
A Preprocessing

In this section, we detail the preprocessing techniques used on the multi-agent Atari (RAM-state)
environments. In our experiments, the four main preprocessing techniques performed are reward
clipping, sticky actions, frame-skipping and no-op resets. Reward clipping ensures that the rewards
at every timestep are clipped between the range of [-1, 1]. Sticky actions with a probability of 0.25
are used to inject stochasticity into the environment, and to enhance the robustness of the learned
agents. We observed empirically that the addition of sticky actions and reward clipping did not have
a significant effect on the learning process. On the other hand, adding a frame-skipping of 4 gave
a significant improvement to the empirical performance of the algorithms. This is likely due to the
increase in simulation-speed (e.g., the five steps that the agent takes is equivalent to experiencing
20 actual frames). Another subtle side-effect of this preprocessing is that unlike in environments
such as MPE where feedback (rewards) are given immediately, reward signals are delayed in games
with projectiles, such as Space Invaders – where the laser beam shot by an agent might only hit
an enemy after a number of steps. By performing frame-skipping, the effect of delayed rewards is
greatly reduced (rewards received by the agent during the x skipped frames are summed up, so they
are not lost), simplifying the temporal credit-assignment problem.

Since our implementation truncates every episode to be 200-steps long, we perform a series of no-op
actions at the start of every episode (these actions do not count into the step-limit per episode). Unlike
in the DQN paper where initial no-ops were used to introduce randomness into the environment [27],
the purpose of using no-ops in this case was to allow us to skip ahead a set number of frames at the
start of every game. Space Invaders, for example, has a stall state for the first ∼ 130 frames of every
game, likely meant for human players to prepare for the start of the game. Removing these frames
helped increase the learning efficiency for our agents. For Space Invaders and Pong, we perform
no-op for the first 130 and 60 frames, respectively.

All preprocessing were performed using the SuperSuit library [36].

B Importance of Agent Indicator

In this section we list some interesting findings regarding the addition of agent indicators to indepen-
dent algorithms when performing parameter sharing.

Interestingly, in both cooperative environments, there is no noticeable improvement in the performance
of independent algorithms when an agent indicator was added (Fig. 6). As was previously discussed
in the experimental results section, in the case of Space Invaders, this is likely due to the similarities
of both agents in terms of their tasks, and their representations (i.e., both agents have the same tasks
and maximize the same objectives), therefore there is less of a need to distinguish between either
agent. On the other hand, for the Simple Reference environment, it is very likely that the agent
indicators did not make a noticeable difference because of the partially observable nature of the
environment; adding recurrence would result it a much more significant difference instead.

Conversely, for the Pong environment, even though it is also fully observable (akin to Space Invaders),
the representation of both agents are not interchangeable. Utilizing parameter sharing without agent
indicators, all algorithms struggled to learn due to the inability to tell which paddle was it controlling
at every timestep. The only exception was RMAPPO (Fig. 7), which was able to condition on the
sequence of previous observations to figure out which paddle was it controlling.

C Implementation Details

The following list contains the sources of the reference implementations for the various algorithms:

• Implementation of DQN and DRON were based on the Machin library [37].
• Implementation of independent PPO was based on Stable Baselines3 [38].
• Implementation of DRQN, QMIX, COMA and CommNet came from a popular public

repository by the name of StarCraft [39].
• Implementation of MADDPG came from the original code implementation [8].
• Implementation of MAPPO came from the original code implementation [17].

12



(a) Simple Reference (b) Space Invaders

Figure 6: Comparing DQN with (blue) and without (orange) agent indicators in Simple Reference
and Space Invaders environment

(a) Number of games won as the
first player

(b) Number of games won as the
second player

(c) Overall win rate percentage

Figure 7: Putting algorithms against each other in Pong without agent indicators across 3 seeds

For both DQN and DRON, the underlying DQN implementations include Double DQN [40], the
dueling architecture [41] and priority experience replay buffer [42]. On the other hand, the implemen-
tation of DRQN did not use any of the aforementioned add-ons. For PPO and MAPPO, 4 parallel
workers were used for all environments with homogeneous state and action spaces.

C.1 Hyperparameters

In this section, we specify the hyperparameters used for all algorithms used throughout the experi-
ments.

Table 1: Hyperparameters for DQN and DRON
Hyperparameter Value

fully-connected layer dimensions 512×256
optimizer Adam
learning rate 0.001
discount factor 0.99
replay buffer size 1× 106

batch size 256
loss function MSE
initial epsilon 1
epsilon decay rate 0.9999
double True
dueling True
priority True

13



Table 2: Hyperparameters for PPO
Hyperparameter Value

fully-connected layer dimensions 64×64
number of environments 4
optimizer Adam
number of steps episode length
number of epochs 10
minibatch size episode length*# of agents*4
discount factor 0.99
GAE lambda 0.95
learning rate 0.0007
value function coefficient 0.5
clip 0.2
entropy 0.01

Table 3: Hyperparameters for MADDPG
Hyperparameter Value

fully-connected layer dimensions 64×64
optimizer Adam
learning rate 0.01
discount factor 0.95
replay buffer size 1× 106

batch size 1024
critic loss function MSE
gradient clip norm 0.5

Table 4: Hyperparameters for MAPPO and RMAPPO
Hyperparameter Value

fully-connected layer dimensions 64×64
number of environments 4
optimizer Adam
number of epochs 10
minibatch size 1600
discount factor 0.99
GAE lambda 0.95
learning rate 0.0007
value function coefficient 0.5
clip 0.2
entropy 0.01

RMAPPO-specific Hyperparameters

number of GRU layers 1
hidden state dimension 64

14



Table 5: Hyperparameters for COMA, QMIX, DRQN and CommNet
Hyperparameter Value

discount factor 0.99
optimizer RMSProp
number of GRU layers 1
hidden state dimension 64
gradient clip norm 10
batch size 256

COMA-specific Hyperparameters

critic (fully-connected) dimension 128
actor learning rate 0.0004
critic learning rate 0.003

QMIX/DRQN-specific Hyperparameters

hypernetwork dimension 64
learning rate 0.0005
epsilon linear decay from 1 to 0.05
buffer size 1×106

15


