A Proof of Lemma 1

Lemma 1 (Non-identical class probabilities). If the label distribution across the clients is skewed
and the class conditionals have the same support, then the class probabilities {p;(y | z) | i € [m]}
are non-identical, i.e., for all i # w and i,u € [m), there exists x, y such that p;(y | x) # pu(y | ).

Proof. Case I1: Forall y € [C], p;(y), pu(y) > 0orp;(y) = pu(y) =0.
We prove the result by contradiction. Assume that p;(y | ) = p,(y | ) holds for all z, y € [C].
Consider y € [C] so that p;(y), p.(y) > 0. For all z, p;(x | y) > 0

pi(y | ) =puly | z). (16)

According to the Bayes’ rule,

pi(z | yYpiy)  pulz | y)puly)

= 17
pi() Pu(T)
Cancel the p;(x | y) = pu(z | y) # 0 and obtain
pi(z)  pu(z)
Take the reciprocal of both sides,
pi(y)  puly)
Calculate the integral of both sides:
J e 20)
pi(y) Pu(y)
1 1
= —— = (21
pi(y)  puly
= pi(y) = pu(y). (22)

This result contradicts the fact that there exists y € [C] such that p;(y) = p.(y). Therefore, we
conclude that the assumption must be false and that its opposite there exists z, y € [C] such that
pi(y | ) # pu(y | ) must be true in this case.

Case 2: There exists y € [C] that satisfies p;(y) > 0, p,(y) = 0 or p;(y) = 0, p,(y) > 0. Without
loss of generality, we consider p;(y) > 0 and p,,(y) = 0.

Take x so that p;(x | y) > 0, then according to Bayes’ formula,

) = pi(z | y)pi(y)

pily| = >0, (23)
! o)
PulX Du
puly| ) = L LWl) e
Pu(®)
Therefore, p;(y | ) # pi(y | =), which completes the proof.
O

B Proof of Proposition 1

Proposition 1 (Heterogeneous local models). Assume the label distribution across the clients is

skewed. Let 0; be the maximum likelihood estimate of 0} in Eq. (4) given local data at client i. Then

52 converges almost surely to a nonzero constant:

5 (57)2 0,

a.s.
where — represents the almost sure convergence.
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Proof. According to the definition of sample variance, the convergence of local model parameters
implies the convergence of s:

{ lim 52(5*)2} Z_){ lim 6; = 67,Vi € [m]}. (25)

N1 yeeey Ny —> 00 n;—00

Then since probability is monotonic, we have

Pr{ lim  s? = (s*)2} > Pr{ lim 0; = 6;,Vi € [m]}. (26)
N1 yeeny g —> 00 N5 —>00
Since the sampling on different clients is independent, 6; are independent, we have:
Pr{ lim Gizeg‘,WE[m]}:HPr{ lim ei:e;}. 27)
M —>00 i1 M3 —00

According to [32], the MLE 6; is a consistent estimate of ;'

Pr {nhinoo 0; = 0;“} =1, i€[m] (28)
By combining Eq. (26), Eq. (27) and Eq. (28), it follows that

Pr {m,ml’inr?nﬁoo s? = (s*)g} >1, (29)

which implies

Y

Pr{ lim %= (s*)2} =1 = 225 (592 (30)

C Proof of Proposition 2

Proposition 2 (Homogeneous local models). Assume the label distribution across the clients is
skewed. Let 0; be the maximum likelihood estimate of 0* in Eq. (9) given local data at client i. Then
52 converges almost surely to zero:

52 a.s. 0.

Proof. According to the definition of sample variance, the convergence of local model parameters
implies the convergence of s2:

{ lim %= o} ») { lim 6; = 0*,Vie [m]}. (31)
MY yeeey N, —> 00 n; —»00
Then since probability is monotonic, we have
Pr{ lim 5220} zPr{ lim 0; =60*,Vi e [m}} (32)
MY yenny Ny, —> OO n; —»00

Since the sampling on different clients is independent, 6; are independent, we have:

Pr{ lim 6, = 0*,Vi ¢ [m]} :HPr{ lim 91‘:9*}- (33)
i=1

n;—00 N —>00

According to [32], the MLE 6; is a consistent estimate of §*:

Pr{ lim 9,»:0*}:1, i € [m]. (34)
n; —>00
By combining Eq. (32), Eq. (33) and Eq. (34), it follows that
Pr{ lim s?= 0} > 1, (35)
M1 yeeey T —>0O0
which implies
Pr{ lim 32—0}—1 = $2250. (36)
M1 yeeey N —>00
O
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D Experimental Setup and Additional Experiments

D.1 Detailed Experimental Setup

Datasets. Our experiments are conducted on 4 real-world datasets: CIFAR10 [13], CIFAR100 [13],
SVHN [25], and ImageNet subset [6]. The ImageNet subset is generated according to [18], which
consists of 12 labels. We resize the original image (with size 224*224%3) to 64*64*3 for fast training.

Data partition. To simulate real-world statis- .
tical heterogeneity, we use Dirichlet distribution
to generate non-IID data across clients [39]. In - 1 304 0 o o 0 o

o 1117 30 0 5 1 302 16 2028 919

particular, we sample pt ~ Dir () and allocate %

a pﬁ proportion of the data of label [ to client ¢, § ° i’ |° ’ maﬁ ’
where Dir(/3) is the Dirichlet distribution with a Ow 151 a8 1 20 o 43 5 o8 o
concentration parameter /3. To simulate a highly

skewed label distribution that widely exists in Al Y C s B ¢ ° 00
reality, we set 8 = 0.1 as default. We visualize 0 1 2 3 4 5 6 7 8 9
the label distribution of 5 clients on CIFAR10 Class

dataset (when 8 = 0.1) in Figure 4. The number

in the figure stands for the number of training  Figure 4: Label distribution of CIFAR10 among 5
samples associated with the corresponding label  different clients.

in one particular client. As shown in the figure,

the label distribution is highly skewed and each client has relatively few data (even no data) on some
classes.

Metric. For evaluation, we report the natural test accuracy (Natural) on natural test data and the
robust test accuracy on adversarial test data. The adversarial test data are generated by FGSM (fast
gradient sign method) [35], BIM (basic iterative method with 20 steps) [15], PGD-20 (projected
gradient descent with 20 steps) [22], CW (CW with 20 steps) [2], and AA (auto attack) [5] with the
same perturbation bound € = 8/255. The step sizes for BIM, PGD-20 attack, and CW attack are
2/255.

Setting. In our experiments, we consider ||Z — ||, < € with the same ¢ for both training and
evaluation. To generate the most adversarial data to update the model, we follow the same setting
as [26], i.e., we set the perturbation bound to ¢ = 8/255; PGD step number to K = 10; and PGD
step size to o = 2/255. We train the model by using SGD with momentum= 0.9 and learning rate
1 = 0.01. The number of communication rounds is set to 7" = 150 and the number of local epochs
is setto I = 1. All methods use FedAvg for aggregation and use the same CNN network [23] on
CIFAR10, CIFAR100, and SVHN datasets. We adopt Alexnet [14] to train the ImageNet subset for
all methods. Recall that, compared with the cross-device setting, FAT matters more in the cross-silo
setting, in which the number of clients is relatively small, and each client has powerful computation
resources to handle the computation cost of AT [21]. Thus, we set the number of clients to m = 5 by
default, and in each epoch, all clients are involved in the training. Experiments with more clients can
be referred to Table 7 in Appendix D.7. The experiments are run on a server with Intel(R) Xeon(R)
Gold 5218R CPU, 64GB RAM, and 8 Tesla V100 GPUs.

D.2 Per-class Performance of Different Clients

Table 4 shows the per-class performance of different clients on CIFAR10 dataset. In FedGAIRAT,
due to highly skewed label distribution, the prediction of each client is highly biased to the majority
classes, leading to high performance on the majority classes and low performance (even 0% accuracy)
on the minority classes. By contrast, in CalFAT, each client has higher performance on most classes.
For example, on client 1, the accuracy of class 8 (96.56%) of FedGAIRAT is higher than CalFAT,
due to that the prediction is highly biased to class 8 on client 1 for FedGAIRAT. By contrast, the
accuracy of other (minority) classes on client 1 of FedGAIRAT is much lower than CalFAT. These
results show that the calibrated cross-entropy loss can indeed improve the performance on minority
classes, and further improve the overall performance of the model.
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Table 4: Per-class natural accuracy and robust accuracy (against PGD-20 attack) of different clients
on CIFAR10 dataset.

Class | o0 1 2 3 4 5 6 7 8 9 | Average

FedGAIRAT | 4745 0.00 0.00 0.00 0.00 0.00 1691 0.00 96.56 27.30 18.82
CalFAT(ours) | 56.61 88.06 54.41 27.66 37.67 65.16 5202 7403 89.02 54.09 | 59.87
FedGAIRAT | 0.00 9324 0.00 8097 0.00 0.00 7449 0.00 0.00 0.00 24.87
CalFAT(ours) | 71.55 86.34 5846 62.88 16.75 2928 7875 47.76 7544 4222 | 56.94
FedGAIRAT | 5741 0.00 0.00 0.00 0.00 69.81 0.07 69.96 95.01 0.00 29.23
CalFAT(ours) | 90.11 82.41 4148 4041 1742 6465 7496 58.18 7425 22.08 | 56.60
FedGAIRAT | 423 061 000 0.00 0.06 254 0.00 56.13 0.00 99.72 16.33

client 1
client 2

Natural | client 3

client4 | o iFAT(ours) | 59.76 7650 46.15 28.80 2823 6309 79.07 77.62 79.06 46.88 | 58.52
dlients | FedGAIRAT | 000 000 6333 000 7749 88 000 000 000 000 | 1497
CalFAT(ours) | 7048 7460 5158 69.32 35694 4869 57.86 57.65 80.16 43.06 | 61.03
ilont | | FedGAIRAT | 3553 000 000 000 000 000 361 000 87.08 1025| 1365
CalFAT(ours) | 2028 5957 1924 480 698 3142 1079 3727 6371 1802 | 28.11
dienis | FeGAIRAT | 000 7103 006 2154 004 000 8264 000 000 000 | 1753

CalFAT(ours) | 35.61 72.05 1545 22.06 524 7.89 5568 2354 3947 6.17 28.32
FedGAIRAT | 66.94 0.00 0.00 0.00 0.00 3956 0.00 5336 2535 0.00 18.52
CalFAT(ours) | 38.59 3692 2743 7.06 201 2673 2729 39.53 4030 2025 | 26.61
FedGAIRAT | 6.02 0.00 0.00 0.00 0.00 0.12 0.00 4234 000 93.73 14.22
CalFAT(ours) | 17.37 11.05 9.17  1.17 335 47.13 5597 27778 56.53 51.64 | 28.12
FedGAIRAT | 0.00 0.00 978 0.00 97.60 8.63 0.00 0.00 000 0.00 11.60
CalFAT(ours) | 44.55 41.50 28.10 433 11.18 2974 17.07 2132 2571 2035 | 24.39

Robust | client 3

client 4

client 5

D.3 Per-class Average Performance

Figure 5 shows the per-class average performance on SVHN dataset.
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Figure 5: Per-class natural accuracy and robust accuracy (against PGD-20 attack) of CalFAT and the
best baseline (FedGAIRAT) on SVHN dataset.

D.4 Evaluation on Different Network Architectures

Table 5 shows the natural and robust accuracies with different network architectures on CIFAR10
dataset.

Table 5: Natural and robust accuracies (%) with different network architectures on CIFAR10 dataset.

Network | CNN \ VGG-8 \ ResNet-18
Metric | Natural PGD-20 | Natural PGD-20 | Natural PGD-20

MixFAT 53.23 26.22 59.60 34.99 67.54 38.25
FedPGD 47.21 26.50 62.21 34.89 65.48 30.04
FedTRADES | 46.14 26.29 47.21 30.39 54.61 35.03
FedMART 25.68 18.15 43.28 30.16 52.13 33.24
FedGAIRAT | 48.34 27.32 47.83 30.52 55.62 34.87
FedRBN 47.87 26.21 46.96 30.21 54.32 33.23

CalFAT(ours) | 64.85 31.19 | 75.05 40.09 | 76.73 47.85
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D.5 Visualization of Different Methods

Figure 6 shows the t-SNE feature visualization of FedTRADES and CalFAT on SVHN dataset.
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Figure 6: t-SNE feature visualization of FedTRADES and CalFAT on SVHN dataset. Each color
represents a class. Samples from different classes are hard to be separated in FedTRADES while
CalFAT can learn more discriminative features.

D.6 Performance under the IID setting

Table 6 shows the natural accuracy and robust accuracy (against PGD-20 attack) on CIFAR10 dataset
under the IID setting.

Table 6: Natural and robust accuracy (%) on CIFAR10 dataset under the IID setting.

Metric | Natural PGD-20

MixFAT 79.62 37.57
FedPGD 75.89 42.16
FedTRADES | 74.29 44.35
CalFAT 74.23 44.68

D.7 Impact of the Number of Clients

Table 7 shows the natural and robust accuracies with different numbers of clients on CIFAR10 dataset.

Table 7: Natural and robust accuracies (%) with different numbers of clients m = {20, 50,100} on
CIFAR10 dataset.

mo | 20 | 50 | 100
Metric | Natural PGD-20 AA | Natural PGD-20 AA | Natural PGD-20 AA

MixFAT 26.59+0.16 18.24 £0.07 13.124+0.14 | 2328 4+0.16 1555+0.13 10.92+0.14 | 2085+ 0.16 1441 £0.11 10.66 + 0.12
FedPGD 2938020 18.194+0.18 1422 £0.11 | 27.73£0.15 1698 +0.23 11.94+0.14 | 23.86 £ 0.18 15.37 £0.18 10.78 & 0.09
FedTRADES | 29.39 +0.14 1847 £0.13 14.66 +0.19 | 21.444+0.06 1520£0.16 11.85+0.09 | 21.06 =0.11 1476 £0.16 11.68 &+ 0.07
FedMART | 22.95+0.15 17.08+0.07 13.34 £0.09 | 2243 £0.15 1501 £0.08 11.59+£0.06 | 21.58 £0.12 1448 £0.17 11.01 £0.09
FedGAIRAT | 22.74 £0.13 17.00 £ 0.12 13.77 £0.17 | 20.84 £0.26 14.68 £0.21 11.80+0.17 | 1926 £0.15 1417 +£0.11 11.33 £0.14
FedRBN 21.90+0.13 1746 £0.14 1291 40.11 | 20224+0.16 1474 £0.16 12.13+0.11 | 1899+ 0.11 1348 £0.19 12.054+0.08
CalFAT 60.26 +0.09 24.32+0.13 15414+0.12 | 49.86+0.07 18.79 £0.10 13.22+0.13 | 40.69 = 0.08 16.19 £0.15 12.51 4 0.09

D.8 Impact of Skewed Label Distribution

Table 8 shows the natural and robust accuracies under different level of label skewness on CIFAR10
dataset.

18



Table 8: Natural and robust accuracies (%) under different label skewness levels 5 on CIFAR10
dataset.

Label skewness level | B8 =0.05 | B=02 | B8=03
Metric ‘ Natural FGSM  BIM CW  PGD-20 AA ‘ Natural FGSM  BIM CW  PGD-20 AA ‘ Natural FGSM  BIM CW PGD-20 AA

MixFAT 49.10 2749 2532 2217 25.24 2251 54.85 31.27 2870 26.08 28.46 25.21 58.93 31.68 28.17 2496 28.00 24.34
FedPGD 47.13 26.63 2496 20.75 25.03 21.28 | 5222 3031 28.64 2549 28.59 2492 | 56.12 30.86 2846 25.07 28.29 23.64
FedTRADES 40.24 26.02 25.06 22.48 24.99 20.16 | 48.52 29.94 2873 2557 28.65 24.15 | 54.26 30.83 29.39 2474 29.26 23.87
FedMART 29.84 21.90 21.39 1831 21.41 17.89 | 38.38 27.59 27.05 2331 26.99 21.89 | 40.96 2832 27.88 23.12 27.80 22.16
FedGAIRAT 50.41 28.89 2630 22.66 26.34 23.81 56.11 3299 2990 27.10 28.97 25.97 | 60.63 3331 3012 2550 29.67 24.75
FedRBN 39.35 2592 2440 2155 24.77 1947 | 48.42 29.59 2774 24.67 27.86 2378 | 53.54 29.88 2876 24.11 28.63 23.14
CalFAT(ours) | 61.00 3240 2975 2355 2950 25.66 | 71.55 33.80 30.70 27.25 2935 2632 | 69.95 3425 30.80 27.76 30.96 26.84

D.9 Contribution of the Calibrated Loss Functions
Table 9 shows the results of different loss functions.

Table 9: Natural and robust accuracy (%) of different loss functions.

Label skewness level | B=0.05 | B=02 | B8=03
Metric | Natural PGD-20 AA | Natural PGD-20 AA | Natural PGD-20 AA
W/0 Lece (s, ) 52.59 20.55 16.37 63.49 20.37 17.83 61.61 22.42 18.24
W0 Leger (-7 7) 60.05 27.59 19.79 70.60 27.18 21.94 68.27 28.56 22.68
CalFAT (ours) 61.03 29.49 20.35 | 71.54 29.36 22.96 | 69.98 30.98 23.21

D.10 Impact of the Ratio of Adversarial Data

Table 10 shows the robust accuracy (against PGD-20 attack) of CalFAT with different ratios of
adversarial data.

Table 10: Robust accuracy (%) of our CalFAT against PGD-20 attack with different ratios of
adversarial data.

Rato(r) | 0 03 05 08 1

SVHN 1.25 3235 3731 3859 41.64
CIFARI10 | 3.47 1547 21.08 25.87 31.19
CIFAR100 | 2.60 11.08 12.19 13.01 15.39
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