph
neural networks and Transformer architectures to enhance graph representation and matching ac-
curacy.

• CIN: CIN aims to mitigate cross-domain differences by extending the traditional Weisfeiler-
Lehman algorithm to handle fine-grained graph structures.

• CDAN: CDAN is a method for cross-domain learning, and its core idea is to reduce the distribu-
tion difference between the source domain and the target domain through conditional adversarial
training.

• ToAlign: ToAlign is a deep learning method for cross-domain alignment, which aims to solve the
feature distribution mismatch problem in the domain adaptation task.

• MetaAlign: MetaAlign is a meta-learning method for cross-domain adversarial learning, which
aims to solve the feature alignment problem in domain adaptation.

• DUA: DUA is a cross-domain learning algorithm that improves the generalization ability of the
model by considering the information of the source domain and the target domain at the same time,
which aims to solve the problem of effective learning in the case of mismatched data distribution
of the source domain and the target domain.

• DEAL: DEAL is an algorithm suitable for cross-domain learning, which uses adaptive pertur-
bation and performs adversarial training with the domain discriminator to solve the problem of
domain difference.

• CoCo: The CoCo method uses coupled branches and ensemble contrastive learning techniques to
reduce the inter-domain differences and improve the performance of the model on cross-domain
problems.

• To-UGDA: The TO-UGDA method aims to solve the problem of insufficient labeled data in the
target graph domain by combining domain invariant features, adversarial alignment, and meta-
pseudo-label techniques.

• A2GNN: The A2GNN model derives the generalization bound of multi-layer GNN and com-
bines the constraint of maximizing the Mean difference (MMD) to reduce the difference between
domains.

C EXPERIMENT DETAILS

In this part, we will further describe some experiment-related details as follows.

C.1 MAIN RESULT DETAILS

In the main experiment, our hyperparameter settings are as follows: the ratio of low- and high-
frequency information λ is 0.8, the number of layers is 4, the dimension of the hidden layer is 64,
the temperature coefficient of the cross-domain low-frequency mutual information maximization
module τkd is 2.0, the temperature coefficient of the cross-domain high-frequency information con-
trast learning module τcl is 0.2, and the learning rate is 2e-3. Furthermore, we conducted several
random experiments to obtain the mean and standard deviation of the output results as the final re-
sults. In the comparison experiment with the performance of the latest methods, the A2GNN model
is mainly applied to the node classification task. To make a fair comparison, we processed the node
feature output of A2GNN with the same processing as our model through the readout function, but
the result is not ideal and cannot extract good graph representations.

C.2 ADDITIONAL EXPERIMENTAL DETAILS

For the experimental study and the experiment of low- and high-frequency information influence,
we conduct multiple experiments and record the average of the results as the final result. For the
sensitivity analysis of the ratio parameter λ of low- and high-frequency information, we make several
experiments and record the mean and standard deviation as our final results.
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