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1 Experimental Settings

The network architectures for each dataset are listed in Table. 1 in the main context, where the output
layers are omitted since they are all fully-connected layers containing the same number of neurons as
the number of classes in the dataset. The detailed training configuration (including data augmentation
and hyper-parameters) is listed in Table. 1. In addition, the CIFARNet architecture in Table 1 in the
main text is 128C3-256C3-P2-512C3-P2-1024C3-512C3-1024-512, while the VGG11 architecture
is 128C3-128C3-P2-256C3-256C3-256C3-P2-512C3-512C3-512C3-P2-2048-2048. Here 128C3
means 128 channels of 3× 3 convolution layer, and P2 means 2× 2 pooling layer.

We conduct a binary search on threshold values in initialization to make sure that the average firing
rate of each layer is around a certain number. In addition, we use supervisory signals in the output
layer to guarantee that there will not exist a class that cannot be classified due to the dead output
neuron problem. We infer and train the network in discrete time steps to better utilize the existing
deep-learning frameworks. However, our network can be converted to continuous time seamlessly if
we change the input encoding to whatever spike-based encoding.

In the implementation, directly using Eq. 20 and 21 to train the threshold may lead to negative
thresholds. Therefore, we choose another approach to train the threshold: In each iteration, we first
update parameters β and γ and then reset γ to γ0 while dividing β and θ by γ

γ0
. To stabilize training

(especially in the beginning), we scale up the gradients on output neurons corresponding to labels.
The scaling factor is determined by the ratio of fired spike number between label neurons and other
neurons. We use direct coding for static images as our network input (which is consistent with [4, 5]).

2 Proof of Theorem 4.1

Theorem 4.1 For a rate-based loss function L(s) which does not involve spike timing, with a
spike-to-timing derivative ∂s

∂t(s) = diag(
∂
∫
si(tk)

∂tk(si)
) = I where (si, tk) takes all neurons and spikes,

it has an equivalent form L(t(s)) =∑i

∑
tk(si)

∂L
∂si(tk)

· tk(si) defined on the timing of spikes.
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Table 1: Experimental configurations

MNIST Fashion-MNIST NMNIST CIFAR10 CIFAR100

Optimizer AdamW AdamW AdamW SGD SGD
Learning rate 0.0005 0.0005 0.0005 0.0001 0.0001
T (Time steps) 5 5 30 12 16
Weight decay 0.001 0.002 0.005 0.0005 0.002
Targetlabela 5 5 15 10 15

Targetothersa 1 1 2 1 1
Data augmentation Normb Norm+HFlipc - Cropd+HFlip+AutoAuge Crop+HFlip
a We use the enhanced counting loss for all datasets. Targetlabel and Targetothers are the target
number of output spikes for label output neurons and other output neurons respectively.
b Norm: Input normalization.
c HFlip: Random horizontal flip.
d Crop: Random crop. For the CIFAR10 and CIFAR100 datasets, we both use an offset of 4 in
the random crop.
e AutoAug: Auto augment [1].

Proof. For a certain output spike si(tk), the derivative of the rate-based loss function L to its timing
tk(si)

∂L

∂tk(si)
=

∂L

∂
∫
si(tk)

· ∂
∫
si(tk)

∂tk(si)
=

∂L

∂
∫
si(tk)

according to Eq. (8). If we want a time-based loss L to have the same derivative, then ∂L
∂tk(si)

=
∂L

∂tk(si)
= ∂L

∂
∫
si(tk)

. Therefore, if we take a single output spike timing tk(si) as the independent
variable, we have

L(tk(si)) =
∫

∂L
∂tk(si)

dtk(si) =

∫
∂L

∂
∫
si(tk)

dtk(si) =
∂L

∂
∫
si(tk)

· tk(si) + C. (1)

Here C denotes a constant. The last equation is because the loss function L does not involve spike
timing in its expression, so ∂L

∂
∫
si(tk)

is independent of tk(si). In addition, the ∂L
∂
∫
si(tk)

is unrelated
to other spike timings due to the same reason, so we can add equations of each output spike together
and get L(t(s)) = ∑

i

∑
tk(si)

∂L
∂
∫
si(tk)

· tk(si) + C. Let C = 0 in this formula this theorem is
proved.

3 Equivalent Time-based Loss Function for The Counting Loss

The counting loss has the form

L(s, target) = λ

C∑
i=1

(∫ T

0

si(t)dt

)
− targeti

2

, (2)

where λ is a scaling constant, C is the number of classes (also the number of output neurons), s is
the spike train emitted by output neurons, and si(t) denotes the output of the i-th neuron at time t.

As stated in the main text, we take

∂
∫
si(tk)

∂tk(si)
= 1 (3)

here to eliminate one degree of freedom. In this equation,
∫
si(tk) means the integral of si(tk) in a

sufficiently small interval (which equals 1) when neuron i fires at time tk.
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Suppose this neuron fires m spikes (m =
∫ T

0
si(t)dt) and the target spike count for neuron i is targeti.

Then the derivative of the loss function to a spike it emits is

∂L

∂
∫
si(tk)

=λ
∂
(∫ T

0
si(t)dt− targeti

)2
∂
∫
si(tk)

= λ
∂
(∑m

k′=1(
∫
si(t

′
k))− targeti

)2
∂
∫
si(tk)

=λ
∂
(∑m

k′=1(
∫
si(t

′
k))− targeti

)2
∂
∑m

k′=1(
∫
si(t′k))

· ∂
∑m

k′=1(
∫
si(t

′
k))

∂
∫
si(tk)

=λ
∂
(
m− targeti

)2
∂m

· 1 = 2λ(m− targeti). (4)

According to Theorem 4.1, the form of the equivalent time-based loss function L is:

L(t(s)) =
∑
i

∑
tk(si)

∂L

∂si(tk)
· tk(si) =

∑
i

∑
tk(si)

2λ

(∫ T

0

si(t)dt− targeti

)
· tk(si). (5)

Total Derivatives for a Neuron in Counting Loss:

According to Eq. (4), the total gradients for the m spikes fired by one neuron is

m · ∂L

∂tk(si)
= 2λm(targeti −m). (6)

Note that typically targetlabel ≥ m ≥ targetothers (in practice, we clip the gradients to 0 if label
output neurons fire more than desired or other output neurons fire fewer than desired). As a result,
the total gradient scale for a label output neuron first increases and then decreases quadratically as
the number of fired spikes grows. For other neurons, the gradient scale for other neurons increases
quadratically as the number of fired spikes grows.

4 Derivation of The Enhanced Counting Loss

To guarantee the total gradients for m spikes fired by one neuron to be 2λ(targeti −m), we need to
set ∂L

∂
∫
si(tk)

= 2λ
(targeti−m)

m . Compared with Eq. 4, we just need to turn the equation in the second
last line (deduction of other parts are unchanged)

∂L(m)

∂m
=

∂
(
m− targeti

)2
∂m

= 2(m− targeti) (7)

into

∂L(m)

∂m
= 2

(m− targeti)
m

. (8)

As a result,

L(m) =

∫
2
(m− targeti)

m
dm = 2

∫ (
1− targeti

m

)
dm = 2(m− targeti lnm). (9)

Since lnm is undefined when m ≤ 0, we can set (for instance) L(m) = 0 when m ≤ 0. In this case,
the formal form of enhanced counting loss is

L(s, target) = 2λ

C∑
i=1

(∫ T

0

si(t)dt

)
− targeti ln

(∫ T

0

si(t)dt

) . (10)

with approximation

∂
∫
si(tk)

∂tk(si)
= −1. (11)
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Table 2: Expression of different losses

Name Expression Rate to Timing Approximation

Counting (MSE) λ
∑C

i=1

((∫ T

0
si(t)dt

)
− targeti

)2
∂
∫
si(tk)

∂tk(si)
= −1

Spike train (kernel) λ
∑C

i=1

∫ T

0

(
κ ∗ (si − stargeti )(t)

)2
dt

∂
∫
si(tk)

∂tk(si)
= −1

Temporal efficient training −λ
∑T

t=1

(∑C
i=1 log

exp(si[t])∑C
j=1 exp(sj [t])

· stargeti [t]

)
∂
∫
si(tk)

∂tk(si)
= −1

Spike train (timing) λ
∑C

i=1

(∑ni

j=1

(
tj(si)− ttargetj (si)

))2

-

Time to first spike (CE) −λ
β

∑C
i=1 targeti log

exp(−βt1(si))∑C
i=1 exp(−βt1(si))

-

5 Additional Experiments

5.1 Experiments on Different Losses

In addition to the main body of our paper, we have also tried several other losses on the Fashion-
MNIST dataset, as listed in Table. 2. The reason we choose the Fashion-MNIST dataset is that this
dataset is relatively hard among those requiring not-so-much time to train. The network structure we
use here follows that in the main body of our paper.

The MSE and CE in the table mean mean-square-error and cross-entropy, respectively. For the
temporal efficient training (TET) loss [2], we use [] instead of () since it is defined in the discrete
time steps. The starget

i [t] is 1 for label output neurons and 0 for other neurons on each time step.

Table 3: Results of different gradients on Fashion-MNIST

Loss function Test Accuracy

Enhanced counting (MSE) 94.03%
Counting (MSE) 93.72%

Spike train (kernel) 93.81%
Temporal efficient training 80.91%

Spike train (timing) 94.03%
Time to first spike (CE) 91.89%

For the spike train (timing) loss, we
set T target spikes with firing time
ttarget
j (si) = 0.5 to T − 0.5 for label

output neurons. For other output neu-
rons, we set the target spikes for cer-
tain amounts of time after the actual
firing time dynamically, where the
time difference between target spikes
and actual output spikes is set to T√

C
(where C is the number of classes in
the dataset) empirically to balance the
gradients.

For the time-to-first-spike loss, we em-
pirically select scaling factor β = 1

T (to reduce the gradient vanishing problem). In addition, t1(si)
means the timing of the first spike a neuron fires and we set tunfired = 4T , where tunfired denotes
the t1(si) when a neuron does not emit any spikes at all.

The results are shown in Table. 3 and Figure. 1. From the results, we can see that counting loss, spike
train (kernel) loss, and spike train (timing) loss can all train the network with fair accuracy. The
TTFS loss behaves not as well as the three above losses, while the TET loss [2] behaves much worse.
Actually, if the tunfired is not selected carefully, its performance will also be degraded to the TET
loss. This effect will be discussed in detail in the next section.

From Figure. 1, we can see that the counting loss and spike train (timing) loss have a larger overall
loss scale. Oppositely, TTFS loss and TET loss have a smaller loss scale. For the ratio of positive
gradients, we can see that the TET loss has the most imbalanced ratio, even in the early stages. This
is an important reason that it cannot train the network well. The ratio of positive gradients for the
TTFS loss also surpasses the other three losses which can train the network well.

Although the spike train (timing) loss performs as well as the enhanced counting loss for the Fashion-
MNIST dataset, it is currently more challenging to tune on larger networks, resulting in a CIFAR10
dataset accuracy of only 90.09%. In addition, the loss function almost does not affect the time and
space complexity of the overall algorithm. The reason is that it only relates to the last layer of the
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Figure 1: Results of different losses. (a) Test accuracy along with training epoch index. (b) Sum
of absolute gradient values along with training epoch index. (c) Sum of gradient values along with
training epoch index. (d) The ratio of positive gradients along with training accuracy.

network (with size T ×N × C, where T is simulation time, N is the batch size, C is the number of
classes in the dataset), which occupies only a tiny proportion of calculation and memory. In addition,
the loss function is unnecessary for inference. As a result, the enhanced counting loss proves to be
more effective in terms of parameter tuning and overall performance.

5.2 Parameter Selection For TTFS loss

In this section, we show the influence of parameter selection (especially tunfired) on the performance
of the TTFS (CE) loss.

Before going into the experiments, we first derive a property of the TTFS (CE) loss and verify a
statement in the main text. In section 4.3 of the main body of our paper, we wrote that the sum of
gradients on spike timing should be positive. Actually, we can construct a loss function that has
almost zero-summed gradients by setting tunfired for the TTFS (CE) loss.

A loss resulting in zero-summed gradients. Firstly, we can rewrite the TTFS CE loss:

L(s, target) =− λ

β

C∑
i=1

targeti log
exp(−βt1(si))∑C
i=1 exp(−βt1(si))

=− λ

β
targetlabel log

exp(−βt1(slabel))∑C
i=1 exp(−βt1(si))

, (12)

When the neuron fires a spike, the gradient of the timing of this spike to the loss function is

∂L

∂t1(si)
= targeti −

exp(−βt1(si))∑C
j=1 exp(−βt1(sj))

. (13)
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Figure 2: Results of different parameters. (a) Test accuracy along with training epoch index. (b) Sum
of absolute gradient values along with training epoch index. (c) Sum of gradient values along with
training epoch index. (d) The ratio of positive gradients along with training accuracy.

The TTFS CE loss has a nice property when all output neurons fire spikes:

C∑
i=1

∂L

∂t1(si)
=

C∑
i=1

targeti −
exp(−βt1(si))∑C
j=1 exp(−βt1(sj))


=1−

∑C
i=1 exp(−βt1(si))∑C
j=1 exp(−βt1(sj))

= 0, (14)

which means the sum of gradients on output spikes is naturally summed to zero.

However, there are some output neurons that will not fire spikes and cannot receive this gradient,
which will break this property. To deal with this problem, we just need to set tunfired to be a very large
number when a neuron does not fire any spikes for a certain sample so that exp(−βtunfired) → 0.
In addition, we make use of the supervisory signal to force the neuron corresponding to the label to
fire at least once during the forward stage. Then if we denote fi as whether output neuron i fires a
spike at any time (1 for fire and 0 for not, note flabel must be 1 due to supervisory signal), the sum of
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gradients in the output layer is

C∑
i=1

∂L

∂t1(si)
=

C∑
i=1

fi

targeti −
exp(−βt1(si))∑C
j=1 exp(−βt1(sj))


=

C∑
i=1

fitargeti −
∑C

i=1 fi exp(−βt1(si))∑C
j=1 exp(−βt1(sj))

=1−

1−
∑C

i=1(1− fi) exp(−βt1(si))∑C
j=1 exp(−βt1(sj))


=

∑C
i=1(1− fi) exp(−βt1(si))∑C

j=1 exp(−βt1(sj))

≈ 0∑C
j=1 exp(−βt1(sj))

= 0. (15)

The approximation in line 5 is because exp(−βt1(si)) → 0 for neurons that do not fire. In line 6,
note that the label output neuron always fires, therefore the denominator is bigger than 0.

Experiments. Here we take three options for the parameter tunfired. The first is tunfired = T ,
denoting a situation with too many overall positive gradients. The second is tunfired = 4T , denoting
a circumstance with adequate overall positive gradients. The third is tunfired = 20T , denoting a
situation with zero-summed overall gradients.

The results are shown in Table. 4 and Figure. 2. We can see that when tunfired = T , the output layer
receives too many (positive) gradients and the ratio of positive gradients is too large. The network
cannot converge well with this loss function. On the other hand, when tunfired = T , the test accuracy
increases in the first few epochs and then drops drastically. We observe an increase in threshold
simultaneously. Note that due to weight standardization, the threshold is a primary influence factor of
the firing rate.

Figure 3: Threshold distribution of the last layer

5.3 Experiments on Inference Time

Table 4: Results of different gradients
between layers

tunfired Test Accuracy

T 80.85%
4T 91.89%
20T 87.90%

We want to show that our time-based training algorithm
can lead to early-stage inference in this section. To test the
time for inference, we will change the prediction strategy
of our network in the following experiments. Specifically,
we will use the early-exit mechanism to determine the
inference time. We will simulate our network in discrete
time steps and decide the prediction result and inference
time by selecting the output neuron that first outputs a
spike. If two or more output neurons fire spikes at the
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Table 5: Accuracy and inference time

Epoch 10 20 30 40 50 60 70 80 90 100

Test Accuracy 98.83 98.86 98.99 99.04 99.04 99.09 99.09 99.09 99.09 99.09
Inference time 0.189 0.169 0.159 0.147 0.147 0.137 0.129 0.128 0.128 0.128

same time step, we will wait until a time step at which
they differ. If the prediction cannot be determined until
the end of the simulation or the prediction is wrong, we will count the inference time as T . We expect
our algorithm can show a performance increase with comparable inference time compared with the
SNN trained by [3].

We have conducted experiments on the MNIST dataset to compare with [3]. We converted the input
into spikes conforming to [3] (with a total time step of T = 10). We trained our algorithm for 100
epochs, and the test accuracy and inference time are shown in the following table (note that we list
the accumulated best accuracy and accumulated fastest time).

Compared to Figure 9 in [3], our algorithm has an advantage in SNN testing accuracy and comparable
inference time.
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