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ABSTRACT
Cross-modal 2D–3D point cloud semantic segmentation on few-
shot-based learning provides a practical approach for borrowing
matured 2D domain knowledge into the 3D segmentation model,
which reduces the reliance on laborious 3D annotation work and
improves generalization to new categories. However, previousmeth-
ods use single-view point cloud generation algorithms to bridge
the gap between 2D images and 3D point clouds, leaving the incom-
plete geometry of an object or scene due to occlusions. To address
this issue, we propose a novel view synthesis cross-modal few-shot
point cloud semantic segmentation network. It introduces the color
and depth inpainting to generate multi-view images and masks,
which compensate for the absent depth information of generated
point clouds. Additionally, we propose a cross-modal embedding
network to bridge the domain features between synthesized and
original, collected 3D data, and a weighted prototype network is em-
ployed to balance the impact of multi-view images and enhance the
segmentation performance. Extensive experiments on two bench-
marks show the superiority of our method by outperforming the
existing cross-modal few-shot 3D segmentation methods.

CCS CONCEPTS
• Computing methodologies→ Computer vision.

KEYWORDS
Cross-modal, 3D point cloud semantic segmentation, few-shot
learning

1 INTRODUCTION
The broad spectrum of applications of 3D point clouds has recently
attracted the interest of researchers, leading to an increased focus on
this area of study, such as robotics [9, 13, 21], autonomous driving
[4–6], and virtual and augmented reality [17, 19]. Among them, the
3D point cloud semantic segmentation is the most fundamental
and vital task. However, designating a correct semantic label for
each point is challenging due to point clouds’ sparsity, irregularity,
and variable density. Furthermore, point clouds often contain noise,
missing data, and occlusions, further complicating the segmentation
procedure.

Existing deep-learning-based methods [10, 14, 22, 26, 27, 29, 33]
rely on large-scale labeled 3D point cloud datasets to achieve good
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performance. However, acquiring labeled 3D point cloud datasets
can be a complex and expensive process, often involving specialized
hardware and software. Thus, cross-modal few-shot learning [34] is
introduced to mitigate this limitation, where it back-projects single-
view 2D images into 3D pseudo point clouds as support exemplars
to help segment the corresponding categories in the query point
clouds. However, our in-depth investigation of this framework has
uncovered several performance hindrances. The fundamental draw-
back is that the generated 3D pseudo-point clouds are incomplete,
due to the occlusions in the single-view image. This can lead to
inaccuracies in the prototypes extracted by the Embedding Net-
work, resulting in a notable shape discrepancy between the real
query point clouds and pseudo-incomplete point clouds. To ad-
dress this challenge, a potential solution is to leverage point cloud
completion algorithms to infer the missing shapes of pseudo-point
clouds [3, 28, 31]. Nevertheless, these point completion algorithms
are currently designed for simple foreground point clouds without
complex backgrounds or simple background point clouds that over-
look the small object details, making them impractical for intricate
scenes. Another bottleneck arises from the gap in the latent feature
space between the support and query features. Although [34] uti-
lizes the statistical domain generalization method, "MixStyle" [35],
to bridge the gap, this method was originally proposed to capture
style (domain) information for images and it overlooked the modal-
ity difference, i.e., 2D to 3D, that existed between the support and
query data.

Hence, in this paper, we aim to solve these drawbacks and pro-
pose a novel cross-modal few-shot 3D point cloud segmentation
method. Figure 1 shows the key differences between the proposed
method and the previous method. Especially, to address the occlu-
sions in the single-view image, we employ a novel view synthesis
module to generate multi-view RGB and depth images from a single-
view image and back-project them into 3D point clouds. In other
words, we generate several point clouds from only one single-view
RGB image to potentially maximize the coverage of the 3D object
and improve the representation ability of support sets. Then, to
bridge the domain gap between the generated support point clouds
and the real query point clouds, we further employ a cross-attention
layer for the cross-modal embedding module and a weighted pro-
totype network that can adaptively calculate the weights when
extracting prototypes of 3D embedding space from the support
branch. These approaches aim to enhance the alignment between
the generated and real point clouds, ultimately improving the accu-
racy and effectiveness of the model.

Our methods are evaluated on two standard 3D datasets, S3DIS
[2], and ScanNet [7]. Similarly to [34], we take the standard 3D
point cloud dataset as a query set and create a small collection of
2D images with semantic labels as the support set that covers all
semantic categories in the query set. Experimental results demon-
strate the effectiveness of the proposed method, achieving superior
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Figure 1: Advantages of multi-view synthesis network in the presence of cross-modal few shot 3D point cloud semantic segmentation. Our method (b) significantly
outperforms the previous cross-modal method [34] (a) on this 1-way 1-shot "𝐵𝑜𝑜𝑘𝑐𝑎𝑠𝑒" segmentation example.

performance compared to previous methods. Once more, the exten-
sive ablation studies demonstrate that all designed components in
our network ultimately provide performance enhancements to the
overall system.

Our contributions can be summarized as follows:

• We propose a novel cross-modal few-shot 3D point cloud
semantic segmentation method based on multi-view synthe-
sis over 2D images. To our knowledge, we are the first to
introduce view synthesis to compensate for the information
loss in the few-shot 3D semantic segmentation task.

• We employ a novel cross-attention module in the feature
embedding network and a weighted prototype module to
align the heterogeneous gap of input spaces.

• We conduct exhaustive experiments to demonstrate the supe-
rior performance of the proposed method in the cross-modal
3D point cloud semantic segmentation task on unseen cate-
gories given a few or even one example(s).

2 RELATEDWORK
2.1 3D Point Cloud Semantic Segmentation
3D point cloud semantic segmentation is the task of assigning se-
mantic labels to each point in a point cloud. One of the pioneering
approaches is PointNet [22], which introduced a neural network
architecture that directly takes point clouds as input and can learn
discriminative features from point clouds. However, PointNet lacks
steps to capture the local geometry from point cloud and thus limits
its performance. As a result, PointNet++ [23] is proposed to improve
the performance of point cloud processing by introducing a hierar-
chical feature learning architecture and improving the network’s
ability to capture local features. Another commonly used approach
for point cloud semantic segmentation is to project the 3D point
cloud into a 2D image and then apply 2D semantic segmentation
techniques. For example, Jaritz et al. [11, 12] utilizes a 2D-3D cross-
modal adaptation method for 3D point cloud segmentation. They
project a 3D point cloud to a 2D image and sample the 2D features
at the corresponding pixel location. However, these approaches are
implemented by lifting 2D features to 3D spaces, which requires
two streams to extract 2D and 3D features respectively. Different

from previous approaches, we focus on RGB-Depth fusion to pro-
duce a dense point cloud that utilizes a single feature extractor for
obtaining 3D features.

2.2 Few-shot Semantic Segmentation
Few-shot learning has been extensively utilized in the semantic seg-
mentation of 2D images. Vinyals et al. [26] presented a framework
for one-shot learning on image segmentation which involved using
a weighted nearest-neighbor approach to convert the support set
and testing samples into a shared embedding space via a matching
mechanism. Zhang et al. [32] developed a Pyramid Graph Network
that treats the support branch as a graph, where each element in the
support latent space functions as a node. This technique allows for
the efficient propagation of label information from support to query.
In addition to 2D images, few-shot semantic segmentation methods
have recently expanded to 3D space. Zhao et al. recently proposed
a cross-modal 3D point cloud semantic segmentation task based on
a few-shot learning model [34]. It seeks to segment 3D point clouds
by merging RGB images with their corresponding depth estimate
to generate pseudo-point clouds, creating pseudo-point clouds to
overcome the modality gap. In this paper, we use view synthesis to
enhance the generated point cloud and propose a novel weighted
prototypical network based on few-shot learning for the 3D point
cloud semantic segmentation task.

2.3 Prototypical Network
The Prototypical Network (PN) is a metric learning-based strategy
widely used in few-shot learning. In the standard PN approach [25],
the prototype for each class is computed by taking the mean of
the support samples belonging to that class in the latent feature
space. This approach is simple and effective and reduces the risk
of over-fitting for few-shot learning. With these advantages, many
variants of PN are proposed [1, 8, 15, 16, 18, 36] for employment
in diverse domains and modalities applications. For example, [18]
proposed integrating Group Equivariant Convolutional Networks
into PN to address the lack of canonical structure in dermatological
images. Zhu [36] employed a weighting mechanism to reduce noisy
samples in feature embeddings. However, these methods do not
explicitly weigh the support samples based on their distinguishing
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Figure 2: (a) The detailed network architecture of the proposed method with the 1-way 1-shot setting. (b) The architecture of the point cloud Embedding Network.

characteristics. We propose a novel weighted prototypical network
tailored for the few-shot segmentation task. Our approach involves
setting up an encoder function to estimate weights for the masked
embedding features obtained by mapping input images from dif-
ferent views. By doing so, we can identify which views are more
informative for our segmentation task and weigh them accordingly.
This allows us to give more importance to the support samples that
are most relevant and distinguishing for the task at hand.

3 METHOD
3.1 Definition
Our network is designed to effectively align heterogeneous input
spaces between 2D images and genuine query 3D data to benefit
few-shot 3D point cloud semantic segmentation. Following [34], we
initially set up a concise 2D image dataset covering all categories
included in the point cloud dataset. Each category is explicitly an-
notated on these images. Then, each such 2D image, along with
its annotated mask (I𝑠 , I𝑀 ), serves as a support sample. For every
training episode, we define a𝐺-way 𝐾-shot learning task, compris-
ing 𝐾 pairs of (I𝑠 , I𝑀 ) for a total of 𝐺 different categories. Each 3D
point cloud Pq serves as a query sample, with its associated ground
truth Lq providing supervision throughout the training process.
Each point cloud P𝑞 ∈ R𝑁×(3+𝑐0 ) contains 𝑁 points associated
with 3 + 𝑐0 channel features, i.e. coordinate and extra features.

The support (2D) and query (3D) data are partitioned into sepa-
rate training and testing sets, ensuring that categories in the testing
set are distinct and not encountered during training. For clarity, we

describe our network’s architecture and methods under a 1-way
1-shot setup for training and testing.

3.2 Overview
Given single-view support images and their depth estimation, we
first synthesize multi-view images and masks to compensate for
the occluded information. Next, we back-project them to 3D point
clouds via 2D-3D transformations as detailed in Section 3.3. Then,
the generated and real point clouds in the support and query set
are fed into a newly designed cross-modal embedding network to
bridge the domain gap, see Section 3.4. To adjust the contribution of
each view in segmentation, we propose a weighted prototype net-
work to aptly integrate multi-view support features in Section 3.5.
Segmentation outcomes are achieved by computing the Euclidean
distance between prototypes and query feature vectors based on
the object category, as detailed in Section 3.6. Figure 2(a) shows the
architecture of our network under a 1-way 1-shot setting.

3.3 2D-3D Cross-Modal with Multi-View
Synthesis

To bridge the gap between 2D and 3D modals, previous works typi-
cally extract two modality feature representations from two distinct
encoders [11, 12] and then integrate them via converting the 2D
features into 3D pseudo features. However, employing different
encoders will result in a substantial domain discrepancy between
the two modalities, posing a challenge to their integration. There-
fore, similar to [34], our approach involves initially converting 2D
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images into 3D point clouds, allowing us to subsequently apply one
shared encoder to mitigate domain discrepancies. But, in contrast to
[34], we synthesize multi-view images with depths to compensate
for the potential information loss.

Specifically, for each 2D image with mask in the support set
(I𝑠 , I𝑀 ), we initially estimate its depth value. Subsequently, we em-
ploy a pre-trained 3D photo generation module [24] to generate
multi-view RGB-D images and their masks (I𝑣𝑠 , I𝑣𝑀 ), where 𝑣 ∈ 𝑉
and𝑉 represents the number of generated views. This module lever-
ages Layered Depth Image (LDI) as a foundational representation
and incorporates a learning-based inpainting model to generate
new color and depth in occluded regions. Then given the RGB
and Depth information at each pixel, we can convert the whole
image to the corresponding 3D point could (P𝑣𝑠 ,M𝑣 ) with following
back-projects:

𝑋 =
(𝑢 − 𝑐𝑥 )
𝑓𝑥

∗ 𝑧, 𝑌 =
(𝑣 − 𝑐𝑦)
𝑓𝑦

∗ 𝑧, 𝑍 = 𝑧, (1)

where (𝑢, 𝑣) is the pixel coordinate, (𝑐𝑥 , 𝑐𝑦 ) is the principal point
coordinate, (𝑓𝑥 , 𝑓𝑦 ) is the focal lengths, and 𝑧 is the depth value.

3.4 Cross-modal Embedding Network
Then, a shared cross-modal embedding network is introduced to
extract shape features from both pseudo point clouds and the real
query point clouds. It is built on top of the point cloud embed-
ding network in [33], as illustrated in Figure 2(b). The proposed
cross-modal point cloud embedding network is composed of three
modules: 1) EdgeConv (Econv) layers [20] to produce local geomet-
ric features and semantic features; 2) a self-learning module on the
generated semantic features to further explore the semantic interac-
tion among points ; 3) a metric learner to adapt embedding features
to well perform on few-shot tasks. The final output features of the
embedding network are obtained by concatenating the outputs of
the first EdgeConv layer, the self-learning module, and the metric
learner.

Then, to further alleviate the domain gap between features ex-
tracted from the generated support point clouds and the real query
point clouds, we introduce a cross-attention module. This module
leverages both intra-modality relationships within each modality
and inter-modality relationships between generated point cloud fea-
tures and real point cloud features to complement and enhance each
other for features of support and query matching. To be specific, for
each view, the support feature map represented by f𝑠 ∈ R𝑁×𝑐 is the
output of embedding function 𝑓𝜃 (P𝑠 ) for each pseudo point cloud,
where 𝑁 and 𝑐 denote the number of input points, and the chan-
nel of features, respectively. Similarly, let f𝑞 be the query features
from the embedding function 𝑓𝜃 (P𝑞). We can obtain the aggregated
support feature f𝑠∗ for each view via a cross-attention module:

f𝑠∗ = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (
𝑄f𝑠𝐾f𝑞

𝑇

√
𝑑𝑐

)𝑉f𝑠 (2)

where 𝑄 , 𝐾 , and 𝑉 are linear embedding functions with trainable
parameters from support or query features,

√
𝑑𝑐 is a scaling factor.

3.5 Prototype with Adaptive Weights
The prototype vectors are the fundamental components in the few-
shot learning, as they are used to infer the semantic labels of the
query point cloud. To establish a correct connection between sup-
port and query features, we propose a novel weighted learning
approach to adaptively merge support features and create proto-
types for few-shot segmentations.

To be specific, the weighted prototype network, denoted as
𝑤Φ ∈ R𝑉 ×𝐻×𝑊 ×4 → R𝑉 ×𝑁×𝑐 , first stacks all the synthetic views
together and then concatenates the RGB channels of images with
their binary masks for stacked synthetic views. Here, 𝑉 stands for
the number of views, while 𝐻 and𝑊 denote the image size, and 𝑐
represents the number of feature channels. This network, parame-
terized by Φ, aims to concurrently learn a metric space for all-view
images, producing predicted weights for the adaptive support fea-
ture aggregations:

w𝑁,𝑉 = Sigmoid(𝑤Φ (𝐶𝑜𝑛𝑐𝑎𝑡 (I𝑉𝑠 , I𝑉𝑀 )) (3)

where we scale the value of the weight into [0,1) by the 𝑆𝑖𝑔𝑚𝑜𝑖𝑑
function. Then, the weighted prototypical representation can be
computed as:

p𝑠𝑖
𝑓 𝑔

=

𝑁∑︁
𝑛=1

𝑉∑︁
𝑣=1

w𝑛,𝑣F𝑛,𝑣
𝑆
1[M𝑛,𝑣 = 𝑠𝑖 ], (4)

where F𝑛,𝑣
𝑆

denotes the extracted point-wise feature of 𝑣-th view
from the cross-modal embedding network, 𝑠𝑖 represents the target
class and 1[.] is an indicator function to indicate the foreground
object if the mask matching the target category.

The background prototype can be computed in a similar fashion:

p𝑏𝑔 =

𝑁∑︁
𝑛=1

𝑉∑︁
𝑣=1

(1 −w𝑛,𝑣)F𝑛,𝑣
𝑆
1[M𝑛,𝑣 ∉ O], (5)

where O = {𝑠1, 𝑠2, 𝑠3, ..., 𝑠𝑘 } is a set containing all target classes.

3.6 Segmentation and Loss Function
With extracted query features and support prototypes, the label
of a new point cloud sample X𝑖 from the query set 𝑄 (𝑒.𝑔. 𝑘-th
class in O) is obtained by calculating the Euclidean distance of the
query feature to each class prototype vector plus the background
and applying softmax on the distances as:

𝑙X𝑖
=

exp(−𝑑 (𝑓 ∗
𝜃
(X𝑖 )), p𝑘 )∑

p𝑘 ∈p exp(−𝑑 (𝑓
∗
𝜃
(X𝑖 )), p)

, (6)

where 𝑓 ∗
𝜃
represents our cross-modal embedding function, p stands

for the prototypes of all classes 𝑃 = {𝑃𝑓 𝑔 ∪ 𝑃𝑏𝑔} and 𝑑 (.) denotes
the Euclidean distance function between the query sample and
prototype vector. The proposed network are optimized using cross-
entropy loss between L𝑖 and 𝑝X𝑖

, given as:

𝐽𝜃,Φ = CE(𝑙X𝑖
, L𝑖 ), (7)

where 𝐿𝑖 is the ground truth of sample 𝑋𝑖 .
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4 EXPERIMENTS
4.1 Data Preparation
Datasets.We evaluate the proposedmethod on two datasets, S3DIS
[2], which contains 272 point clouds with 12 different indoor scene
categories plus one clutter class, and ScanNet [7], which consists
of 1,513 indoor scene scans fell into 20 semantic categories plus
one unannotated background class. To collect a support 2D image
set that covers all categories in both 3D datasets is challenging.
Therefore, we adhere to the dataset setup in [34], where typically
gather annotated images of 11 semantic classes, which are "𝑐𝑜𝑙𝑢𝑚𝑛",
"𝑡𝑎𝑏𝑙𝑒", "𝑤𝑎𝑙𝑙", "𝑓 𝑙𝑜𝑜𝑟 ", "𝑐ℎ𝑎𝑖𝑟 ", "𝑑𝑜𝑜𝑟 ", "𝑐𝑒𝑖𝑙𝑖𝑛𝑔", "𝑠𝑜 𝑓 𝑎", "𝑤𝑖𝑛𝑑𝑜𝑤",
"𝑏𝑜𝑎𝑟𝑑", and "𝑏𝑜𝑜𝑘𝑐𝑎𝑠𝑒" to cover the S3DIS dataset. Then, for the
ScanNet dataset, we can utilize 10 categories of them, excluding
"𝑐𝑜𝑙𝑢𝑚𝑛". Furthermore, each category comprises 3-shot images that
capture different indoor scenes. To classify each pixel in all the
collected images according to its corresponding category, we utilize
binary masks.

Setup. To align with the few-shot network design and balance
the outcomes of our 2D dataset for semantic segmentation, we
divide the 11 (or 10) semantic categories of the 2D image support
set into two separate subsets. These subsets were non-overlapping
and equally distributed. To be specific, we randomly choose 6 (or
5) semantic categories P0 and designate them as training sets and
take the remaining 5 (or 6) categories P1 for testing. Take S3DIS
for instance, given the large scale of indoor scene point clouds, we
utilize the data pre-processing methodology explained in [22] to
split the total 272 point clouds into 7,547 blocks. This is achieved by
sliding a non-overlapping window of size 1m×1m on the 𝑥𝑦 plane.
We randomly select 4,096 points for each block and ensure that
at least 100 points belong to the target category for segmentation
when the block is used as the query set. Similarly, for the generated
support point clouds, we randomly pick 4,096 points, of which 2,048
points are evenly selected from the target category region, and the
remaining 2,048 points are from the background.

To enhance the precision of experiments, we carry out the 2-Fold
Cross-Validation, which means the model trained on P1 is tested
on P0, while the model trained on P0 is tested on P1. In detail,
P0 consists of "𝑐𝑜𝑙𝑢𝑚𝑛", "𝑡𝑎𝑏𝑙𝑒", "𝑤𝑎𝑙𝑙", "𝑓 𝑙𝑜𝑜𝑟 ", "𝑐ℎ𝑎𝑖𝑟 " and "𝑑𝑜𝑜𝑟 ";
P1 consists of "𝑐𝑒𝑖𝑙𝑖𝑛𝑔", "𝑠𝑜 𝑓 𝑎", "𝑤𝑖𝑛𝑑𝑜𝑤", "𝑏𝑜𝑎𝑟𝑑" and "𝑏𝑜𝑜𝑘𝑐𝑎𝑠𝑒"
("𝑐𝑜𝑙𝑢𝑚𝑛" is removed when used for ScanNet dataset).

4.2 Implementation Details
Training.We follow a similar training setup in [33] to pre-train the
feature embedding network, self-learning, and metric learner mod-
ule. Typically, we pre-train the cross-modal embedding backbone
(without cross-attention module) on training set through append-
ing three MLP layers at the end to serve as the segmentor. During
pre-training, the batch size is set to 32 in a total of 100 epochs.
We employ the Adam optimizer with a learning rate of 0.001. For
training our few-shot network, the learning rate is initialized with
0.001 to optimize the entire model and decayed by half after 5,000
iterations. The focal length is set to 525 to produce the depth esti-
mation.

Evaluation Metrics. We utilize the mean Intersection over
Union (mean-IoU) metric as our evaluation method, which is com-
monly employed in point cloud semantic segmentation.We perform
the mean-IoU by calculating the average of each testing class.

4.3 Baseline.
As mentioned above, we are the first to introduce view synthesis in
cross-modal few-shot 3D semantic segmentation. To comprehen-
sively evaluate the proposed method, we design and perform three
baselines for comparisons.

DepProto. In this baseline, we introduce DepProto in [34],
which uses only one labeled image for each shot setup. Then the
generated support point cloud is fed to the embedding network
(without the cross-attention module), and each class is given one
prototype by calculating the mean feature of its support points. The
segmentation prediction is produced by ProtoNet [33].

3ViewDepProto.This baseline builds upon theDepProto, where
we introduce multi-view synthesis to produce multi-view RGB im-
ages and masks from a single labeled RGB image. In this baseline,
we set it to 3 frames for each shot. Each generated point cloud is
extracted by the embedding network. The prototype is solely deter-
mined by computing the average feature of the support points. The
predictions for query points are based on their squared Euclidean
distance from the prototypes.

CFS. CFS is introduced in [34], which utilizes the Co-embedding
network to extract and integrate the features of the support and
query branches, respectively.

4.4 Quantitative comparison
The quantitative results of different methods are shown in Table
1 and Table 2. From the first two baselines, we can see DepProto,
with only 𝐾 point clouds generated for 𝐾-shot indoor scenes for
each class, is inferior to 3ViewDepProto, which employs view
synthesis to create multi-view point clouds for each shot. This is
reasonable since the feature embedding network is able to access
more information about the object from different views, allowing
it to learn more valid shape information for each shot. Compared
withCFS, our method gains around 10% and over 15% on S3DIS and
ScanNet in all settings, respectively. This performance underscores
the significance of the cross-attention module and weighted proto-
typical network for effectively combining the support and query
features. Overall, In all four settings (1/2-way 1/3 shot) across both
datasets, our method exhibits consistent and significant superiority
over the baselines and CFS.

4.5 Qualitative comparison
We also demonstrate the performance of our method by visual com-
parison in Figure 3 and Figure 4 under 1-way 1-shot for each class in
both datasets. In Figure 3, we perform 5 categories of segmentation
results, which are "𝑠𝑜 𝑓 𝑎", "𝑡𝑎𝑏𝑙𝑒", "𝑐𝑒𝑖𝑙𝑖𝑛𝑔", "𝑐𝑜𝑙𝑢𝑚𝑛" and "𝑤𝑖𝑛𝑑𝑜𝑤".
Despite some instances of misclassification, it is evident that our
method produces segmentation results that are more similar to the
ground truth. For example, it is difficult for CFS to distinguish the
dissimilarity between "𝑐𝑜𝑙𝑢𝑚𝑛" and wall (the 4th row of Figure 3)
due to their analogous architectural features, while our technique
is able to correctly identify the fundamental structure of "𝑐𝑜𝑙𝑢𝑚𝑛"
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Table 1: Quantitative results on S3DIS dataset using mean-IoU metric (%).

Method 1-way 2-way

1-shot 3-shot 1-shot 3-shot

P0 P1 Mean P0 P1 Mean P0 P1 Mean P0 P1 Mean

DepProto [34] 45.89 44.10 44.50 47.29 48.13 47.71 40.27 38.58 39.43 42.47 41.78 42.13

3ViewDepProto 47.39 48.14 47.77 50.06 50.29 50.68 43.56 44.56 44.06 46.45 47.28 46.87

CFS [34] 48.27 51.32 49.80 51.23 52.39 51.81 43.20 45.49 44.34 46.35 45.28 45.82

Ours 57.09 55.23 56.16 58.89 59.06 58.48 48.23 49.24 48.74 51.28 50.36 50.82

Table 2: Quantitative results on ScanNet dataset using mean-IoU metric (%).

Method 1-way 2-way

1-shot 3-shot 1-shot 3-shot

P0 P1 Mean P0 P1 Mean P0 P1 Mean P0 P1 Mean

DepProto [34] 38.56 39.10 38.83 40.52 41.33 40.93 33.52 31.58 32.05 37.37 36.12 36.75

3ViewDepProto 42.29 41.10 41.70 45.33 46.70 46.02 39.17 40.18 39.68 41.35 38.18 39.77

CFS [34] 41.99 40.38 40.69 45.13 43.29 44.21 37.20 34.38 35.79 40.23 39.38 39.81

Ours 50.25 48.73 49.49 52.34 53.56 52.95 44.34 44.54 44.44 46.45 47.24 47.15

by acquiring several valid depth information. Even though the sup-
port information is limited in the 1-shot scenario, we enhance the
segmentation against CFS, highlighting the significance of multi-
view generation and 2D inpainting in our cross-modal 3D semantic
segmentation.

In contrast to the S3DIS dataset, we exhibit another 5 classes,
"𝑏𝑜𝑜𝑘𝑐𝑎𝑠𝑒", "𝑤𝑎𝑙𝑙", "𝑐ℎ𝑎𝑖𝑟 ", "𝑑𝑜𝑜𝑟 " and "𝑓 𝑙𝑜𝑜𝑟 " in the ScanNet dataset.
Our proposed method can accurately segment most of the seman-
tic classes within these categories, whereas CFS produces poor
segmentation results that blend the other semantic class or back-
grounds. For instance, it is hard to clearly segment the ”𝑏𝑜𝑜𝑘𝑐𝑎𝑠𝑒”
(the 1st row of Figure 4) from the "𝑤𝑎𝑙𝑙" in the results of CFS, while
our method, with the aid of multi-view depth information, can suc-
cessfully separate the most parts of this category. We attribute our
accurate segmentation results to the collaborative efforts of multi-
view point cloud generation, cross-modal embedding network, and
weighted prototypical network, which helps to enrich the informa-
tion contained in the generated point clouds and effectively bridges
the modality gap between the support and query.

4.6 Ablation Study
To gain further insights and evaluate our design choices, unless
stated otherwise, we perform ablation studies using our primary
network architecture on the S3DIS dataset under the 1-way 1-shot
setup. The resulting segmentation outcomes are reported as the
Mean-IoU (mIoU).

4.6.1 Number of views. We first verify the contribution of the num-
ber of views to 3D semantic segmentation. Specifically, we compare
1-view, 3-view, and 5-view frames generated from 1 shot 2D image,

Table 3: Effect of the number of views and inference time on semantic seg-
mentation.

Number of views P0 P1 Mean Time(ms)

1 54.39 53.86 54.13 35.5

3 57.09 55.23 56.16 100.6

5 60.48 59.36 59.92 451.6

as presented in Table 3. When the number of views increased, the
segmentation results gradually improved by approximately 3.7%
and 6.8%.This suggests that incorporating more views can indeed
offer valuable additional information for segmentation. However,
this comes at the expense of increased computational demands, as
illustrated in the fifth column of Table 3. As the number of views
increases, the inference time exponentially rises by approximately
185% and 11 times compared to using only one view per shot. Fur-
thermore, adding more views would likely lead to even greater time
consumption.

Therefore, taking into account both computational resources
and performance results, we choose to utilize three views as the
default option in this trade-off.

4.6.2 Cross-modal feature aggregation. Then, to prove the effec-
tiveness of our proposed cross-attention module, we compare it
with a feature transfer method "Mixstyle" introduced in [34], which
is a statistical method via computing the mean and standard devi-
ation to normalize support and query feature representations. To
ensure a fair comparison, we include the "Mixstyle" at the same
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Figure 3: Qualitative results of our method in comparison to the ground truth
and CFS [34] on the S3DIS dataset under 1-way 1-shot setting.
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Figure 4: Qualitative results of our method in comparison to the ground truth
and CFS [34] on the ScanNet dataset under 1-way 1-shot setting.

Table 4: Effect of feature aggregation. Results on the S3DIS dataset under the
1-way 1-shot setting.

Method Number of views P0 P1 Mean

Attention 1 53.34 51.23 52.79
3 57.09 55.23 56.16

"MixStyle" 1 48.08 49.01 48.55
3 52.59 51.36 51.98

None 1 45.32 43.56 44.44
3 46.87 47.98 47.43

position in the cross-modal embedding network. The results are
listed in Table 4:

Additionally, we compare the time for each training iteration
regarding the cross-attention module and the "MixStyle" module,
respectively. The results are listed in Table 5:

Table 5: Runtime comparison for 3 views on a GTX 1080Ti.

Method batch size Training Time(s/iter)

Attention 32 1.86

"MixStyle" 32 0.78

We have found that our approach yields better segmentation re-
sults than the "Mixstyle" mechanism accordingly by approximately
8.0%, 8.7%, and significantly more than 18.4%, 16.3% when no fea-
ture aggregation module is adopted for 1-view and 3-view. While
it is worth noting that the "Mixstyle" mechanism has a shorter
training time of around 6.1% due to its non-learnable nature, our

cross-attentionmodule is crucial for achieving effective cross-modal
semantic segmentation.

4.6.3 Weighted prototype network. Finally, we study the effect of
our proposed weighted prototype network under a 1-shot setup
on the S3DIS dataset. In table 6, we report the quantitative results
between our method and conventional prototypical method [25],
which are calculated by average pooling of the support feature in
the same category.

Table 6: Comparison with prototype network under 1-way 1-shot on the S3DIS
dataset.

Method No. views P0 P1 Mean

Weighted
1 53.39 54.93 54.16
3 57.09 55.23 56.16
5 60.48 59.36 59.92

Average pooling
1 52.27 53.79 53.03
3 53.85 54.99 54.42
5 54.88 53.72 54.30

We can roughly infer the weighted prototypical network pro-
duces superior segmentation results compared to the average pool-
ing approach. Since the average pooling method cannot capture
the salient features from various view images, segmentation re-
sults tend to remain relatively consistent even as the number of
views increases. To gain a deeper understanding, we provide the
qualitative comparison of 2-view weights for "𝑠𝑜 𝑓 𝑎" and "𝑡𝑎𝑏𝑙𝑒"
categories in Figure 5. The computed weights effectively distinguish
between the original image’s contribution and the poorly inpainted
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Figure 5: The visualization of prototype representation’s weights. In the first
row, 2-view prototype weights in two categories are illustrated from left to
right. In the second row, for each class, i.e., "𝑡𝑎𝑏𝑙𝑒", and "𝑐ℎ𝑎𝑖𝑟 ", the specific
areas where poor inpainting performance is marked with a red circle.

image for segmentation. The original image provides more accu-
rate information on depth and shape compared to the other view
image with poor inpainting performance in features during the
calculation of support prototypes. Therefore, we can conclude that
using a weighted prototypical network is more appropriate for our
multi-view cross-modal segmentation task than using the average
pooling method.

4.6.4 Computation Cost. We conduct experiments to evaluate the
time consumption, FLOPs and model parameters of various base-
lines and a competitormethod, as presented in Table 7. For 3ViewCFS,
we utiliz the CFS network and employ the view synthesis module
to generate three-view images for each shot. Specifically, each gen-
erated point cloud is fed into the co-embedding network integrated
with "MixStyle", followed by average pooling to extract prototypes.
Our findings are as follows: ❶ When comparing different baselines
(first two rows), segmentation without any domain gap balancing
modules perform much poorly. ❷ After incorporating the view
synthesis module to enrich the generated point cloud, there was
a notable performance improvement of 8.4%, with only a corre-
sponding drop in inference time of around 10ms. ❸ Comparing
3ViewCFS with our method, both under the three-view setting, we
observe that our method outperforms by approximately 2%. This
indicates that combining a view synthesis module with a weighted
prototype network, which adaptively contributes to the segmenta-
tion results, can further enhance performance compared to solely
relying on naively averaging the multi-view features. Importantly,
this improvement is achieved while ensuring computational costs
remain within an acceptable range.

4.6.5 2D Inpainting VS 3D Completion. The introduction mentions
a solution to overcome the limitation of previous methods, which
involves utilizing point cloud completion algorithms to deduce the
absent shapes of pseudo-point clouds. This study compares our re-
sults with previous point cloud completion methods, SnowflakeNet
[28] and PoinTr [30], in the inference stage under a 1-way 1-shot
3-view setup. Since the existing point cloud completion algorithms

Table 7: Computation cost. FLOPs and time are tested on 1-way 1-shot setting
on S3DIS dataset.

method mIoU FLOPs(G) Time(ms) Params(M)

DepProto 44.50 10.34 22.25 1.07
3ViewDepProto 47.77 26.43 54.50 1.07

CFS 49.80 35.23 55.14 1.08
3ViewCFS 54.01 37.32 85.32 1.08

Ours(3-View) 56.16 38.45 100.06 1.09

Table 8: Study on different point cloud completion methods under 1-way 1-
shot setting on S3DIS dataset.

Methods mIoU

SnowflakeNet [28] 15.34

PoinTr [30] 19.78

Ours 56.16

are implemented only on simple foreground objects and not on
complex backgrounds, our experiment aims to complete only the
foreground category object. The findings of the study are presented
in Table 8.

The results demonstrate that our approach of enhancing scene
information using 2D inpainting to generate multi-view images
is clearly effective. This is logical as we only utilize 3D comple-
tion to complete the foreground objects, which may not accurately
match their backgrounds that are produced from RGB and depth
inpainting. As a result, the cross-modal embedding network is un-
able to correctly extract the appropriate representations based on
the provided support samples.

5 LIMITATION
Several limitations persist in our method. Despite our efforts to ad-
dress the absence of semantic and depth information by introducing
view synthesis and inpainting , as well as incorporating a cross-
attention module instead of a statistical method as used in [34] to
bridge the feature space, our method still cannot seamlessly adapt
to all genuine 3D features. Additionally, the generation of multi-
view synthesis incurs higher computational costs, as it necessitates
a larger weighted prototype network to balance the contribution
to segmentation. Furthermore, our method is constrained by the
existing issue of limited customized 2D training data highlighted in
[34]. Consequently, we may not comprehensively cover all types
of 3D structures from real-world scans.

6 CONCLUSION
In this paper, we further explore the few-shot 3D point cloud se-
mantic segmentation task, construct a few-shot network and utilize
the view synthesis and 2D inpainting to enhance the single-view
depth estimation on point cloud generation. To further enhance the
segmentation performance, we propose a cross-modal embedding
network and a weighted prototypical module that integrate the
multi-view generation approach. Comprehensive experiments are
conducted on two datasets to verify the exceptional contribution
of each module to 3D segmentation.
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