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Figure 1: Reflective and Scattering Flares in the Dataset. The dataset includes examples of both reflective flares (top), which
occur due to internal reflections within lens systems, and scattering flares (bottom), caused by light scattering from microscopic

imperfections like dust or scratches on lens elements.

Abstract

The rise of mobile devices has spurred advancements in camera
technology and image quality. However, mobile photography still
faces issues like scattering and reflective flares. While previous re-
search has acknowledged the negative impact of the mobile devices’
internal image signal processing pipeline (ISP) on image quality,
the specific ISP operations that hinder flare removal have not been
fully identified. In addition, current solutions only partially address
ISP-related deterioration due to a lack of comprehensive raw image
datasets for flare study. To bridge these research gaps, we introduce
a new raw image dataset tailored for mobile camera systems, fo-
cusing on eliminating flare. This dataset encompasses over 2,000
high-quality, full-resolution raw image pairs for scattering flare,
and 1,200 for reflective flare, captured across various real-world
scenarios, mobile devices, and camera settings. It is designed to
enhance the generalizability of flare removal algorithms across a
wide spectrum of conditions. Through detailed experiments, we
have identified that ISP operations, such as denoising, compression,
and sharpening, may either improve or obstruct flare removal, of-
fering critical insights into optimizing ISP configurations for better
flare mitigation. Our dataset is poised to advance the understanding
of flare-related challenges, enabling more precise incorporation of
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flare removal steps into the ISP. Ultimately, this work paves the way
for significant improvements in mobile image quality, benefiting
both enthusiasts and professional mobile photographers alike.
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1 Introduction

Lens flare [12, 15, 17, 22] is a common optical artifact degrading im-
age quality and visual appeal. It occurs when stray light enters the
camera lens and interacts with the imaging sensor. This phenome-
non is particularly prevalent in mobile computational imaging due
to several factors. Firstly, mobile cameras often utilize plastic lenses,
which generally exhibit lower quality compared to professional-
grade glass lenses. Secondly, the cost constraints of mobile devices
often preclude the inclusion of expensive anti-reflective (AR) coat-
ings [5], further exacerbating the issue of lens flare.

Early approaches to flare removal relied on image processing
techniques [3, 6, 16, 25]. However, recent advancements in deep
learning and the availability of flare datasets [8-10, 29] have spurred
the development of learning-based methods for tackling this prob-
lem. Notably, researchers have identified tone-mapping as a critical
factor affecting restoration performance [8, 32]. Tone-mapping is
a non-linear and non-invertible process within the image signal
processing (ISP) pipeline that can hinder accurate flare removal.
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(c) Highlight recovery from (a) (d) Highlight recovery from raw data

Figure 2: Images processed by a mobile camera built-in image
signal processing (ISP) pipeline, like (a), lose significant detail
compared to raw images (b). This information loss becomes
evident when attempting to recover details in highlights, as
shown in (c) and (d). The ISP-processed image (c) reveals far
less detail than the image processed from raw data (d).

However, the ISP pipeline encompasses multiple non-invertible
transformations beyond tone-mapping, each contributing to the
loss of original image information, as exemplified in Fig. 2. For
instance, denoising algorithms, while essential for mitigating noise
amplified by high ISO settings and small sensor sizes (especially in
nighttime photography), inevitably remove some image details as a
trade-off. Additionally, user preferences often drive manufacturers
to incorporate sharpening operations that enhance image details,
potentially introducing artifacts. Finally, image compression, typi-
cally into lossy formats like JPEG, discards information to achieve
manageable file sizes. These observations raise crucial questions
regarding the impact of various ISP steps on flare removal:

Do other non-invertible ISP operations, such as denoising, sharp-
ening, and compression, hinder or benefit the effectiveness of flare
removal? Does their influence vary for different types of flares (e.g.,
scattering vs. reflective)?

Understanding the interplay between these operations is vital
for optimizing the ISP pipeline and effectively tackling lens flare.
Unfortunately, the lack of readily available raw image datasets has
limited previous research to mimicking individual operations rather
than conducting comprehensive investigations.

This paper addresses these challenges by introducing a novel
dataset and methodology specifically designed for lens flare removal.
Our approach leverages the unique properties of raw images to
decompose the non-linear, non-invertible processing steps within
the ISP for detailed analysis. The dataset comprises over 2,000
high-quality, full-resolution raw image pairs exhibiting scattering
flare and 1, 200 pairs with reflective flare, all captured using mobile
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(a) From internal ISP (b) From raw data

Figure 3: (a) Image processed by a mobile camera built-in ISP.
(b) Image processed from raw data using an external pipeline.
Mobile camera ISPs often apply sharpening and compression,
which can introduce artifacts, as seen in (a).

phone cameras. Each pair includes both the raw image and its pro-
cessed counterpart from the internal ISP, providing rich and diverse
data for training and evaluation. To the best of our knowledge,
this is the first dataset offering raw image data for both scattering
and reflective flare removal. Our experiments reveal that existing
approaches, primarily trained on images with localized flare arti-
facts, may not generalize well to large-scale, global flare effects.
By including both local and global flare corruptions, our dataset
enhances the generalizability of these methods. This paper makes
the following key contributions:

e Introduce a unique raw image dataset specifically curated for
lens flare removal, featuring over 3,000 real-world examples that
address the limitations of existing datasets by including diverse
lighting and environmental conditions.

e Enhances the generalizability of lens flare removal techniques
by incorporating a comprehensive range of both local and global
flare effects.

o The impact of non-invertible ISP operations (denoising, compres-
sion, sharpening) on flare removal is thoroughly investigated,
revealing their varying effects.

e A comprehensive analysis of the interplay between flare removal
and the ISP pipeline is provided, offering valuable insights for
effective integration.

2 Related Works

This section presents an overview of the flare removal problem and
current available datasets, followed by a discussion on the utility
of raw image datasets in mobile computational photography.

2.1 Flare Removal Problem

Lens flare, a common issue in photography, arises from various
sources such as light scattering within the lens system, reflections
between lens elements, and the impact of dust, contaminants, or
scratches on lens surfaces. It can significantly affect the quality
of photographs by introducing unwanted artifacts. Lens flare is
broadly categorized into two types: scattering flares and reflective
flares, each with distinct characteristics and appearances.
Scattering flares occur due to light interacting with microscopic
imperfections within the lens system, leading to light scattering in
different directions and resulting in visible artifacts such as veiling
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Figure 4: Pipeline for Capturing Scattering and Reflective Flare Image Pairs. (a) Scattering Flares: A camera filter with varying
degrees of stain simulates real-world lens imperfections. Paired images are captured, aligned using 2D registration, and cropped
to isolate the flare region. This results in paired patches containing flare-corrupted and clean image data. (b) Reflective Flares:
Exploiting the symmetrical nature of reflective flares, we capture two images with slightly different camera orientations. 3D
registration is then used to calculate the difference between the images, which represents the flare itself. These images are then

merged to create a ground truth image without flare.

glare or a series of distortions in the image [13, 19, 21, 24]. The
appearance of these flares depends on the distribution and nature
of the imperfections. For example, dust on the lens surface may
create bright spots or streaks, while scratches can lead to elongated
artifacts. Multiple defects can result in complex overlapping flare
patterns, degrading the image further.

Reflective flares, on the other hand, are the result of light reflect-
ing between lens elements in multi-element lens systems [6, 16, 18,
25]. These internal reflections can produce geometric shapes such
as concentric rings or polygons, depending on the lens design and
the positioning of the light source. Reflective flares are especially
noticeable when the light source is near the optical axis or the lens
comprises many elements. Furthermore, these flares can vary in
shape and clarity based on their focus. In-focus reflective flares
appear as sharp, defined patterns, whereas out-of-focus flares often
manifest as diffuse, irregular shapes, influenced by lens design and
aperture shape.

2.2 Overview of Flare Datasets

Several significant datasets have been developed for flare removal
research. Wu et al. introduced a dataset featuring both captured
flare-only images and simulated scattering flare images [29]. Qiao
et al. [20] collected unpaired flare-corrupted and flare-free images,
suitable for networks that capture distribution differences but un-
suitable for pixel-to-pixel neural networks due to the lack of paired
data . The Flare7K dataset [8] includes synthesized scattering and
reflective flare images, alongside real images for evaluation. Dai et
al. later expanded this dataset to include real scattering flare im-
ages captured in a darkroom, addressing some limitations of their

earlier datasets [9]. Zhou et al. proposed a dataset collected using
electronic devices for evaluation purposes [32].

Despite these contributions, the issue of reflective flare, which
is common in everyday photography, remains underexplored. Cre-
ating ground truth data for reflective flare is challenging due to
its inherent presence in optical systems. Flare7K and Wu et al.’s
datasets simulate reflective flares at specific angles without con-
sidering the image content context, such as the shape of the light
source [8, 29]. The Bracket Flare dataset by Dai et al. addresses
in-focus reflective flare with a night-time dataset using a novel
composition method [10].

Our dataset offers a comprehensive resource for studying both
reflective and scattering flares, covering in-focus and out-of-focus
reflective flares, as well as local and global corruption in scattering
flares. This diverse collection aims to deepen and broaden the scope
of flare removal research.

2.3 Image Signal Processing and RAW Data

The Image Signal Processing (ISP) Pipeline is a critical component
in digital cameras, specifically engineered to process the complex
data captured by camera sensors. The main objective of an ISP is to
transform raw sensor data into a visually appealing image format,
such as JPEG [26]. This transformation process encompasses several
steps, starting with a linear transform that includes demosaicing
[14], white balancing [2], and color correction [30]. Subsequent
steps involve non-linear transformations, such as denoising [7],
tone mapping [11], and JPEG compression [26]. Additionally, in the
realm of mobile photography, ISPs are tasked with advanced image
enhancement techniques, like sharpening, to compensate for the
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Table 1: Detailed specifications of the mobile phones used for constructing the dataset.

CMOS sensor

Model Manufacturer . Specification Released year
(Main camera)
X 12 MP sensor, 1/1.7-inch sensor, 1.7um pixels,
iPhone 13 Apple IMX603 26 mm equivalent f/1.6-aperture lens 2021
. 50MP sensor, 1/1.31-inch sensor, 1.2um pixels,
Pixel 7 Google GN1 24mm equivalent f/1.85-aperture lens 2022
iQ00 Neo 7 Vivo IMX766V 50MP senspr, 1/1.56-inch sensor, 1pym pixels, 92022
23mm equivalent f/1.88-aperture lens
Find X6 Pro OPPO IMX989 50MP sensor, 1-inch sensor, 1.5um pixels, 2023

23mm equivalent f/1.8-aperture lens

Table 2: Statistics of the collected data.

Data Scattering  Reflective
Indoor 701 79
Outdoor daytime 0 803
Outdoor nighttime 1326 366
Total number 2027 1248

limitations imposed by smaller sensors and the inherent processing
pipeline, as illustrated in Fig. 3.

2.4 Comparison with Existing Datasets

While existing datasets serve as essential resources for addressing
the flare removal challenge, they fall short in providing the raw
image data necessary to fully comprehend the impact of various
ISP operations. This gap is particularly noticeable in operations like
tone mapping, which significantly influence performance. Zhou
et al. highlighted this issue, pointing out that methods like those
employed in the Flare7K dataset [8], which combine flare and scene
images in a gamma-corrected space, fail to account for the non-
linear nature of tone mapping, leading to synthetic images with
unrealistic contrast and color distortions, especially around bright
light sources [32]. In the absence of paired raw data for flare-affected
and clean images, these researchers have resorted to simulating
tone-mapping effects within their synthesis pipeline through a
pixel illuminance-based weighting scheme. While this approach
represents a creative attempt to mimic the non-linear effects of
tone mapping, it underscores the critical need for access to genuine
raw data. This need is not only for improving the accuracy and
generalizability of flare removal models but also because raw images
are subject to a wider range of operations beyond tone mapping.
Our proposed raw image dataset, therefore, presents a unique and
valuable resource for examining the influence of tone mapping and
other ISP operations on the manifestation of lens flare artifacts,
setting the stage for more advanced research in the field.

3 Dataset Construction

This section details the creation of our dataset, covering the captur-
ing devices and settings, followed by specific capturing schemes
for scattering and reflective flare.

3.1 Capturing Settings

We employed mobile phone models from various manufacturers as
capturing devices to avoid potential similarities in lens flare within

the same series. The chosen devices, detailed in Table 1, are popular
in mobile photography and represent a range of capabilities. For
consistency, we used the main camera of each device with manual
control over exposure and focus, whenever possible. Multi-frame
fusion was disabled to ensure the best raw image quality. The
statistics of the collected data is tabulated in Table 2.

3.2 Scattering Flare

To simulate a lens with defects, we introduced a stain-corrupted
camera filter in front of the capturing devices. Varying the filter’s
location relative to the camera simulated different levels of cor-
ruption due to the varying defect levels across the filter. While
the camera remained fixed on a tripod, minor vibrations during
capture could cause misalignment between the flare-corrupted and
flare-free image pairs. To address this, we performed sub-pixel reg-
istration using SURF feature extraction and matching [4]. Given the
small movements, only translations along the vertical and horizon-
tal axes were computed. The registration process was first applied
to internally processed images and then converted for the raw im-
age data with its integer pixel grid. For each registered pair, we
identified areas with light sources and applied a detection algorithm
to pinpoint their positions, as illustrated in Fig. 4a. Both raw and
internally processed images were cropped into patches centered on
these light source positions. The raw patches were then processed
externally to generate high-quality RGB image pairs. Finally, before
inclusion in the dataset, predefined metrics were used to filter out
low-quality pairs, ensuring the overall dataset quality.

3.3 Reflective Flare

To capture reflective data by utilizing the symmetrical property
between the flare and the light source, we employed the follow-
ing method. As illustrated in Fig. 4b, we rotated the camera to
change the light source position, which resulted in a shifted flare
image. Through image registration and warping, we aligned the
two captured images. We then used image subtraction to identify
the flare location and merged the images. This allowed us to use
the corresponding area from one image to compensate for missing
information due to the flare in the other. Repeating this process
with the roles reversed for the two images provided two pairs of
flare-corrupted and flare-free images from a single capture.
Camera rotation and image registration necessitate image warp-
ing and interpolation. Direct interpolation on raw image data can
introduce artifacts like color aliasing and disrupt the noise model.
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Figure 5: Visual comparison of reflective flare removal using different schemes.

To avoid this, we provide the original raw images and perform reg-
istration only on the internally processed and externally generated
RGB images.

4 Experiments

This section evaluates the performance of flare removal models
using images processed by both the internal ISP of a mobile phone
and an external processing pipeline on a computer. We explore the
differences in performance between these two processing methods
by analyzing the impact of each processing step.

4.1 Data Preparation

Our evaluation includes both raw images and those processed by
the mobile phone’s internal ISP. For raw images, we convert flare-
corrupted images and their corresponding ground truth pairs into
RGB images using a custom MATLAB pipeline, RAWZ2RGB. This
pipeline performs black level correction, white balancing, demo-
saicing, and color space conversion, but excludes denoising or post-
processing techniques like sharpening or compression. These im-
ages are referred to as RAW2RGB. Images processed by the internal
ISP are denoted as ISPRGB. Both scattering and reflective flare im-
ages undergo these processing steps.

For scattering flares, we utilize a light source detection algo-
rithm to identify light sources and crop the high-resolution raw
image pairs into 512 X 512 flare-corrupted pairs. This detection
algorithm, adapted from [29], includes enhancements to reduce
background misclassification in images with prominent white ar-
eas. We manually mask the background in each ground truth image
to improve accuracy, use morphological operations to refine the de-
tection masks, and employ a multi-light source detection approach
to better represent complex real-world scenes. For reflective flares,
we prepare pairs at a resolution of 1024 x 1024. Both RAW2RGB and
ISPRGB datasets are processed in this manner.

4.2 Evaluations on the Dataset

4.2.1 Experiment Settings We assess the performance of cutting-
edge flare removal techniques. Training for scattering flares follows
the network settings from prior studies [8, 10, 29]. Since the model
from Wu et alis unavailable, we train a new model using their re-
leased code and data. For the Flare7K [8] and Flare7K++ [9] datasets,
we evaluate the pre-trained Uformer model [28]. Training for re-
flective flares involves models from Flare7K [8] and Bracket Flare
[10], using our collected data for separate treatments of scattering
and reflective flares. Results are documented in Table 3.
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Figure 6: Comparison of scattering flare removal using different schemes.

4.2.2  Qualitative Comparison We first evaluate the performance of
recent flare removal methods on both ISPRGB and RAW2RGB data
for reflective and scattering flare images. We observe that these
models generally perform better on RAW2RGB images due to their
higher quality.

For reflective flares, the U-Net model from Wu et al. [29] exhibits
difficulties in accurately classifying the flare region for restoration,
as shown in Fig. 5. This issue arises from the model’s training data,

which primarily consists of scattering flares and lacks sufficient
reflective flare examples. Additionally, light-source blending ap-
proaches, which segment all light sources and perform flare removal
and image blending to merge the results back into the segmented
images, may misclassify flares, leading to visual artifacts. For in-
stance, in the second row of Fig. 5, Wu et al. [29] misclassify a
portion of the cloud as a flare, resulting in inaccurate color restora-
tion. The Uformer model from Flare7K [8], trained with synthetic
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Table 3: Quantitative results on reflective and scattering flare removal for the two types of data. PSNR, SSIM [27], and LPIPS
[31] are used for evaluation. T denotes higher is better, and | denotes lower is better.

Data Flare Type Metric Input Wuetal [29] Flare7K [8] Bracket Flare [10] Flare7K++ [9]  Ours
PSNRT 34.034 25.810 30.356 34.172 - 35.742
Reflective ~ SSIMT  0.944 0.834 0.927 0.924 - 0.950
LPIPS| 0.046 0.152 0.073 0.136 - 0.035
RAW2RGB PSNRT 20.776 22.673 21.400 - 22.881 26.678
Scattering  SSIMT  0.688 0.722 0.692 - 0.701 0.749
LPIPS| 0.215 0.250 0.209 - 0.190 0.145
PSNRT 31.800 31.265 32.334 32.158 - 33.611
Reflective ~ SSIMT  0.956 0.953 0.955 0.938 - 0.959
ISPRGB LPIPS| 0.050 0.056 0.051 0.090 - 0.040
PSNRT 16.558 16.774 16.982 - 17.224 20.556
Scattering  SSIMT  0.557 0.722 0.561 - 0.566 0.648
LPIPS| 0.324 0.323 0.318 - 0.308 0.230

reflective and scattering flare data, also suffers from this problem,
but it is improved in Bracket Flare [10] due to an enhanced training
pipeline. However, due to the lack of out-of-focus data in Bracket
Flare [10], it can identify the in-focus area to some extent but strug-
gles to resolve the transparent, out-of-focus reflective region, as
highlighted in the third row of Fig. 5. Our proposed model, which
incorporates both in-the-focus and out-of-focus data for training,
demonstrates better performance in addressing this issue.

For scattering flares, recent models demonstrate the ability to
restore local scattering flares, as shown in the third and fifth row
of Fig. 6. However, these models struggle to handle global flares
that affect the overall contrast of images, as seen in the first and
last rows of Fig. 6, which are also common in daily life. The visual
results from our model shows that, by introducing both local and
global degradation data in the training process, we improve the
generalization performance of existing approaches.

4.2.3 Quantitative Comparison We utilize peak signal-to-noise
ratio (PSNR), structural similarity index measure (SSIM) [27], and
learned perceptual image patch similarity (LPIPS) [31] for quantita-
tive comparisons. The results presented in Table 3 indicate that the
overall image quality obtained with the internal ISP is lower than
that of images processed using an external pipeline on raw data.
Furthermore, these metrics highlight our proposed approach’s en-
hanced generalization capabilities, particularly in handling global
artifacts in scattering flare data and improving clarity in out-of-
focus areas for reflective flares.

4.3 Investigating Critical Processing Steps

4.3.1 Experiment Settings Reflecting on the discrepancy in restora-
tion performance between images directly converted from raw
data (RAW2RGB) and those processed through an ISP (ISPRGB),
this study further investigates the influence of specific processing
steps such as denoising, sharpening, and JPEG compression. We
systematically introduce these steps into the RAW2RGB pipeline to
evaluate their cumulative effect on image quality. The experiment
employs the following processing steps:

e Denoise: Denoising in image processing removes noise—caused
by sensor flaws, poor lighting, or high ISO settings—to enhance

image clarity and quality, which is often positioned as the ini-
tial step. In the experiments, denoising is performed using the
medium-sized NAFNet [7] model, which is trained on the SIDD
[1] dataset and optimized for a compromise between denoising
efficacy and computational efficiency.

e Sharpen: The sharpening step is typically placed at the end
of an ISP pipeline to enhance the perceptual quality of images
by increasing the visibility of edges and details that may have
been softened during earlier processing stages. To approximate
the varied sharpening approaches used by different smartphone
manufacturers, a USM (Unsharp Masking) sharpening operator
with a dynamic range of weights is utilized.

o Compression: Acknowledging the widespread use of JPEG com-
pression in mobile imaging, the pipeline incorporates DiffJPEG
[23] for simulating compression. The quality factor in image com-
pression, particularly in formats like JPEG, balances compression
rate and image quality, where a higher factor preserves more
details and increases file size, while a lower factor enhances com-
pression efficiency at the expense of data loss. In the experiments,
we use quality levels variably set between medium ranges.

To dissect the impact of these processing steps on flare removal
efficacy, we explore four distinct pipeline configurations, each al-
tering the sequence of flare removal in relation to denoising, sharp-
ening, and compression:

(1) Denoise — Flare Removal — Sharpen — Compression: This setup
prioritizes noise reduction before addressing any other image
artifacts.

(2) Denoise — Sharpen — Flare Removal — Compression: Here,
flare removal is executed after sharpening but before the final
compression, differing from traditional arrangements.

(3) Denoise — Sharpen — Compression — Flare Removal: Mimick-

ing a common practice, this configuration applies flare removal

after the complete ISP sequence, which is typical of most exist-
ing approaches.

Sharpen — Compression — Flare Removal: Designed to replicate

scenarios with incomplete noise reduction, possibly due to

computational limitations or low-light imaging conditions, this
setup omits the initial denoising step.

“

~
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Table 4: Impact of processing operations on image restoration performance on reflective flare. PSNR, SSIM [27], and LPIPS [31]
are used for evaluation. T denotes higher is better, and | denotes lower is better.

Operations Metrics
Denoise Sharpen Compression | PSNR (dB) T A(dB) | SSIMT A LPIPS| A
35.742 - 0.954 - 0.035 -
v 37.130 +1.388 | 0.988  +0.035 0.023 -0.012
v v 35.902 -1.228 | 0986  -0.002 0.027 +0.004
v v v 34.201 -1.701 0.968 -0.018 0.099 +0.072
v v 33.719 -2.023 | 0955 +0.001 0.139 +0.104

Table 5: Impact of processing operations on image restoration performance on scattering flare.

Operations Metrics
Denoise Sharpen Compression | PSNR (dB) T A(dB) | SSIM T A LPIPS | A
26.678 - 0.749 - 0.145 -
v 28.111 +1.433 0.943 +0.194 0.070 -0.075
v v 26.959 -1.152 0.924 -0.019 0.078 +0.008
v v v 26.361 -0.598 0.905 -0.019 0.128 +0.050
v v 25.701 -0.977 0.842  +0.093 0.193 +0.048

4.3.2  Results and Analysis Analyzing the results compiled in Tables
4 and 5, several critical observations emerge:

Denoising Benefit: Echoing previous findings, initiating the
pipeline with denoising consistently enhances image quality across
various metrics and both types of flare. This confirms the pivotal
role of noise reduction in improving overall image clarity and fa-
cilitating more effective flare removal. Notably, the fourth con-
figuration underscores the challenges posed by incomplete noise
reduction, common in devices with constrained processing power
or images taken under poor lighting, leading to significant quality
degradation.

Sharpening and Compression Degradation: The integration
of sharpening and compression steps, regardless of their sequence,
invariably diminishes image quality. This outcome highlights the
delicate balance between the desire to enhance visual sharpness
and the adverse effects of artifact introduction and loss of detail.
The impact varies with the type of flare, with reflective flare being
particularly vulnerable due to its localized nature, complicating the
model’s ability to accurately identify and correct affected regions,
resulting in up to a 2.93dB degradation in performance. Conversely,
scattering flares, which exhibit more global characteristics, face a
different set of challenges. The global degradation effects caused
by sharpening and compression mirror those inherent in scattering
flares, resulting in a performance loss of 1.75dB.

Optimal Flare Removal Placement: The analysis suggests
that positioning flare removal after denoising but before sharpen-
ing and compression (as in configuration 1) tends to produce the
best restoration outcomes in terms of PSNR, SSIM, and LPIPS for
both flare types. This arrangement benefits from a cleaner input im-
age, enhancing the efficacy of flare removal. Placing flare removal
later in the pipeline, especially after sharpening and compression
(configurations 2 and 3), appears less effective, likely due to the
compounded artifacts and information loss from preceding steps.

The examination of these pipeline configurations illuminates
the complex interplay between different ISP processing steps and

their collective impact on the quality of image restoration. It con-
firms that while denoising significantly improves image quality,
subsequent processing steps like sharpening and compression can
introduce negative effects that compromise both objective and per-
ceptual quality measures. This comprehensive analysis not only
clarifies the performance disparity observed between RAW2RGB
and ISP-processed images but also offers actionable insights for op-
timizing ISP pipelines to achieve superior image restoration results.

5 Conclusion

This paper tackled the significant challenge of lens flare in mo-
bile computational photography by introducing a novel raw image
dataset tailored for the analysis and removal of both scattering and
reflective flares. By utilizing RAW data, we can investigate those
non-invertible ISP operations, and provide new and critical insights
for addressing the flare problem on real data, which is not feasible
with previous methods. Through rigorous experimentation, we’ve
illuminated the complex effects of various non-invertible Image
Signal Processing (ISP) operations—namely denoising, sharpening,
and compression—on the performance of flare removal algorithms.
We’ve provided a nuanced understanding of how different ISP op-
erations impact flare removal, particularly emphasizing the im-
portance of denoising as a foundational step for enhancing image
quality. This study’s insights into the interplay between ISP steps
and flare removal offer valuable guidance for optimizing image pro-
cessing pipelines, ultimately facilitating better image restoration
techniques and improving the visual quality of photographs cap-
tured with mobile devices. Our findings reveal the delicate balance
between enhancing image quality and preserving essential details
necessary for effective flare mitigation, highlighting the critical role
of processing sequence in achieving optimal restoration results.
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