
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

A APPENDIX

A.1 IMPLEMENTATION DETAILS

spatial resolution alignment 
(bilinear interpolation)

input alignment 
(conv 1x1)

feature pattern alignment 
(ConvNext x3)

output alignment 
(conv 1x1)

input

output

Figure A1: Architecture of adapter and
reverter.

For training all models, we initialize the learning rate at
0.001 and reduce it by a factor of 0.1 at 50% and 83% of
the total epochs. We utilize a single NVIDIA RTX A6000
GPU for both model training and inference. Training time
for each model varies between 7 to 30 GPU hours, de-
pending on the specific model architecture. For adapters
and reverters, we start with a learning rate of 0.01, reduc-
ing it by a factor of 0.1 after the first epoch. These com-
ponents are trained in pairs, requiring 1 to 5 GPU hours
depending on the specific encoder and decoder architec-
tures.

Adapter and Reverter’s Architecture. We use the same
architectures for both adapters and reverters across all
CP models, as visualized in Figure A1. The dimension
of the broadcasting feature map is set to (128, 128, 64).
Chidden is set to be 64. Win, Hin, Cin,Wout, Hout, and Cout
of adapters and reverters vary according to the feature
dimensions of each local model and the broadcasting
feature map dimension. For instance, in the task- and
model-agnostic setting, Agent 1’s feature dimension is
128× 128× 64, so we set (Win, Hin, Cin) = (Wout, Hout, Cout) = (128, 128, 64) for both its adapter
and reverter. For Agent 2, with a feature dimension of 64 × 64 × 256, we configure the adapter
with (Win, Hin, Cin) = (64, 64, 256) and (Wout, Hout, Cout) = (128, 128, 64), while the reverter is
set with (Win, Hin, Cin) = (128, 128, 64) and (Wout, Hout, Cout) = (64, 64, 256).

Index Agent 1 Agent 2 Agent 3 Agent 4
Modality Lidar Lidar Camera Camera

Encoder PointPillar
(Lang et al., 2019)

SECOND
(Yan et al., 2018)

EfficientNetB0
(Tan, 2019)

ResNet101
(He et al., 2016)

Encoder Param.(M) 0.87 3.79 56.85 6.88

Index Agent 5 Agent 6 Agent 7 Agent 8
Modality Camera Lidar Camera Lidar

Encoder ResNet34
(He et al., 2016)

VoxelNet
(Zhou & Tuzel, 2018)

EfficientNetB1
(Tan, 2019)

PointPillar (large)
(Lang et al., 2019)

Encoder Param.(M) 6.51 2.13 66.41 1.91

Index Agent 9 Agent 10 Agent 11 Agent 12
Modality Camera Lidar Camera Lidar

Encoder ResNet50
(He et al., 2016)

SECOND (large)
(Yan et al., 2018)

EfficientNetB2
(Tan, 2019)

VoxelNet (large)
(Zhou & Tuzel, 2018)

Encoder Param.(M) 6.88 4.82 71.43 3.18

Table A1: Modality, encoder, and encoder parameters (M) of each heterogeneous model in the 3D
object detection setting.

3D object detection setting. Under the experiments on 3D object detection task, we prepared 12
heterogeneous models. Table A1 displays the Modality, Encoder, and Encoder Parameters (M)
information of each of the 12 heterogeneous models. For model 7, 9, and 11, we enlarge the encoders
by increasing the size of hidden layers. For all heterogeneous models, we choose pyramid fusion
layers proposed by Lu et al. (2024) to be the fusion module and three 1× 1 convolutional layers for
classification, regression, and direction, respectively.

1



054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

A.2 ARCHITECTURAL COMPARISON BETWEEN EXISTING FRAMEWORKS

Figure A2 illustrated various frameworks that address heterogeneous CP. Late fusion simply com-
bines agent outputs through post-processing. Calibrator (Xu et al., 2023) enhances this approach by
using calibrators to address domain gaps between heterogeneous agent outputs. End-to-end train-
ing, while effective, lacks scalability due to its requirement of re-training all agents’ models. It also
compromises security and task flexibility by shared fusion models and decoders. HEAL (Lu et al.,
2024) improves upon this by fixing decoders and fusion models, re-training only the encoders, re-
ducing training resources but still facing scalability issues due to the computational cost of encoder
retraining as well as the security issue due to the shared fusion models and decoders. Our proposed
framework, STAMP, introduces a novel approach using lightweight adapter and reverter pairs to
align feature maps for collaboration. The lightweight nature of these components ensures scalabil-
ity, while the maintenance of local fusion and decoders ensures both security and task agnosticism.
This design effectively addresses the limitations of previous methods.

Feature 1 Feature 2

Feature 1 Feature 2

Encoder 1 Encoder 2

Encoder 1 Encoder 2

Unaligned
Distribution

(NO Intermediate 
CP)

Aligned
Distribution

(Collaborative)

Data Input 1 Data Input 2

Data Input 1 Data Input 2

heavy-weight
(NOT Scalable)

Decoder 1 Decoder 2

Output 1 Output 2

Shared 
Decoder

Output

Shared Fusion Model 
& Decoder
(NOT Safe)

(NOT Task-agnostic)

Late Fusion

HEAL (Lu et al., 2024)

Fused Feature 

Adapter 1 Adapter 2 

Encoder 1 Encoder 2

Data Input 1 Data Input 2

light-weight
(Scalable)

STAMP (ours)

Reverter 1 Reverter 2 

Feature 1 Feature 2Aligned
Feature 2

Aligned
Feature 1

Fused Feature 1 Fused Feature 2 

Decoder 1 Decoder 2

Output 1 Output 2

Local Decoders
(Safe & Task-
agnostic)

Fused Output
(Late Fusion)

Feature 1 Feature 2

Encoder 1 Encoder 2

Unaligned
Distribution

(NO Intermediate CP)

Data Input 1 Data Input 2

Decoder 1 Decoder 2

Output 2

Calibrator (Xu et al., 2023a)

Fused Output
(Late Fusion)

Output 1

Calibrator 1 Calibrator 2

End-to-end Training

Feature 1

Encoder 1 Encoder 2

Aligned
Distribution

(Collaborative)

Data Input 1 Data Input 2

Shared 
Decoder

Output

Shared Decoder
(NOT Safe)

(NOT Task-agnostic)

Fused Feature 

Feature 2

Training
the Whole Model
(NOT Scalable)

Shared 
Fusion Model

Fusion Model 1 Fusion Model 2

Shared 
Fusion Model

Figure A2: Architectural comparison of collaborative perception frameworks: existing approaches
versus our proposed STAMP method. Blue boxes represent models with fixed parameters, while red
boxes indicate models whose parameters are trained during the collaboration process.

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

A.3 MULTI-GROUP AND MULTI-MODEL COLLABORATIONS SYSTEM

Collaborative 
Group 1

Collaborative 
Group 2

Multi-group 
ALLOWED

Single 
Collaborative Group

Collaborative 
Group 1

Collaborative 
Group 2

Join one group 
ONLY

Single-group System Multi-group Single-model System Multi-group Multi-model System

Institute 1
(Infra)

Institute 2
(vehicle)

Institute 3
(Vehicle)

Figure A3: Comparison of collaborative perception systems: (Left) Single-group system where all
agents collaborate within one group. (Middle) Multi-group single-model system allowing agents to
join only one of multiple collaboration groups. (Right) Multi-group multi-model system enabling
agents to participate in multiple collaboration groups simultaneously. The figure illustrates how
different system architectures impact agent interactions and group formations in autonomous driving
scenarios.

In our experimental findings, we observed a bottleneck effect in CP systems, where the overall sys-
tem performance is constrained by the capabilities of the weakest agent. This limitation underscores
the need for more selective collaboration, leading us to introduce the concept of a Collaboration
Group - a set of agents that collaborate under specific criteria. These criteria are essential for
maintaining the quality and integrity of CP, admitting agents that meet predefined standards while
excluding those with inferior models, potential malicious intent, or incompatible alignments. As
illustrated in Figure A3, we can distinguish between three collaborative system types:

• Single-group systems, where agents either operate independently or are compelled to collaborate
with all others, are susceptible to performance bottlenecks caused by inferior agents and vulnera-
bilities introduced by malicious attackers.

• Multi-group single-model systems, allowing multiple collaboration groups but restricting agents
to a single group because each agent can only equip a single model.

• Multi-group multi-model systems, enabling agents to join multiple groups if they meet the prede-
fined standards.

The multi-group structure offers significant advantages over traditional single-group systems. It en-
hances agents’ potential for diverse collaborations, consequently improving overall performance.
This approach mitigates the bottleneck effect by allowing high-performing agents to maintain ef-
ficiency within groups of similar capability while potentially assisting less capable agents in other
groups. Furthermore, it enhances system flexibility, enabling dynamic group formation based on
specific task requirements or environmental conditions.

However, implementing such a multi-group system poses challenges for existing heterogeneous
collaborative pipelines. End-to-end training approaches require simultaneous training of all models,
conflicting with the concept of distinct collaboration groups. Methods like those proposed by Lu
et al. (2024) require separate encoders for each group, becoming impractical as the number of groups
increases due to computational and memory constraints.

Our proposed STAMP framework effectively addresses these limitations, offering a scalable solu-
tion for multi-group CP. The key innovation lies in its lightweight adapter and reverter pair (approx-
imately 1MB) required for each collaboration group an agent joins. This efficient design enables
agents to equip multiple adapter-reverter pairs, facilitating seamless participation in various groups
without significant computational overhead. The minimal memory footprint ensures scalability,
even as agents join numerous collaboration groups, making STAMP particularly well-suited for
multi-group and multi-model collaboration systems.

3



162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

A.4 MORE VISUALIZATION RESULTS

Figure A4 and A5 illustrate more feature map and result visualizations before and after collaborative
feature alignment (CFA). Prior to CFA, agents’ feature maps exhibit disparate representations. For
instance, in Figure A4, the pre-fusion feature maps of agents 1, 3, and 4 appear entirely black,
indicating a significantly lower scale compared to agent 2’s feature map. This discrepancy leads
to instability in feature fusion. Post-CFA, the features are aligned to the same domain, resulting in
more coherent fusion and accurate inference outputs.

Agent 1 Agent 2 Agent 3 Agent 4

O
ut

pu
ts

Fu
se

d 
Fe

at
ur

es

Features before fusion

Agent 1 Agent 2 Agent 3 Agent 4

Adapted Features before fusion

Agent 1 Agent 2 Agent 3 Agent 4

O
ut

pu
ts

Fu
se

d 
Fe

at
ur

es

A1 A2→A1

A3→A1 A4→A1

A1→A2 A2

A3→A2 A4→A2

A1→A3 A2→A3

A3 A4→A3

A1→A4 A2→A4

A3→A4 A4

Before CFA

After CFA

Figure A4: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a three-agent scene. Ai → Aj denotes the feature map aligned from agent i’s
domain to agent j’s domain, also represented as Fij .

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Features before fusion

Agent 1 Agent 3 Agent 4

Agent 1 Agent 3 Agent 4 Agent 1 Agent 3 Agent 4 Agent 1 Agent 3 Agent 4

Adapted Features before fusion

O
ut

pu
ts

Fu
se

d 
Fe

at
ur

es

Agent 1 Agent 3 Agent 4

Before CFA

After CFA

O
ut

pu
ts

Fu
se

d 
Fe

at
ur

es

Figure A5: Visualization of feature maps and inference results before and after Collaborative Feature
Alignment (CFA) in a four-agent scene. Ai → Aj denotes the feature map aligned from agent i’s
domain to agent j’s domain, also represented as Fij .

5



270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

REFERENCES

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016. 1

Alex H Lang, Sourabh Vora, Holger Caesar, Lubing Zhou, Jiong Yang, and Oscar Beijbom. Point-
pillars: Fast encoders for object detection from point clouds. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pp. 12697–12705, 2019. 1

Yifan Lu, Yue Hu, Yiqi Zhong, Dequan Wang, Siheng Chen, and Yanfeng Wang. An extensible
framework for open heterogeneous collaborative perception. arXiv preprint arXiv:2401.13964,
2024. 1, 2, 3

Mingxing Tan. Efficientnet: Rethinking model scaling for convolutional neural networks. arXiv
preprint arXiv:1905.11946, 2019. 1

Runsheng Xu, Weizhe Chen, Hao Xiang, Xin Xia, Lantao Liu, and Jiaqi Ma. Model-agnostic multi-
agent perception framework. In 2023 IEEE International Conference on Robotics and Automation
(ICRA), pp. 1471–1478. IEEE, 2023. 2

Yan Yan, Yuxing Mao, and Bo Li. Second: Sparsely embedded convolutional detection. Sensors,
18(10):3337, 2018. 1

Yin Zhou and Oncel Tuzel. Voxelnet: End-to-end learning for point cloud based 3d object detection.
In Proceedings of the IEEE conference on computer vision and pattern recognition, pp. 4490–
4499, 2018. 1

6


	Appendix
	Implementation Details
	Architectural Comparison between Existing Frameworks
	Multi-group and Multi-model Collaborations System
	More Visualization Results


