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A APPENDIX

You may include other additional sections here.

A.1 OVERVIEW

This supplementary material provides more model and experimental details to understand our pro-
posed method. After that, we present more experiments to demonstrate the effectiveness of our
methods. Finally, we show a rich visualization of our modules.

A.2 MORE MODEL DETAILS

Sparse UNet. For ScanNetV2 Dai et al. (2017), ScanNet200 Rozenberszki et al. (2022), and
ScanNet++ Yeshwanth et al. (2023), we employ a 5-layer U-Net as the backbone, with the initial
channel set to 32. Unless otherwise specified, we utilize coordinates, colors, and normals as input
features. Our method incorporates 6 layers of Transformer decoders, with the head number set to 8,
and the hidden and feed-forward dimensions set to 256 and 1024, respectively. For S3DIS Armeni
et al. (2016), following Mask3D Schult et al. (2022), we utilize Res16UNet34C Choy et al. (2019) as
the backbone and employ 4 decoders to attend to the coarsest four scales. This process is repeated 3
times with shared parameters. The dimensions for the decoder’s hidden layer and feed-forward layer
are set to 128 and 1024, respectively.

Transformer Decoder Layer. In this layer, we use superpoint-level features Fsup and their corre-
sponding positions Psup as key and value, with content queries Qc and position queries Qp as query.
The specific network architecture can be seen in Figure 6, which is identical to Maft’s Lai et al. (2023)
transformer decoder layer. Therefore, more relevant equations and details can be directly referred to
Maft’s main text.
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Figure 6: The architecture of the transformer decoder layer. The figure is taken from the main
text of Maft.

Matching and Loss. Existing methods depend on semantic predictions and binary masks for
matching queries with ground truths. Building upon Maft Lai et al. (2023), our approach integrates
center distance into Hungarian Matching Kuhn (1955). To achieve this, we modify the formulation of
matching costs as follows:

Ccls(p, p) = CE(CLASSp, CLASSp), (8)
Cdice(p, p) = DICE(MASKp,MASKp), (9)
Cbce(p, p) = BCE(MASKp,MASKp), (10)
Ccenter(p, p) = L1(Centerp, Centerp), (11)

C(p, p) = λclsCcls(p, p) + λdiceCdice(p, p) + λbceCbce(p, p) + λcenterCcenter(p, p), (12)

where p and p denotes a predicted and ground-truth instance, C represents the matching cost matrix,
and λcls, λdice, λbce, λcenter are the hyperparameters. Here, λcls, λdice, λbce, λcenter are the same
as λ1, λ2, λ3, λ4. Next, we perform Hungarian Matching on C, and then supervise the Hungarian
Matching results according to Equation 7

Non-Maximum Suppression. Non-maximum suppression (NMS) is a common post-processing
operation used in instance segmentation. In fact, for some previous methods, applying NMS to
the final layer predictions has consistently led to performance improvements, as shown in Table 12.
However, if we apply NMS to the concatenated outputs, as described in Section 1 lines 63-65, a
significant decrease in performance occur. The specific reasons for this performance decrease are
twofold. Firstly, NMS heavily relies on confidence scores, retaining only the masks with the highest
confidence among the duplicates. However, these confidence scores are often inaccurate, leading to
the retention of masks that are not necessarily of the best quality. Since the concatenated outputs
contain a large number of duplicate masks (almost every mask has duplicates), this results in a
significant reduction in performance. Secondly, NMS requires manual selection of a threshold. If the
threshold is set too high, it cannot effectively filter out duplicate masks; if it is set too low, it tends to
discard useful masks. The more complex the output, the more challenging it becomes to select an
optimal threshold. Therefore, for concatenated outputs, it is difficult to find an optimal threshold for
effective filtering.

Method mAP AP@50 AP@25

SPFormer 56.7 74.8 82.9
SPFormer+NMS 57.2 75.9 83.5
SPFormer+COE 55.7 73.4 81.8

Maft 58.4 75.2 83.5
Maft+NMS 59.0 76.1 84.3

SPFormer+COE 57.3 73.5 81.8

Ours 61.1 78.2 85.6
Ours+NMS 61.7 79.5 86.5

Table 12: The effectiveness of the NMS. COE refers to concatenating the outputs of each layer and
then conducting NMS.
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A.3 MORE DISCUSSION

Details on achieving a strong correlation. The positions of sampling points in Mask3D are not
related to the positions of the corresponding predicted instances. In fact, this lack of correlation results
in the query’s lack of interpretability, we cannot clearly understand why this query predicts this object,
thus hindering intuitive optimization. Both QueryFormer and Maft address this by adding a Ccenter
term when calculating the Hungarian matching cost matrix, which represents the distance between
the query coordinates and the ground truth instance center. Additionally, they update the query
coordinates layer by layer, making the matched query progressively closer to the GT instance center.
With this design, the position of the query becomes correlated with the position of the corresponding
predicted instance, facilitating intuitive improvements in the distribution of query initialization by
QueryFormer and Maft (Query Refinement Module and Learnable Position Query).

Detail classification on Hierarchical Query Fusion Decoder. We aim to give poorly updated queries
a new opportunity for updating. It is important to note that this is a copy operation, so we retain
both pre-updated and post-updated queries, thus not ”limiting the transformer decoder in its ability to
swap objects.” This approach provides certain queries with an opportunity for entirely new feature
updates and offers more diverse matching options during Hungarian matching. This re-updating and
diverse selection mechanism clearly enhances recall rates because our design implicitly includes a
mechanism: for instances that are difficult to predict or poorly predicted, if the updates are particularly
inadequate, the corresponding queries will be retained and accumulated into the final predictions.
For example, if a query Q3

i from the third layer is updated in the fourth layer to become Q4
i and

experiences a significant deviation, the network will retain Q3
i and pass both Q3

i and Q4
i to the fifth

layer. After being updated in the fifth layer, Q3
i becomes Q̂3

i . If Q̂3
i does not significantly differ

from Q3
i , the model will not retain Q3

i further and will only pass Q̂3
i to the sixth layer. If Q̂3

i shows
a significant difference from Q3

i , the model will continue to retain Q3
i . Through this process, teh

model can continuously retain the queries that are poorly updated, accumulating them into the final
prediction.

A.4 MORE IMPLEMENTATION DETAILS

On ScanNet200 Rozenberszki et al. (2022), we train our model on a single RTX3090 with a batch
size of 8 for 512 epochs. We employ AdamW Loshchilov & Hutter (2017) as the optimizer and
PolyLR as the scheduler, with a maximum learning rate of 0.0002. Point clouds are voxelized with
a size of 0.02m. For hyperparameters, we tune S, L,K,D1,D2 as 500, 500, 3, 40, 3 respectively.
λ1, λ2, λ3, λ4, λ5 in Equation 7 are set as 0.5, 1, 1, 0.5, 0.5. On ScanNet++ Yeshwanth et al. (2023),
we train our model on a single RTX3090 with a batch size of 4 for 512 epochs. The other settings
are the same as ScanNet200. On S3DIS Armeni et al. (2016), we train our model on a single A6000
with a batch size of 4 for 512 epochs and adopt onecycle scheduler. For hyperparameters, we tune
S, L,K,D1,D2 as 400, 400, 3, 40, 3 respectively. λ1, λ2, λ3, λ4, λ5 in Equation 7 are set as 2, 5, 1,
0.5, 0.5.

A.5 DETAILED RESULTS

The detailed results for each category on ScanNetV2 validation set are reported in Table 13. As
the table illustrates, our method achieves the best performance in 16 out of 18 categories. The
detailed results for certain categories on ScanNet++ test set are presented in Table 17. As indicated
by the table, the significant performance improvement highlights the effectiveness of our method in
managing denser point cloud scenes across a broader range of categories.

A.6 MORE ABLATION STUDIES

Difference in Recall and AP across different decoder layers. As depicted in Table 18, we conduct
an ablation study on ScanNetV2 validation set to examine the impact of our proposed HQFD
on recall and AP. From the table, it is evident that the recall of Maft decreases at the fifth layer,
consequently leading to a decline in the corresponding AP and influencing the final prediction results.
In contrast, our approach, which incorporates HQFD, ensures a steady improvement in recall, thereby
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SoftGroup Vu et al. (2022) 45.8 66.6 48.4 32.4 37.7 72.3 14.3 37.6 27.6 35.2 42.0 34.2 56.2 56.9 39.6 47.6 54.1 88.5 33.0
DKNet Wu et al. (2022) 50.8 73.7 53.7 36.2 42.6 80.7 22.7 35.7 35.1 42.7 46.7 51.9 39.9 57.2 52.7 52.4 54.2 91.3 37.2

Mask3D Schult et al. (2022) 55.2 78.3 54.3 43.5 47.1 82.9 35.9 48.7 37.0 54.3 59.7 53.3 47.7 47.4 55.6 48.7 63.8 94.6 39.9
QueryFormer Lu et al. (2023) 56.5 81.3 57.7 45.0 47.2 82.0 37.2 43.2 43.3 54.5 60.5 52.6 54.1 62.7 52.4 49.9 60.5 94.7 37.4

Maft Lai et al. (2023) 58.4 80.1 58.1 41.8 48.3 82.2 34.4 55.1 44.3 55.0 57.9 61.6 56.4 63.7 54.4 53.0 66.3 95.3 42.9
Ours 61.7 83.5 62.3 48.1 50.6 84.1 45.0 57.4 42.1 57.3 61.8 67.8 59.9 68.8 61.1 55.3 66.6 95.3 42.6

Table 13: Full quantitative results of mAP on ScanNetV2 validation set. Best performance is in
boldface.
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PointGroup Jiang et al. (2020b) 40.7 63.9 49.6 41.5 24.3 64.5 2.1 57.0 11.4 21.1 35.9 21.7 42.8 66.6 25.6 56.2 34.1 86.0 29.1
MaskGroup Zhong et al. (2022) 43.4 77.8 51.6 47.1 33.0 65.8 2.9 52.6 24.9 25.6 40.0 30.9 38.4 29.6 36.8 57.5 42.5 87.7 36.2

OccuSeg Han et al. (2020) 48.6 80.2 53.6 42.8 36.9 70.2 20.5 33.1 30.1 37.9 47.4 32.7 43.7 86.2 48.5 60.1 39.4 84.6 27.3
HAIS Chen et al. (2021b) 45.7 70.4 56.1 45.7 36.4 67.3 4.6 54.7 19.4 30.8 42.6 28.8 45.4 71.1 26.2 56.3 43.4 88.9 34.4

SSTNet Liang et al. (2021) 50.6 73.8 54.9 49.7 31.6 69.3 17.8 37.7 19.8 33.0 46.3 57.6 51.5 85.7 49.4 63.7 45.7 94.3 29.0
DKNet Wu et al. (2022) 53.2 81.5 62.4 51.7 37.7 74.9 10.7 50.9 30.4 43.7 47.5 58.1 53.9 77.5 33.9 64.0 50.6 90.1 38.5

SPFormer Sun et al. (2023) 54.9 74.5 64.0 48.4 39.5 73.9 31.1 56.6 33.5 46.8 49.2 55.5 47.8 74.7 43.6 71.2 54.0 89.3 34.3
Maft Lai et al. (2023) 59.6 88.9 72.1 44.8 46.0 76.8 25.1 55.8 40.8 50.4 53.9 61.6 61.8 85.8 48.2 68.4 55.1 93.1 45.0

Ours 60.6 92.6 70.2 51.5 50.2 73.2 28.2 59.8 38.6 48.9 54.2 63.5 71.6 75.1 47.6 74.3 58.7 95.8 36.0

Table 14: Full quantitative results of mAP on the ScanNetV2 test set. Best performance is in
boldface.
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PointGroup Jiang et al. (2020b) 63.6 100.0 76.5 62.4 50.5 79.7 11.6 69.6 38.4 44.1 55.9 47.6 59.6 100.0 66.6 75.6 55.6 99.7 51.3
MaskGroup Zhong et al. (2022) 66.4 100.0 82.2 76.4 61.6 81.5 13.9 69.4 59.7 45.9 56.6 59.9 60.0 51.6 71.5 81.9 63.5 100.0 60.3

OccuSeg Han et al. (2020) 67.2 100.0 75.8 68.2 57.6 84.2 47.7 50.4 52.4 56.7 58.5 45.1 55.7 100.0 75.1 79.7 56.3 100.0 46.7
HAIS Chen et al. (2021b) 69.9 100.0 84.9 82.0 67.5 80.8 27.9 75.7 46.5 51.7 59.6 55.9 60.0 100.0 65.4 76.7 67.6 99.4 56.0

SSTNet Liang et al. (2021) 69.8 100.0 69.7 88.8 55.6 80.3 38.7 62.6 41.7 55.6 58.5 70.2 60.0 100.0 82.4 72.0 69.2 100.0 50.9
DKNet Wu et al. (2022) 71.8 100.0 81.4 78.2 61.9 87.2 22.4 75.1 56.9 67.7 58.5 72.4 63.3 98.1 51.5 81.9 73.6 100.0 61.7

SPFormer Sun et al. (2023) 77.0 90.3 90.3 80.6 60.9 88.6 56.8 81.5 70.5 71.1 65.5 65.2 68.5 100.0 78.9 80.9 77.6 100.0 58.3
Maft Lai et al. (2023) 78.6 100.0 89.4 80.7 69.4 89.3 48.6 67.4 74.0 78.6 70.4 72.7 73.9 100.0 70.7 84.9 75.6 100.0 68.5

Ours 81.0 100.0 93.4 85.4 74.3 88.9 57.5 71.4 81.0 66.9 72.9 70.7 80.9 100.0 81.4 90.2 81.4 100.0 62.5

Table 15: Full quantitative results of AP@50 on the ScanNetV2 test set. Best performance is in
boldface.
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PointGroup Jiang et al. (2020b) 77.8 100.0 90.0 79.8 71.5 86.3 49.3 70.6 89.5 56.9 70.1 57.6 63.9 100.0 88.0 85.1 71.9 99.7 70.9
MaskGroup Zhong et al. (2022) 79.2 100.0 96.8 81.2 76.6 86.4 46.0 81.5 88.8 59.8 65.1 63.9 60.0 91.8 94.1 89.6 72.1 100.0 72.3

OccuSeg Han et al. (2020) 74.2 100.0 92.3 78.5 74.5 86.7 55.7 57.8 72.9 67.0 64.4 48.8 57.7 100.0 79.4 83.0 62.0 100.0 55.0
HAIS Chen et al. (2021b) 80.3 100.0 99.4 82.0 75.9 85.5 55.4 88.2 82.7 61.5 67.6 63.8 64.6 100.0 91.2 79.7 76.7 99.4 72.6

SSTNet Liang et al. (2021) 78.9 100.0 84.0 88.8 71.7 83.5 71.7 68.4 62.7 72.4 65.2 72.7 60.0 100.0 91.2 82.2 75.7 100.0 69.1
DKNet Wu et al. (2022) 81.5 100.0 93.0 84.4 76.5 91.5 53.4 80.5 80.5 80.7 65.4 76.3 65.0 100.0 79.4 88.1 76.6 100.0 75.8

SPFormer Sun et al. (2023) 85.1 100.0 99.4 80.6 77.4 94.2 63.7 84.9 85.9 88.9 72.0 73.0 66.5 100.0 91.1 86.8 87.3 100.0 79.6
Maft Lai et al. (2023) 86.0 100.0 99.0 81.0 82.9 94.9 80.9 68.8 83.6 90.4 75.1 79.6 74.1 100.0 86.4 84.8 83.7 100.0 82.8

Ours 88.2 100.0 97.9 88.2 87.9 93.7 70.3 74.9 91.5 87.5 79.5 74.0 82.0 100.0 99.4 92.3 89.1 100.0 78.8

Table 16: Full quantitative results of AP@25 on the ScanNetV2 test set. Best performance is in
boldface.

guaranteeing a consistent enhancement in AP. This favorable effect on the final output results is
attributed to the design of this moudle.
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Figure 7: The mAP result of our method on ScanNetV2 test set.

Figure 8: The AP@50 result of our method on ScanNetV2 test set.

Figure 9: The AP@25 result of our method on ScanNetV2 test set.

Figure 10: The mAP result of our method on ScanNet200 test set.

Figure 11: The AP@50 result of our method on ScanNet200 test set.
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Figure 12: The AP@25 result of our method on ScanNet200 test set.
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PointGroup Wu et al. (2022) 8.9 0.8 2.1 57.3 13.2 37.8 82.8 0 39.0 54.7 0 0 0 37.2 3.5 35.7 10.1 22.5 ...
HAIS Schult et al. (2022) 12.1 3.4 3.8 55.9 16.8 49.5 87.1 0 64.1 72.5 7.2 0 0 29.5 4.0 49.0 14.9 25.0 ...
SoftGroup Vu et al. (2022) 16.7 9.4 6.2 46.7 23.2 42.8 81.3 0 67.3 71.6 10.9 14.0 2.9 32.9 8.1 46.4 17.0 60.0 ...

Ours 22.2 13.2 12.7 63.7 38.1 69.3 86.0 38.9 90.6 86.8 26.7 20.6 2.0 60.0 9.4 63.7 45.3 52.5 ...

Table 17: Full quantitative results of mAP on ScanNet++ test set. Best performance is in boldface.

Layer Ours Maft
Recall@50 mAP AP@50 AP@25 Recall@50 mAP AP@50 AP@25

3 87.5 59.4 76.7 84.9 85.7 56.9 73.9 82.5
4 87.8 (+) 59.7 (+) 77.1 (+) 85.1 (+) 86.6 (+) 58.5 (+) 75.5 (+) 83.7 (+)
5 87.9 (+) 59.9 (+) 77.3 (+) 85.3 (+) 85.8 (-) 58.2 (-) 75.0 (-) 83.5 (-)
6 88.1 (+) 60.9 (+) 78.1 (+) 85.7 (+) 86.6 (+) 59.0 (+) 76.1 (+) 84.3 (+)

Table 18: Difference in Recall and AP across different decoder layers. (+) indicates an increase
compared to the previous layer, while (-) indicates a decrease compared to the previous layer.

Ablation study on D1 and D2 of the Hierarchical Query Fusion Decoder. D1 represents the
number of new added queries in each layer compared to the previous layer, while D2 indicates the
layers where the fusion operation is performed. From the table data, we can see that performance
decreases significantly when D2=4 compared to D2=3. As analyzed in lines 334-336 in the main
text, the queries in the earlier layers have not aggregated enough instance information. Therefore, if
D2=4, it means that the queries in the second layer will also participate in the fusion operation, but
these queries have only undergone two rounds of feature aggregation, resulting in inaccurate mask
predictions. This can affect the operation of the Hierarchical Query Fusion Decoder (HQFD). To
ensure the effectiveness of HQFD, we recommend performing the fusion operation on the last half of
the decoder layers. In fact, we follow this approach in other datasets as well.

D1 D2 mAP AP@50 AP@25

50 2 61.4 78.9 86.1
50 3 61.5 79.2 86.3
50 4 61.0 78.5 85.6
40 3 61.7 79.5 86.5
60 3 61.3 78.8 85.9

Table 19: Ablation study on D1 and D2 of the Hierarchical Query Fusion Decoder.

The effectiveness of the SG in Equation 5. As illustrated in Table 20, we performed an ablation
study on ScanNetV2 validation set to examine the impact of the SG operation in Equation 5. If we do
not utilize SG, Qp

0 remains fixed, which hinders its ability to adaptively learn a distribution suitable
for all scenarios, thus impacting the overall performance.
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Setting mAP AP@50
W SG 61.4 79.0

W/o SG 61.7 79.5

Table 20: The effectiveness of the SG in Equation 5.

Ablation Study on the hyperparameters in Equation 7. We perform the experiment in Table 21.
Based on the results, we find that the combination 0.5, 1, 1, 0.5, 0.5 yields the best performance.

λ1 λ2 λ3 λ4 λ5 mAP

1 1 1 0.5 0.5 61.1
0.5 1 1 0.5 0.5 61.7
1.5 1 1 0.5 0.5 61.4
0.5 0.5 1 0.5 0.5 60.8
0.5 1.5 1 0.5 0.5 61.5
0.5 1 0.5 0.5 0.5 61.0
0.5 1 1.5 0.5 0.5 61.2
0.5 1 1 1 0.5 61.0
0.5 1 1 0.5 1 61.5

Table 21: Ablation Study on the hyperparameters in Equation 7 on ScanNetV2 validation set.

A.7 ASSETS AVAILABILITY

The datasets that support the findings of this study are available in the following repositories:

ScanNetV2 Dai et al. (2017) at http://www.scan-net.org/changelog#
scannet-v2-2018-06-11 under the ScanNet Terms of Use. ScanNet200 Rozenber-
szki et al. (2022) at https://github.com/ScanNet/ScanNet under the ScanNet
Terms of Use. ScanNet++ Yeshwanth et al. (2023) at https://kaldir.vc.in.tum.
de/scannetpp under the ScanNet++ Terms of Use. S3DIS Armeni et al. (2016) at
http://buildingparser.stanford.edu/dataset.html under Apache-2.0 li-
cense. The code of our baseline Lai et al. (2023); Sun et al. (2023) is available at
https://github.com/dvlab-research/Mask-Attention-Free-Transformer
and https://github.com/sunjiahao1999/SPFormer under MIT license.

A.8 MORE VISUAL COMPARISON

In Figure 13, we visualize and compare the results of several methods. As shown in this figure’s red
boxes, our method produces finer segmentation results.
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Input GT Baseline Ours

Input GT Baseline Ours

Figure 13: Additional Visual Comparison on ScanNetV2 validation set. The red boxes highlight
the key regions.
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layer 4 layer 5 layer 6 ground truthinput

Baseline 

Ours

Baseline 

Ours

Figure 14: Visual comparisons between the baseline and our method across different decoder
layers on ScanNetV2 validation set. The red boxes highlight the key regions.
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layer 4 layer 5 layer 6 ground truthinput
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Ours

Baseline 

Ours

Baseline 

Ours

Figure 15: Visual comparisons between the baseline and our method across different decoder
layers on ScanNetV2 validation set. The red boxes highlight the key regions.

layer 4 layer 5 layer 6 ground truthinput

Baseline 

Ours

Baseline 
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Figure 16: Visual comparisons between the baseline and our method across different decoder
layers on ScanNetV2 validation set. The red boxes highlight the key regions.
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