
A Real-Robot Rollouts527

Dynamic videos of real-robot rollouts can be found in the supplementary video and at our anonymous528

website: https://retrieval-manipulation-anon.github.io/.529

B Data Collection and Affordance Extraction530

B.1 Robotic Data531

We adopt DROID [2] as our source of robotic data, which includes 76,000 expert trajectories of robots532

conducting daily tasks, along with corresponding task instructions. To extract affordance information533

from DROID, we first query instructions for tasks of interest. For example, for the task "open the534

drawer," we perform a hard search to filter out instructions that do not include the action "open" and535

the object "drawer."536

Next, the filtered instructions are sorted based on the L2 distances between their language embeddings537

and the query embedding. We generate these embeddings using the "text-embedding-3-small"538

model of OpenAI. Based on the sorted instructions, we then select the Top-k episodes for further539

affordance extraction.540

To extract affordance information from these selected episodes, we identify the cartesian position541

when the gripper is closed as the 3D contact point. We then track the gripper’s position for the542

following 10 time steps or until the gripper stops moving for consecutive steps. This provides us with543

the 3D post-contact trajectory. Using the provided camera parameters, we project the 3D contact point544

and the post-contact trajectory onto the first frame of each episode where the object is unobscured.545

Note that some affordance demonstrations are further refined manually by adding an offset or being546

removed due to inaccurate camera parameters. Should accurate camera calibration be available, the547

manual correction is not necessary.548

This method ensures a precise and reliable extraction of affordance information from the DROID [2]549

dataset. Note that this method can also adapt to other robotic datasets (real-world or synthetic), such550

as [1, 3, 4].551

B.2 HOI Data552

In addition to the details in the main text, we further note that we only average the hand keypoints553

within the object mask to determine the contact point and shift the post-contact trajectory accordingly.554

This ensures that the contact point is within the object for robust affordance transfer.555

Note that this affordance extraction procedure can also be applied to other data sources where hand-556

object interactions are involved, such as more HOI datasets [5, 6, 7], vast amounts of unannotated557

human egocentric videos on the Internet, and user-provided demonstrations.558

B.3 Custom Data559

The annotation process for custom data affordance has been discussed in the main text. Additionally,560

the sources of custom data are highly diverse and configurable. For our experiments, we annotated561

object images of our interest obtained by simply searching from the Internet (Google, YouTube, etc.).562

Notably, custom data can also come from a variety of sources, ranging from user-captured images,563

cartoon images, AI-generated content, and even sketches, etc., demonstrating the flexibility and564

diversity of our data sources. This flexibility allows for a wide range of potential applications and565

extends our affordance memory’s scalability to a greater extent.566

B.4 Affordance Memory Statistics567

The statistics of our affordance memory can be found in Table 5.568

13

https://retrieval-manipulation-anon.github.io/


Task Name Icon Data Source Size

Open the drawer DROID 30
Close the drawer DROID 20
Open the cabinet DROID 12
Close the cabinet DROID 6

Open the microwave DROID 42
Close the microwave DROID 10
Open the dishwasher Custom 10
Open the refrigerator Custom 20

Open the trashcan Custom 20
Pickup the pot DROID 11

Pickup the mug HOI4D 149
Pickup the bowl HOI4D 252
Pickup the bottle HOI4D 78

Total / / 660

Table 5: Affordance memory statistics.

C Implementation Details569

C.1 Feature Extraction Using Foundation Models570

We use different foundation models as visual feature extractors, including:571

• Stable Diffusion (SD) [46]. As illustrated in [51], given an original image x0, we first add noise572

of time step t to it to move it to distribution xt, and then feed it to the stable diffusion network fθ573

along with t for denoising to extract the intermediate layer activations as the diffusion features574

(DIFT). We use the same configuration as in [51].575

• DINOv2 [55]. Extracting DINOv2 features is implemented by feeding the original image to576

the DINOv2 model and extracting the intermediate layer activations of DINOv2 ViT during the577

feed-forward process.578

• SD-DINOv2 [52]. As in [52], we first extract SD features and DINOv2 features and then do L2579

normalization on them to align their scales and distributions. After that, we concatenate these two580

features together to get the SD-DINOv2 feature.581

• CLIP [45]. Similar to DINOv2, We extract dense CLIP features by utilizing the intermediate layer582

activations of CLIP ViT.583

C.2 IMD Metric Calculation584

As in [56], Instance Matching Distance (IMD) is originally proposed to examine pose prediction585

accuracy. Given a source image IS and a target image IT , their normalized and masked feature maps586

FS and F T , and a source instance mask MS , the IMD metric is defined as:587

IMD(IS , IT ,MS) =
∑

p∈MS

∥∥FS(p)−NN(FS(p), F T )
∥∥
2
, (3)

where p denotes a pixel within the source instance mask, FS(p) is the source feature vector at pixel p,588

and NN(FS(p), F T ) denotes the nearest neighbor vector in the target feature map F T with respect to589

the source feature vector. IMD measures the similarity of two images via the average feature distance590

of corresponding pixels [56]. Using IMD in the geometrical retrieval stage, we can accurately retrieve591

the demonstration where the object is oriented in the most similar way as in the observation.592

14



C.3 Baseline Methods593

• Where2Act [14] is designed for articulated object manipulation only, which takes an object point594

cloud as input and predicts point-wise actionability scores, action proposals, and action scores with595

three separate models. Another drawback of this method is that it processes the point cloud in a596

task-agnostic way, leading to ambiguity of the generated affordance. We adopt it to the evaluation597

tasks by 1) randomly sampling the contact point from the predicted top-5 actionable points, 2)598

proposing 100 actions using the action proposal model, and 3) selecting the action with the highest599

action score.600

• VRB [12] predicts the contact point and direction only on 2D images. To make it applicable in real601

manipulation tasks, we lift the estimated 2D affordance to 3D using our proposed sampling-based602

affordance lifting module.603

• Robo-ABC [44] is initially designed for object grasping only, where only the contact point of a604

source demonstration retrieved by CLIP [45] feature similarity is transferred on the 2D image,605

followed by AnyGrasp [17] for grasp pose selection. For a fair comparison, we feed it with606

our collected affordance memory. To extend it for articulated objects, we use the proposed 2D607

affordance transfer module to transfer both the contact point and post direction. Subsequently, we608

follow the same procedure as in our method to lift 2D affordance to 3D.609

D Experiment Details610

In the simulation, we utilize a flying Franka Panda gripper for simplicity. We utilize cuRobo [19]611

motion planner for position control of the gripper.612

In the real world, we adopt two different robotic systems. In the Franka Emika robotic arm setting, we613

leverage an on-hand RealSense D415 camera for RGBD perception and utilize MoveIt! [18] motion614

planner for the transformation from the target end-effector pose to joint position trajectories. In the615

Unitree robot dog setting, we leverage a Unitree B1 dog with a Z1 arm, along with a Robotiq 2F-85616

parallel gripper. The RealSense D415 camera is also on-hand mounted, and we control the arm using617

the Z1 SDK for delta cartesian-space control.618

For grasp generation, we utilize AnyGrasp [17] to produce grasp proposals, along with GSNet [16]619

with a relatively low graspness score threshold and collision threshold for more dense grasp proposals620

in case there is no grasp pose close enough.621

E Downstream Application Details622

E.1 Training ACT Policy623

For policy distillation, we utilize an ACT policy [30] to perform imitation learning from our self-624

collected demonstrations. ACT is based on CVAE Transformer architecture and adopts the idea of625

action chunking to mitigate compounding errors that are common in behavior cloning (BC). More626

details can be found in their original paper [30].627

We use 5 RGB views (5 × 640 × 480 × 3) and the robot’s proprioception as observation. We set628

the chunk size to 60, and the latent space dimension to 512. We use L1 loss plus KL divergence629

regularization for supervision. The number of training iterations is set to 200K, and we set the630

learning rate to 1× 10−5 and batch size to 8.631

E.2 One-Shot Visual Imitation Details632

For one-shot visual imitation conditioned on human preference, we pick out demonstrations either633

from our own in-domain demonstrations or from out-of-domain cartoon images (Tom and Jerry in this634

case). We ground and choose the first frame of interaction for IS and use the custom data annotation635

method for affordance extraction. We then skip the hierarchical retrieval step and directly use these636

chosen demonstrations for affordance transfer and lifting, followed by 3D affordance execution.637

15



E.3 LLM/VLM Integration Details638

For LLM/VLM integration, we utilize GPT-4V (gpt-4-vision-preview) [64] for task decomposi-639

tion and scene understanding. We also use Grounded-SAM [65] for object detection and segmentation640

to produce 3D bounding boxes of objects in the scene.641

Specifically, we define 3 basic primitives: grasp(), move_to(), and release() for VLM output.642

Note that these three primitives do not involve heuristics on specific object manipulation. Other than643

these primitives, when the VLM finds out there are relevant demonstrations in the affordance memory,644

it will schedule the proposed RAM system as a retrieval-augmented module to perform the action as645

a whole, followed by other defined primitives.646

An example of our prompt and the VLM output is shown in Fig. 7.647

16



===========

You are an intelligent robot dog that has an arm with a parallel gripper 
for object manipulation.

You are given a human instruction and a scene observation. Your task is 
to correctly manipulate the objects safely conditioned on the 
instruction.

===========

You have a series of primitives and demonstrations you can leverage to perform the task. Based on the instruction, you can freely decompose it into 
several sub-tasks that are easier to finish and then chain them together.

First, you are endowed with 3 primitives, which are:
1. grasp(), which takes in object name, detects the object, moves to a graspable pose, and closes the gripper.
2. move_to(), which takes in a 6D pose and does motion planning to it.
3. release(), open the gripper to release the holding object.

The calling format should be like release(), etc.

Apart from the primitives, you also have an affordance memory, which contains lots of tasks that already have plenty of demonstrations. You are also 
equipped with a powerful robotic system called RAM, which can utilize those demonstrations in your affordance memory to directly perform 
corresponding sub-tasks, without calling the primitives. The tasks in your affordance memory are:

- Open: drawer, cabinet, microwave, dishwasher, refrigerator, trashcan
- Close: drawer, cabinet, microwave
- Pickup: pot, mug, bowl, bottle

The calling format should be like Open_drawer(), etc.

For the instruction and observation, please output a sequence of actions or primitives in the format of function calling as above. And finally, you 
should convert the sequence into a python list for convenience.

===========

A basic example:

Human instruction: Please open the drawer and pick up the utensil.
Observation: A closed drawer.

Your output:
<agent>
+++
First, I will decompose the instruction into several sub-tasks. The instruction is 'Please open the drawer and pick up the utensil.', so I need to 
first open the drawer, and then pick up the utensil.
Sub-tasks:
1. open the drawer
2. pick up the untensil
+++
Then, for each subtask, I will see whether it can directly be performed using my affordance memory.
For 1, there are demonstrations regarding opening drawers, so I will directly use it.
For 2, there are no demonstrations for utensils, but picking up bottle is similar. Although usable, I will use primitives to ensure safety.
Action sequence:
1. Open_drawer()
2. grasp(utensil)
3. move_to(utensil_above_position)
4. move_to(release_position)
5. release()
+++
Finally, I will convert the sequence into a python list:
<output>
['Open_drawer()', 'grasp(utensil)', 'move_to(utensil_above_position)', 'move_to(release_position)', 'release()']
</output>
+++
</agent>

===========

Now you need to clear this table, please find a feasible way of doing that. Follow the example above:

Prompt

VLM OutputHuman instruction: Please clear the table.
Observation: There is a bottle on the table, and a trashcan with cups and bottles next to it.

<agent>
+++
First, I will decompose the instruction into several sub-tasks. The instruction is 'Please clear the table', so I need to first pick up the bottle 
from the table, move it to the trashcan, and release it.
Sub-tasks:
1.Pick up the bottle from the table.
2.Move the bottle to the trashcan.
3.Release the bottle into the trashcan.
+++
Then, for each subtask, I will see whether it can directly be performed using my affordance memory.
For 1, there are demonstrations regarding picking up a bottle, so I will directly use it.
For 2 and 3, I will use the primitives to ensure the correct and safe movement to the trashcan and releasing the bottle.
Action sequence:
1.Pickup_bottle()
2.move_to(trashcan_position)
3.release()
+++
Finally, I will convert the sequence into a python list:
<output>
['Pickup_bottle()', 'move_to(trashcan_position)', 'release()']
</output>
+++
</agent>

Figure 7: Example prompt and VLM outputs of our LLM/VLM integration system.

17


	Real-Robot Rollouts
	Data Collection and Affordance Extraction
	Robotic Data
	HOI Data
	Custom Data
	Affordance Memory Statistics

	Implementation Details
	Feature Extraction Using Foundation Models
	IMD Metric Calculation
	Baseline Methods

	Experiment Details
	Downstream Application Details
	Training ACT Policy
	One-Shot Visual Imitation Details
	LLM/VLM Integration Details


