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Abstract
Generative models have the potential to accelerate
key steps in the discovery of novel molecular ther-
apeutics and materials. Diffusion models have re-
cently emerged as a powerful approach, excelling
at unconditional sample generation and, with data-
driven guidance, conditional generation within
their training domain. Reliably sampling from
high-value regions beyond the training data, how-
ever, remains an open challenge—with current
methods predominantly focusing on modifying
the diffusion process itself. In this paper, we de-
velop context-guided diffusion (CGD), a simple
plug-and-play method that leverages unlabeled
data and smoothness constraints to improve the
out-of-distribution generalization of guided diffu-
sion models. We demonstrate that this approach
leads to substantial performance gains across var-
ious settings, including continuous, discrete, and
graph-structured diffusion processes with appli-
cations across drug discovery, materials science,
and protein design.

1. Introduction
The central goal of molecular discovery is to identify novel
compounds with desirable functional properties. The im-
mense size of the underlying search spaces—up to 1060 for
drug-like small molecules (Bohacek et al., 1996) and 20N

for N -length protein sequences (Maynard Smith, 1970)—
renders this a challenging combinatorial optimization prob-
lem. Considering the substantial cost of synthesizing and
validating candidate compounds experimentally, the ques-
tion of how to efficiently navigate these search spaces to lo-
cate high-value subsets lies at the core of modern molecular
design (Gómez-Bombarelli et al., 2018; Sanchez-Lengeling
& Aspuru-Guzik, 2018; Bilodeau et al., 2022).
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Figure 1: Guidance models that generalize poorly under dis-
tribution shifts can be a major performance bottleneck for
property-guided diffusion models. We introduce a guidance
model regularizer that improves generalization under distri-
bution shifts and enables context-guided diffusion (CGD).
We show that CGD leads to conditional sampling processes
that consistently generate novel, high-value molecules (red).

Deep generative models have the potential to accelerate this
process by capturing and abstracting key structural proper-
ties of their input domain (Sanchez-Lengeling & Aspuru-
Guzik, 2018; Bilodeau et al., 2022). In recent years, de-
noising diffusion models (Sohl-Dickstein et al., 2015; Ho
et al., 2020; Song et al., 2020; Karras et al., 2022) have
emerged as the method of choice, displaying impressive per-
formance in conditional and unconditional image generation
tasks (Dhariwal & Nichol, 2021; Saharia et al., 2022; Rom-
bach et al., 2022; Zhang et al., 2023), as well as applications
across chemistry (Jing et al., 2022; Corso et al., 2023) and
biology (Watson et al., 2023; Abramson et al., 2024).

While diffusion models excel at capturing complex, multi-
modal densities (Kadkhodaie et al., 2024), accurately mod-
eling the training distribution is only the first step. To fully
leverage diffusion models for applied molecular optimiza-
tion, we require carefully designed guidance functions that
steer the sample generation process toward compounds with
desirable properties (Weiss et al., 2023; Gruver et al., 2023;
Lee et al., 2023). However, when labeled data for training
these guidance functions is scarce and only available for a
biased and unrepresentative subset of the input domain, as
is often the case in practice, overconfident guidance signals
risk steering the generative process toward false-positive
regions of chemical or protein sequence space (Figure 1).
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Figure 2: Context-guided diffusion leverages unlabeled context data to combine signals from labeled training data with
structural information of the broader input domain (left). Specifically, we construct a data- and noise scale-dependent
guidance model regularizer that encourages smooth gradients, mean reversion, and high predictive uncertainty on out-of-
distribution (OOD) inputs, allowing the conditional denoising process under a context-guided diffusion model to focus on
promising near-OOD subsets of chemical and protein sequence space (right).

In this paper, we propose context-guided diffusion (CGD)—
a simple plug-and-play method that leverages unlabeled
data and smoothness constraints to improve the out-of-
distribution generalization of property-guided diffusion
models. Specifically, we construct a guidance model regular-
izer that leverages unlabeled context data to train guidance
models that both (i) fit the training data well and (ii) exhibit
high uncertainty and smooth gradients in out-of-distribution
(OOD) regions of the input domain (Figure 2). We show
that using the resulting context-aware guidance model to
perform context-guided diffusion leads to conditional sam-
pling processes that consistently generate novel, near-OOD
molecules with desirable properties.

CGD is straightforward to implement, requires no changes
to the architecture of the guidance model, and adds no com-
putational overhead at sampling time. Crucially, it is agnos-
tic to the underlying generative process and thus compatible
with latent (Rombach et al., 2022; Xu et al., 2023), equiv-
ariant (Hoogeboom et al., 2022), Riemannian (De Bortoli
et al., 2022; Huang et al., 2022), and constrained (Lou &
Ermon, 2023; Fishman et al., 2023a;b) diffusion models.

We demonstrate the versatility of our approach by applying
it to the design of small molecules with graph-structured dif-
fusion processes (Lee et al., 2023), the generation of novel
materials with equivariant diffusion models (Weiss et al.,
2023), and the optimization of discrete protein sequences
with categorical diffusion (Gruver et al., 2023). We find that
CGD consistently outperforms standard guidance models, as
well as more sophisticated pre-training and domain adapta-
tion techniques, and that it enables more reliable generation
of novel samples from high-value subsets of chemical and
protein sequence space.

The code for our experiments can be accessed at:
https://github.com/leojklarner/

context-guided-diffusion

2. Guided Diffusion Models
We start by providing a brief overview of standard uncondi-
tional diffusion models, following Song et al. (2020), and
then discuss conditional sampling schemes, focusing on
classifier guidance as introduced in Sohl-Dickstein et al.
(2015), Song et al. (2020) and Dhariwal & Nichol (2021).

Unconditional Diffusion Models. Denoising diffusion
models progressively add noise to a data distribution p0 un-
til it approaches a tractable reference distribution pT . This
forward noising process is governed by a stochastic differ-
ential equation (SDE) (Song et al., 2020), defined as

dXt = f(Xt, t) + g(t)dBt, (1)

where X0 ∼ p0 is sampled from the data distribution and
Bt represents the d-dimensional Brownian motion. A com-
mon choice is the VP-SDE (Sohl-Dickstein et al., 2015;
Ho et al., 2020), with drift coefficient f(Xt, t) = − 1

2βtXt

and diffusion coefficient g(t) =
√
βt, where the noise scale

βt > 0 determines the amount of corruption. Over time
steps t ∈ [0, T ], this SDE gradually noises Xt ∼ pt until it
converges to the reference distribution pT = N (0, I).

To generate new samples from p0, diffusion models leverage
the fact that the forward noising process defined by Equa-
tion (1) admits a time-reversal (Anderson, 1982; Haussmann
& Pardoux, 1986). For the VP-SDE, this process is given by

dXt = −βt
{
1

2
Xt +∇ log pt (Xt)

}
dt+

√
βtdBt, (2)

which flows backward in time. XT ∼ pT is sampled from
the reference distribution and incrementally denoised until
it reflects p0. We have used the shorthand ∇ log pt (Xt)
to denote ∇x log pt (x) |x=Xt and will continue using this
shorthand in the remainder of the text.
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The gradient of the log-density∇ log pt(xt) in Equation (2)
is estimated by a time-dependent score network sψ(xt, t)
using techniques from score matching (Hyvärinen & Dayan,
2005). Once trained, sψ can be used to generate samples
from the data distribution p0 by simulating the reverse-time
SDE with a range of numerical solvers (Song et al., 2020).

Guided Diffusion Models. In many applications, we may
wish to condition the generative process of diffusion mod-
els to produce samples with specific properties y, such as
images of a certain class or molecules with a desirable phar-
macological effect. That is, we want to modify the denoising
process in Equation (2) to incorporate the conditioning in-
formation y, and sample from the conditional distribution
p0(x0 |y) rather than the unconditional data distribution
p0(x0). The corresponding reverse-time SDE is given by

dXt = −βt
{
1

2
Xt +∇ log pt (Xt | y)

}
dt+

√
βtdBt,

differing from Equation (2) only in the need for a conditional
score function∇ log pt(Xt | y), which can be expressed as

∇ log pt(Xt | y) = ∇ log
pt(y | Xt)pt(Xt)

Z
= ∇ log pt(y | Xt) +∇ log pt(Xt),

(3)

since Z is a normalization constant independent of Xt.

To approximate ∇ log pt(y | Xt), a time-dependent dis-
criminative guidance model ft(xt; θ) is trained on a labeled
dataset D = ∪Tt=1{(x

(n)
t ,y(n))}Nn=1 with inputs corrupted

by the same forward noising process as the diffusion model.
Once trained, the guidance model can be incorporated into a
guidance function p(y | Xt; f(·; θ)) that is used to compute
the conditional scores ∇ log pt(Xt | y; f(·; θ)), which in
turn steer the reverse-time SDE toward samples with a high
predicted likelihood of observed label y via

dXt=−βt
{
1

2
Xt+∇ log pt(Xt | y; ft(·; θ))

}
dt+

√
βtdBt.

Alternative approaches such as classifier-free guidance (Ho
& Salimans, 2022) estimate the conditional scores by pass-
ing the conditioning information to the score network

∇ log pt(Xt | y) ≈ sϕ(xt, z, t),

either in the form of class labels z = y (Ho & Salimans,
2022) or pre-trained embeddings z ∼ p(z|y) (Nichol et al.,
2021; Ramesh et al., 2022; Saharia et al., 2022). However,
these methods’ inability to provide an explicit guidance
function gradient estimate ∇ log pt(y | Xt) limits their ap-
plicability to regression-based optimization problems fre-
quently encountered in molecular and protein design (Lee
et al., 2023; Weiss et al., 2023; Gruver et al., 2023), where
the objective is to maximize or minimize y without prior
knowledge of its optimal value.

3. Context-Guided Diffusion Models
In this section, we present context-guided diffusion (CGD)—
a method that produces more robust conditional gradient
estimates that consistently generate novel samples with im-
proved properties. We first introduce the prevailing ap-
proach to training guidance models and highlight its limi-
tations. We then present a domain-informed regularization
term designed to bias guidance model training toward func-
tions that both (i) fit the training data well and (ii) revert
to domain-appropriate behavior in out-of-distribution set-
tings. Finally, we describe how to incorporate context-aware
guidance models into guided diffusion to generate out-of-
distribution samples with desirable properties.

3.1. Standard Guidance Model Training

We consider a standard supervised learning setting with
diffusion timesteps t = 0, ..., T and N i.i.d. data realiza-
tions Dt = {(x(n)

t ,y(n))}Nn=1 of the noised inputs xt ∈ X
and targets y ∈ Y . Furthermore, we define the guidance
model ft(· ; θ) =̇ θLht(· ; θh) with θ =̇ {θh, θL} as the com-
position of an embedding model ht(· ; θh) : X → Rd and a
linear output head θL : Rd → Y .

Conventional supervised learning techniques for training
guidance models define the diffusion timestep-dependent
negative log-likelihood objective

L(θ,DT , T ) =̇ −
N∑
n=1

log pT (y
(n) | x(n)

T ; fT (·; θ))

where T ∼ pT (t) is a randomly sampled timestep. The
guidance model parameters θ are optimized by minimizing
the L2-regularized objective function

L̄(θ,DT ) =̇ EpT [L(θ,DT , T )] +
1

2λ
||θ||22, (4)

where λ ∈ R+ is chosen as a hyperparameter.

Unfortunately, this approach is only able to operate over
subsets of the input domainX for which labeled data is avail-
able. When labels are scarce, as is the case in many practical
settings, models trained with standard supervised learning
objectives are prone to generating incorrect and overconfi-
dent predictions when exposed to distribution shifts (Ovadia
et al., 2019; Liu et al., 2020; Van Amersfoort et al., 2020;
Koh et al., 2021; Band et al., 2021; Rudner et al., 2021; Tran
et al., 2022; Rudner et al., 2022; Klarner et al., 2023). This
issue is exacerbated by the fact that guidance models are
trained on noised data points: Since neural networks are
both highly sensitive to noise perturbations (Szegedy et al.,
2013; Goodfellow et al., 2014; Ho & Salimans, 2022) and
able to overfit to fully corrupted inputs (Zhang et al., 2021),
the errors of systematically overconfident gradient signals
may accumulate over hundreds of denoising steps.
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Algorithm 1 One guidance model train-
ing iteration with the context-guided reg-
ularization scheme from Equation (9).

Require:
Data and context batch: (x0,y), x̂0

Diffusion time steps: t, t′ ∼ U(0, T )
Guidance model: ft(·; θ)
Regularizer: DM(ft(·; θ), Qt(·))2
Hyperparameters: σt, τt, λ

xt ← NoisingProcess(x0, t)

ȳ← ft(xt; θ)

L̄ ← − log pt(y | xt; ȳ) + 1
2λ ||θ||

2
2

x̂t′ ← NoisingProcess(x̂0, t
′)

ŷ← ft′(x̂t′ ; θ)

R←
∑
j=1,2 DM(ŷj , Qj

t′(x̂t′))
2

θ ← Update(θ, L̄+R)

(a) An algorithmic overview of the proposed
regularization scheme.

(b) Predictions and samples from an L2-regularized guidance model.

(c) Predictions and samples from a context-aware guidance model.

Figure 3: Panel (a) presents an algorithmic perspective on how the proposed regularization scheme fits into the training loop
of a standard guidance model. Panels (b) and (c) illustrate how the regularization scheme affects the functions a guidance
model learns. Two regression models with different regularizers are trained on a low-label subset of an illustrative dataset
(color-coded crosses). However, without additional information about the input domain, the predictions of the L2-regularized
model (b) exhibit poor generalization and miscalibrated uncertainty estimates when evaluated in new, unseen regions. In
contrast, the context-aware model (c) is able to leverage unlabeled data sampled uniformly from [−2.5, 2.5]2 ⊂ R2 to
generate more accurate and better-calibrated predictions. The corresponding context-guided denoising process generates
samples that recover a held-out, high-label test set (black crosses). Full experimental details are presented in Appendix B.1.

3.2. Context-Aware Guidance Models

To improve the performance and reliability of guidance
models in this setting, we propose a family of diffusion
timestep-dependent regularizers designed to favor param-
eters θ that encode desirable model behaviors on out-of-
distribution data. While ideal model behaviors under distri-
bution shifts are often application-dependent, we design a
general-purpose regularizer—applicable across domains—
that encourages uncertain predictions in areas of the input
domain with little or no signal from the labeled data. This
regularizer maximizes sensitivity at the expense of speci-
ficity and enables the conditional denoising process to focus
on regions in data space that are near the training data and
have the highest likelihood of containing molecules with
improved properties.

To encode this behavior, we construct a data- and timestep-
dependent distribution Qt(·) that is explicitly designed to
exhibit high predictive uncertainty on a problem-specific,
out-of-distribution context set x̂C =̇ {x(i)

C }
NC
i=1.

More specifically, we consider regularizers of the form

R(θ, ft, t, pX̂t
) =̇EpX̂t

[DM(ft(x̂t; θ), Qt(x̂t))
2], (5)

where pX̂t
is a uniform distribution over noised context

batches x̂t of size M (with M ≪ NC).

DM(ft(x̂t; θ), Qt(x̂t))
2 (6)

=̇ (ft(x̂t; θ)−mt(x̂t))
⊤Kt(x̂t)

−1(ft(x̂t; θ)−mt(x̂t))

is the squared Mahalanobis distance between noised model
predictions ft(x̂t; θ) and a data- and timestep-dependent dis-
tribution Qt(x̂t) with mean mt(x̂t) and covariance Kt(x̂t).
Here, mt(x̂t) specifies the desired out-of-distribution be-
havior, and Kt(x̂t) ∈ RM×M allows us to encode addi-
tional information about the structure of the input domain.
Specifically, Kt(x̂t) ̸= I controls how strongly the guid-
ance model predictions ft(x̂t; θ) can vary between similar
context points, allowing us to enforce smoother gradient
estimates and more stable guidance signals in regions of
data space with limited label signal.
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This covariance function can be defined in terms of any valid,
domain-appropriate similarity metric. In the following, we
present a general approach to constructing Kt from model
embeddings. Specifically, we consider the neural network
embeddings ht(x̂t, ϕ) ∈ RM×d of all molecules in the
context batch x̂t and use their inner product to construct

Kt(x̂t) =̇σtht(x̂t, ϕ)ht(x̂t, ϕ)
T + τtI, (7)

where σt is a covariance scale parameter and τt is a diagonal
offset parameter. These hyperparameters allow us to cali-
brate the behavior of our regularizer, with τt determining
how closely the predictions have to match the mean function
mt(x̂t) and σt determining the strength of the smoothness
constraints placed on ft(x̂t; θ).

This approach is agnostic to how the embeddings ht(x̂t, ϕ)
are derived, so long as they capture relevant structural prop-
erties of the input domain. We find that a relatively simple
approach is already sufficient to produce sizeable perfor-
mance gains in the applications we consider here. Specifi-
cally, we use a fixed set of randomly initialized parameters
ϕ to obtain ht(x̂t, ϕ) from the model’s embedding trunk.
This is motivated by the observation that neural networks
with suitable inductive biases, such as permutation- or roto-
translational equivariance in Sections 5.1 and 5.2, can al-
ready produce robust and informative representations in a
randomly initialized state (Kipf & Welling, 2016).

Having constructed the covariance matrix Kt(x̂t), we spec-
ify the mean function mt(x̂t) as follows. Letting ft(·; θ)
be a standard multi-output regression model consisting of a
learned mean function f1

t (x̂t; θ) and, optionally, a learned
variance function f2

t (x̂t; θ), we wish for the mean predic-
tions to revert to the mean of the training labels and for the
variance to be high when the model is evaluated on points
that are meaningfully distinct from the training data. To
encode this desired behavior, we define the regularizer

R(θ, ft, t, pX̂t
) =̇EpX̂t

[∑2

j=1
DM(f jt (x̂t; θ), Q

j
t (x̂t))

2

]
,

(8)

where m1
t (x̂t) =̇

1
N

∑N
n=1 y

(n) for the training data labels
y(n), m2

t (x̂t) =̇σ2
0 , for a target variance parameter σ2

0 , and
pX̂t

is defined as in Equation (5).

Adding this regularizer to the supervised learning loss from
Equation (4), we arrive at the modified training objective

L∗(θ,DT ) = EpT [L(θ,DT , T ) +R(θ, fT , T , pX̂T
)], (9)

where both expectations (over pT and pX̂t
) can be estimated

via simple Monte Carlo estimation.

Implementation. The proposed regularizer R does not
require any changes to the guidance model itself and can
be easily integrated into standard guidance model training
pipelines: At each iteration, we sample a mini-batch x̂t
of size M from the context set x̂C and perturb it with the
same noising process as the unconditional diffusion model
in Equation (1). We then perform a gradient-free forward
pass of the embedding model to compute ht(x̂t, ϕ) and
construct the covariance matrix Kt(x̂t). Finally, we get the
predictions of the guidance model ft(x̂t; θ) on the context
batch to compute the full regularization term in Equation (8).
An algorithmic view of this process is shown in Figure 3.

As the risk of miscalibrated gradient estimates is partic-
ularly high in the earlier stages of the sample generation
process—where highly diffused input points are associated
with the labels of the corresponding un-noised points—it
is important to ensure that our regularizer is able to take
the noise level βt into account. Specifically, we increase τt
with the same schedule as the noise levels βt to penalize
overconfident predictions as context points approach the
reference distribution pT = N (0, I). Similarly, as the dis-
tinction between in-distribution and out-of-distribution data
points becomes less meaningful at larger noise levels, we
decrease σt with an inverted schedule.

3.3. Generation via Context-Guided Diffusion

Once the context-aware guidance model ft(·; θ) has been
trained, we can use it to steer the denoising process towards
out-of-distribution samples that are most likely to exhibit
desired properties. To do so, we use the context-aware guid-
ance model to specify a context-aware guidance function
p(y | xt; ft(·; θ)). This function defines a distribution—
conditioned on both the training data and the context set—
that reflects the probability of obtaining the desired proper-
ties given xt and allows integrating signals from labeled data
points along with structural knowledge about the broader in-
put domain into sampling. Details about guidance function
specification are provided in Appendix A, and an illustrative
example that showcases the effect of the proposed regu-
larizer on the guidance model (and the resulting guided
diffusion process) is shown in Figure 3.

Finally, the context-aware guidance function can be seam-
lessly integrated into existing guided diffusion model frame-
works by replacing the standard guidance function at sam-
pling time. This modular, plug-and-play approach ensures
that our method is independent of the specific diffusion
model architecture and generative process and requires min-
imal implementation overhead. Importantly, like conven-
tional guided diffusion, our method does not necessitate
any (re-)training or fine-tuning of the diffusion model itself,
making it a convenient out-of-the-box tool for guiding the
generation process of a pre-trained model.
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4. Related Work
Guided Diffusion for Molecular Design. Guiding the
denoising process of diffusion models with gradients from
a classifier or conditional score network is an effective ap-
proach that has been applied to a broad range of scientific
problems, such as the generation of desirable protein folds
(Watson et al., 2023; Ingraham et al., 2023) and molecu-
lar conformations (Hoogeboom et al., 2022; Peng et al.,
2023; Guan et al., 2023). Similarly to our approach, re-
cent work has explored property-guided diffusion models
for molecular optimization with a particular focus on out-
of-distribution sample generation. For instance, Lee et al.
(2023) proposed a modification of the unconditional de-
noising process that, in combination with standard super-
vised guidance, generated more diverse small molecules
with improved properties. Likewise, Weiss et al. (2023)
used a guided diffusion model to optimize the electronic
properties of polycyclic aromatic systems, demonstrating
generalization to unseen heterocycles. Furthermore, Gruver
et al. (2023) explored property-guided discrete diffusion for
multi-objective protein sequence optimization, balancing
naturalness with improved properties through a grid of sam-
pling hyperparameters. However, all of these approaches
primarily focus on modifying the unconditional sampling
process itself and rely on standard supervised learning tech-
niques for guidance model training. Our method is orthogo-
nal to these contributions and aims to further improve the
performance of property-guided diffusion models across
application domains and generative processes.

Regularization with Unlabeled Data. Using unlabeled
data to improve the performance of predictive models is a
well-established paradigm that underlies many successful
semi-supervised (Kingma et al., 2014; Laine & Aila, 2016;
Berthelot et al., 2019) and self-supervised (Brown et al.,
2020; Bommasani et al., 2021) methods. This includes a
range of unsupervised domain adaptation and generalization
techniques that use unlabeled data to mitigate the adverse ef-
fect of distribution shifts (Tzeng et al., 2015; Sun & Saenko,
2016; Ganin et al., 2016; Kang et al., 2019; Li et al., 2020).
However, these methods predominantly focus on aligning
model embeddings and are, unlike our approach, unable
to directly influence a model’s predictions. The method
most closely related to our approach is the regularization
scheme proposed in Rudner et al. (2023). However, in con-
trast to Rudner et al. (2023), who only consider supervised
image classification tasks, our approach is specifically de-
signed for the conditional generation of molecular structures.
Key methodological developments in this regard include the
introduction of a factorized regularization term that is suit-
able for use with regression models, as well as an explicit
timestep-dependence that accounts for the noising process
of the underlying diffusion model.

5. Empirical Evaluation
We compare our method to both standard guidance models
and sophisticated pre-training and domain adaptation tech-
niques across a range of experimental settings. Specifically,
we demonstrate the versatility of context-guided diffusion
by applying it to the design of small molecules with graph-
structured diffusion processes (Section 5.1), to the genera-
tion of novel materials with equivariant diffusion models
(Section 5.2), and to the optimization of discrete protein se-
quences with categorical diffusion models (Section 5.3). We
observe that context-guided diffusion leads to improved con-
ditional sampling processes that consistently and substan-
tially outperform existing methods across diffusion model
types and application domains.

5.1. Graph-Structured Diffusion for Small Molecules

To evaluate our method in the context of graph-structured
diffusion processes for small molecule generation, we fol-
low the framework of Lee et al. (2023) and consider a dis-
crete diffusion process over the space of molecular graphs.
Defining a graph gt as a tuple of node feature and adjacency
matrices gt = (xt,at), the forward and reverse processes
are given by a joint system of SDEs (Jo et al., 2022). To
encourage the exploration of novel chemical space, Lee et al.
(2023) condition the denoising process on a hyperparameter
γ ∈ [0, 1) that shrinks the unconditional gradients

∇ log pt(gt|γ) = ∇ log pt(gt) +∇ log pt(γ|gt)
= (1−√γ)∇ log pt(gt).

(10)

In addition, the denoising process is conditioned on desir-
able molecular properties via a standard supervised guid-
ance model as outlined in Sections 2 and 3.1. This model
is trained to predict the labels y ∈ [0, 1], defined as a com-
posite of the synthetic accessibility (SA; Ertl & Schuffen-
hauer, 2009), drug-likeness (QED; Bickerton et al., 2012),
and QuickVina docking scores (Alhossary et al., 2015), de-
scribed in further detail in Appendix B.2. In this setting,
larger labels denote more desirable properties.

As the docking scores are protein pocket-dependent, we
repeat all experiments across the five different targets chosen
by Lee et al. (2023), namely PARP1, FA7, 5HT1B, BRAF
and JAK2. We closely follow their experimental setup
and train guidance models on a subset of 250 000 small
molecules from the ZINC database (Irwin et al., 2012).
Specifically, we pre-compute the labels y for every target
and use them to split the data into a low-property training
and a high-property validation set. This label split allows us
to select regularization hyperparameters that maximize the
ability of the guidance models to generalize well to novel,
high-value regions of chemical space, serving as a proxy for
the desired behavior at sampling time.
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Figure 4: Comparison of the small molecules generated with different guided diffusion models across five distinct protein
targets. Objective values (↑) are normalized with respect to the highest score of the held-out high-property validation set and
averaged across five independent training and sampling runs with different random seeds.

To construct an appropriate context set for use with our reg-
ularizer, we sample an additional 500 000 unlabeled small
molecules from the ZINC database. Following Section 3.2,
we specify a predictive distribution Qt(x̂t) that reverts to the
training set mean and high uncertainty on out-of-distribution
context points. We compare this approach to a range of al-
ternative regularization schemes, including weight decay
(used in Lee et al. (2023)), explicit L2 regularization, and
an ensemble of independently trained networks (Lakshmi-
narayanan et al., 2017). To facilitate a fair comparison of
these methods, we ensure that all training parameters, except
regularization type and strength, are kept constant across
experiments. After selecting the optimal hyperparameters
using the high-property validation set, all models are inde-
pendently retrained with five different random seeds. We
refer to Appendix B.2 for full implementational details, hy-
perparameter ranges, additional results, and sanity checks.

We additionally evaluate the performance of other ap-
proaches that are able to make use of unlabeled data. Specif-
ically, we pre-train a guidance model on all molecules from
our context set with a self-supervised denoising objective
(Zaidi et al., 2023) and then fine-tune it on the labeled data,
using weight decay. Furthermore, we consider a range of
unsupervised domain adaptation and generalization tech-
niques, namely DeepCoral (Sun & Saenko, 2016), domain-
adversarial neural networks (Ganin et al., 2016), and domain
confusion (Tzeng et al., 2015), and present the results for
these methods in Appendix B.2.

Adhering to the evaluation protocol of Lee et al. (2023),
we use the retrained guidance models to generate 3000
molecules each and derive the corresponding labels with the
provided docking and evaluation pipeline. As in Lee et al.
(2023), we only retain compounds that pass synthetic acces-
sibility and drug-likeness thresholds and display a maximum
ECFP4-based Tanimoto similarity (Rogers & Hahn, 2010)
of less than 0.4 to any molecule in the training set, before
reporting the top 5% of the remaining docking scores.

To put these absolute values into perspective, we normalize
them so that 1 corresponds to the highest docking score in
the high-property validation set. The results are reported
in Figure 4 and demonstrate that our method consistently im-
proves the performance of property-guided diffusion models
across different protein targets. The full distributions of all
components of the objective function, the results of mod-
els trained with label noise, as well as versions normalized
by heavy atom count, are presented in Appendix B.2 and
display identical trends. While ensembling and pre-training
techniques perform best on in-distribution tasks (see Ap-
pendix B.2), we find that they alone are not sufficient to over-
come the limitations of standard supervised training/fine-
tuning techniques. However, we note that context guidance
is an orthogonal approach that is straightforward to use in
combination with these methods.

To investigate how important the timestep-dependence of
our method is to its empirical performance, we carry out a
series of ablations in which the regularization hyperparame-
ters σt and τt either (i) mimic the βt schedule of the noising
process, (ii) change linearly over time, or (iii) stay constant
across all noise scales. We observe a strict performance drop
across these settings, indicating that adapting the regularizer
to the noising process is highly beneficial (Figure 4).

Furthermore, we investigate the impact that the size and
composition of our context set have on the performance
of our method by comparing models trained with the full
context set to models trained with randomly sampled subsets
of size 10% and 1%, respectively. As expected, we observe
a strong decrease in performance, with the results of models
trained with the smallest context set (1%) reverting to that of
standard weight decay. Additionally, we select the 10% of
compounds in the original context set that are either most or
least similar to the labeled training data and find that using
a much smaller set of more similar, near-OOD molecules is
able to match the performance of the full context set. Full
details and additional results are presented in Table 6.
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Regularization Type
ours (full context set)
ours (reduced context set)
L2 regularization
weight decay

Figure 5: Comparison of polycyclic aromatic systems generated with different guidance models across ten independent
training and sampling runs. Left: Full distribution of generated objective values (↓) ablated over different context sets and
guidance scales. Right: UMAP plot (McInnes et al., 2018) of training (upper left) and test set (lower right), as well as
samples from guided diffusion models. Validity and novelty are analyzed in Appendix B.3 and show similar trends.

5.2. Equivariant Diffusion For Materials

We additionally evaluate our method by applying it to equiv-
ariant diffusion models for materials design. Specifically,
we follow the experimental setup of Weiss et al. (2023) and
train an E(3)-equivariant diffusion model (Hoogeboom et al.,
2022) on all polycyclic aromatic systems consisting of up
to 11 cata-condensed benzene rings (Wahab et al., 2022).
As in Weiss et al. (2023), we guide the sampling process
towards molecules with desirable electronic properties by
leveraging the gradients of an E(3)-equivariant graph neural
network (Satorras et al., 2021) to minimize a composite
objective of adiabatic ionization potential, electron affinity,
and HOMO-LUMO gap.

In contrast to the experimental setting in Section 5.1, this
application considers an exhaustively enumerated search
space, allowing us to construct clustered data splits in which
maximal generalization is required to reach held-out regions
with optimal objective values. Using this setup, we train
a diffusion model and different guidance networks on a
low-value training set and examine how well they are able
to recover molecules from held-out regions with desirable
electronic properties. We present a comparison of different
methods in Figure 5, confirming that our approach performs
significantly better than standard regularization techniques
across guidance scales. We additionally ablate the informa-
tion content of the context set by removing the most relevant
entries, observing that these are a key determinant of our
method’s success. Full experimental details and additional
results are provided in Appendix B.3.

5.3. Discrete Diffusion for Protein Sequences

Furthermore, we explore how well our method extends to
categorical diffusion models in the context of protein se-
quence optimization. In particular, we follow the experi-
mental framework of Gruver et al. (2023) to apply context-
guided diffusion to the property-conditioned infilling of
antibody complementarity-determining regions. In contrast
to the applications in Sections 5.1 and 5.2, the guidance
model of Gruver et al. (2023) is not a separate network, but
rather a regression head of the score model.Specifically, a
masked language model (Austin et al., 2021; Bhargava et al.,
2021) is used to learn sequence embeddings from which a
linear output head and a feed-forward network estimate the
scores and properties, respectively.

At sampling time, Gruver et al. (2023) generate sequences
with a grid of denoising hyperparameters and examine the
resulting Pareto front of objective values versus “naturalness”
i.e. how likely a sequence is to be synthesizable, estimated
by its likelihood under a protein language model (Ferruz
et al., 2022). Following this approach, we train different
guidance models and use them to generate samples with
the same hyperparameter grid as Gruver et al. (2023). The
corresponding Pareto fronts are presented in Figure 6. While
standard methods fare well in in-distribution settings, we
observe that models trained with our regularizer outperform
them as samples progress into an out-of-distribution regime,
consistently producing better properties for a given level of
naturalness. Full experimental details and additional results
are provided in Appendix B.4.
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Regularization Type
ours

L2 regularization
weight decay

Figure 6: Pareto fronts of samples generated with different
regularization schemes, highlighting the trade-off between
objective value (↑) and naturalness (↑). As samples move
away from the training data and enter an out-of-distribution
regime, our method consistently generates sequences with
better properties for any given level of naturalness.

6. Discussion and Limitations
We conducted a comprehensive empirical evaluation of our
method across three distinct molecular and protein design
tasks, observing consistent and significant improvements
over existing state-of-the-art guided diffusion models. By
leveraging unlabeled data to train guidance functions that
exhibit high uncertainty and well-behaved gradients on out-
of-distribution context points, our context-guided models en-
abled the more reliable generation of novel molecules with
improved properties. These gains were most pronounced
when generalization from scarce and biased training data
was required to generate compounds from unseen, high-
value subsets of chemical and protein sequence space. Our
results highlight that even relatively simple regularization
techniques can yield substantial empirical benefits when
combined with relevant context sets.

The proposed method is best suited for domains in which
unlabeled data is abundant or can be easily generated. While
it does not incur any computational overhead at sampling
time, where hundreds of model evaluations are required to
generate a single molecule, it does come with an increased
cost during training. Specifically, computing the regulariza-
tion term requires two additional forward passes per training
iteration to generate the context set embeddings and predic-
tions. Fortunately, we found this added cost to be moderate
in absolute terms (see Appendix B.5), as guidance models
tend to be relatively lightweight. Additionally, we provide a
sensitivity study over context batch sizes in Table 1, which
suggests that the computational overhead can be further re-
duced while maintaining favorable empirical performance.

Table 1: Ablation over the context batch size used by our
regularizer. Larger context batches generally yield better
results but incur higher computational costs. We find that the
context batch size can be reduced substantially with only a
marginal deterioration of model performance. Performance
metrics and runtimes are averaged across 5 independent
training and sampling runs with different random seeds.

Graph-Structured Diffusion for Small Molecules (Section 5.1)
Batch Size Batch Time (s) PARP1 (↑) FA7 (↑) 5HT1B (↑)
128 0.09±0.01 0.66±0.01 0.48±0.01 0.57±0.01

64 0.08±0.00 0.66±0.01 0.48±0.01 0.57±0.01

32 0.07±0.00 0.66±0.01 0.48±0.01 0.57±0.02

16 0.07±0.00 0.65±0.02 0.47±0.02 0.56±0.03

8 0.07±0.00 0.62±0.03 0.45±0.03 0.53±0.03

Equivariant Diffusion For Materials (Section 5.2)
Batch Size Batch Time (s) scale=0 (↓) scale=2 (↓) scale=4 (↓)
128 0.28±0.02 0.45±0.00 0.39±0.01 0.34±0.01

64 0.25±0.03 0.45±0.00 0.40±0.01 0.34±0.02

32 0.26±0.01 0.45±0.00 0.42±0.01 0.36±0.01

16 0.24±0.02 0.45±0.00 0.41±0.01 0.38±0.03

8 0.23±0.01 0.45±0.00 0.42±0.01 0.39±0.02

Beyond choosing the context batch size, our approach re-
quires the optimization of two additional hyperparameters:
the covariance scale σt and the diagonal offset parameter τt.
Additionally, we find that the choice of the context set sig-
nificantly impacts model performance, requiring sufficient
domain expertise to ensure the inclusion of informative and
relevant unlabeled context points.

7. Conclusions
In this paper, we introduced context-guided diffusion, a sim-
ple plug-and-play method that leverages unlabeled data and
smoothness constraints to improve the out-of-distribution
generalization of guided diffusion models. We demonstrated
the versatility of this approach by applying it to the design of
small molecules, materials, and proteins, achieving substan-
tial performance gains in each domain. Several promising
directions for future work exist, such as encoding more com-
plex out-of-distribution behavior into the guidance model,
for instance by reverting to the outputs of physics-based
methods rather than high predictive uncertainty. Another
promising avenue is the construction of maximally informa-
tive context sets, potentially through active learning strate-
gies that iteratively select unlabeled data points based on
their relevance and potential to improve guidance model
performance. Exploring the integration of context-guided
diffusion with techniques such as multi-task learning or
meta-learning could also enable the development of more
versatile guidance functions that leverage knowledge from
related domains or tasks. We believe that exploring this line
of research has the potential to lead to more adaptable and
robust diffusion models that are able to solve a wider range
of challenging real-world problems.
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Impact Statement
This work introduces a regularization technique to improve
the performance of guided diffusion models for inverse
molecular design. These methods have the potential to ac-
celerate the discovery and development of new medicines,
functional materials, and sustainable alternatives that could
benefit society (Wang et al., 2023). However, like any pow-
erful technology, there is also the risk of dual-use or misuse,
for example for the generation of hazardous agents that
could endanger public safety (Urbina et al., 2022).
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Isert, C., Atz, K., Jiménez-Luna, J., and Schneider, G.
Qmugs, quantum mechanical properties of drug-like
molecules. Scientific Data, 9(1):273, 2022.

Ji, Y., Zhang, L., Wu, J., Wu, B., Li, L., Huang, L.-K., Xu,
T., Rong, Y., Ren, J., Xue, D., et al. Drugood: Out-of-
distribution dataset curator and benchmark for ai-aided
drug discovery–a focus on affinity prediction problems
with noise annotations. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 37, pp. 8023–
8031, 2023.

Jing, B., Corso, G., Chang, J., Barzilay, R., and Jaakkola,
T. S. Torsional diffusion for molecular conformer genera-
tion. In Oh, A. H., Agarwal, A., Belgrave, D., and Cho,
K. (eds.), Advances in Neural Information Processing
Systems, 2022. URL https://openreview.net/
forum?id=w6fj2r62r H.

Jo, J., Lee, S., and Hwang, S. J. Score-based generative
modeling of graphs via the system of stochastic differen-
tial equations. In International Conference on Machine
Learning, pp. 10362–10383. PMLR, 2022.

Kadkhodaie, Z., Guth, F., Simoncelli, E. P., and Mallat, S.
Generalization in diffusion models arises from geometry-
adaptive harmonic representations. In The Twelfth Inter-
national Conference on Learning Representations, 2024.

Kang, G., Jiang, L., Yang, Y., and Hauptmann, A. G.
Contrastive adaptation network for unsupervised domain
adaptation. In Proceedings of the IEEE/CVF conference
on computer vision and pattern recognition, pp. 4893–
4902, 2019.

Karras, T., Aittala, M., Aila, T., and Laine, S. Elucidating
the design space of diffusion-based generative models.
Advances in Neural Information Processing Systems, 35:
26565–26577, 2022.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

Kingma, D. P., Mohamed, S., Jimenez Rezende, D., and
Welling, M. Semi-supervised learning with deep genera-
tive models. Advances in neural information processing
systems, 27, 2014.

Kipf, T. N. and Welling, M. Semi-supervised classifica-
tion with graph convolutional networks. arXiv preprint
arXiv:1609.02907, 2016.

Klarner, L., Rudner, T. G., Reutlinger, M., Schindler, T.,
Morris, G. M., Deane, C., and Teh, Y. W. Drug discovery
under covariate shift with domain-informed prior distri-
butions over functions. In International Conference on
Machine Learning, pp. 17176–17197. PMLR, 2023.

Koh, P. W., Sagawa, S., Marklund, H., Xie, S. M., Zhang,
M., Balsubramani, A., Hu, W., Yasunaga, M., Phillips,
R. L., Gao, I., et al. Wilds: A benchmark of in-the-
wild distribution shifts. In International Conference on
Machine Learning, pp. 5637–5664. PMLR, 2021.

Laine, S. and Aila, T. Temporal ensembling for semi-
supervised learning. arXiv preprint arXiv:1610.02242,
2016.

Lakshminarayanan, B., Pritzel, A., and Blundell, C. Simple
and scalable predictive uncertainty estimation using deep
ensembles. Advances in Neural Information Processing
Systems, 30, 2017.

Landrum, G. et al. Rdkit: A software suite for cheminformat-
ics, computational chemistry, and predictive modeling.
Greg Landrum, 8:31, 2013.

Lee, S., Jo, J., and Hwang, S. J. Exploring chemical space
with score-based out-of-distribution generation. In Inter-
national Conference on Machine Learning, pp. 18872–
18892. PMLR, 2023.

Li, R., Jiao, Q., Cao, W., Wong, H.-S., and Wu, S. Model
adaptation: Unsupervised domain adaptation without
source data. In Proceedings of the IEEE/CVF confer-
ence on computer vision and pattern recognition, pp.
9641–9650, 2020.

Liu, J., Lin, Z., Padhy, S., Tran, D., Bedrax Weiss, T., and
Lakshminarayanan, B. Simple and principled uncertainty
estimation with deterministic deep learning via distance
awareness. Advances in neural information processing
systems, 33:7498–7512, 2020.

Loshchilov, I. and Hutter, F. Decoupled weight decay regu-
larization. arXiv preprint arXiv:1711.05101, 2017.

12

https://openreview.net/forum?id=w6fj2r62r_H
https://openreview.net/forum?id=w6fj2r62r_H


Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design

Lou, A. and Ermon, S. Reflected diffusion models. In
Krause, A., Brunskill, E., Cho, K., Engelhardt, B., Sabato,
S., and Scarlett, J. (eds.), Proceedings of the 40th In-
ternational Conference on Machine Learning, volume
202 of Proceedings of Machine Learning Research, pp.
22675–22701. PMLR, 23–29 Jul 2023. URL https://
proceedings.mlr.press/v202/lou23a.html.

Marsland, S. Machine learning: an algorithmic perspective.
Chapman and Hall/CRC, 2011.

Maynard Smith, J. Natural selection and the concept of a
protein space. Nature, 225(5232):563–564, 1970.

McInnes, L., Healy, J., and Melville, J. UMAP: Uniform
manifold approximation and projection for dimension
reduction. arXiv preprint arXiv:1802.03426, 2018.

Mysinger, M. M., Carchia, M., Irwin, J. J., and Shoichet,
B. K. Directory of useful decoys, enhanced (dud-e): bet-
ter ligands and decoys for better benchmarking. Journal
of Medicinal Chemistry, 55(14):6582–6594, 2012.

Nair, V. and Hinton, G. E. Rectified linear units improve
restricted boltzmann machines. In Proceedings of the 27th
International Conference on Machine Learning (ICML-
10), pp. 807–814, 2010.

Nichol, A., Dhariwal, P., Ramesh, A., Shyam, P., Mishkin,
P., McGrew, B., Sutskever, I., and Chen, M. Glide:
Towards photorealistic image generation and editing
with text-guided diffusion models. arXiv preprint
arXiv:2112.10741, 2021.

Nichol, A. Q. and Dhariwal, P. Improved denoising diffusion
probabilistic models. In International Conference on
Machine Learning, pp. 8162–8171. PMLR, 2021.

Olsen, T. H., Boyles, F., and Deane, C. M. Observed an-
tibody space: A diverse database of cleaned, annotated,
and translated unpaired and paired antibody sequences.
Protein Science, 31(1):141–146, 2022.

Ovadia, Y., Fertig, E., Ren, J., Nado, Z., Sculley, D.,
Nowozin, S., Dillon, J., Lakshminarayanan, B., and
Snoek, J. Can you trust your model’s uncertainty? evalu-
ating predictive uncertainty under dataset shift. Advances
in Neural Information Processing Systems, 32, 2019.

pandas development team, T. pandas-dev/pandas: Pandas,
February 2020. URL https://doi.org/10.5281/
zenodo.3509134.

Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J.,
Chanan, G., Killeen, T., Lin, Z., Gimelshein, N., Antiga,
L., et al. Pytorch: An imperative style, high-performance
deep learning library. Advances in Neural Information
Processing Systems, 32, 2019.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V.,
Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P.,
Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cour-
napeau, D., Brucher, M., Perrot, M., and Duchesnay, E.
Scikit-learn: Machine learning in Python. Journal of
Machine Learning Research, 12:2825–2830, 2011.

Peng, X., Guan, J., Liu, Q., and Ma, J. MolDiff: Addressing
the atom-bond inconsistency problem in 3D molecule
diffusion generation. In Krause, A., Brunskill, E., Cho,
K., Engelhardt, B., Sabato, S., and Scarlett, J. (eds.),
Proceedings of the 40th International Conference on Ma-
chine Learning, volume 202 of Proceedings of Machine
Learning Research, pp. 27611–27629. PMLR, 23–29 Jul
2023. URL https://proceedings.mlr.press/
v202/peng23b.html.

Ramesh, A., Dhariwal, P., Nichol, A., Chu, C., and Chen, M.
Hierarchical text-conditional image generation with clip
latents. arXiv preprint arXiv:2204.06125, 1(2):3, 2022.

Rogers, D. and Hahn, M. Extended-connectivity finger-
prints. Journal of chemical information and modeling, 50
(5):742–754, 2010.

Rombach, R., Blattmann, A., Lorenz, D., Esser, P., and
Ommer, B. High-resolution image synthesis with latent
diffusion models. In Proceedings of the IEEE/CVF con-
ference on computer vision and pattern recognition, pp.
10684–10695, 2022.

Rudner, T. G., Chen, Z., Teh, Y. W., and Gal, Y. Tractable
function-space variational inference in Bayesian neural
networks. Advances in Neural Information Processing
Systems, 35:22686–22698, 2022.

Rudner, T. G., Kapoor, S., Qiu, S., and Wilson, A. G.
Function-space regularization in neural networks: A prob-
abilistic perspective. In International Conference on Ma-
chine Learning, pp. 29275–29290. PMLR, 2023.

Rudner, T. G. J., Lu, C., Osborne, M. A., Gal, Y., and Teh,
Y. W. On pathologies in KL-regularized reinforcement
learning from expert demonstrations. In Advances in
Neural Information Processing Systems 34, 2021.

Saharia, C., Chan, W., Saxena, S., Li, L., Whang, J., Denton,
E. L., Ghasemipour, K., Gontijo Lopes, R., Karagol Ayan,
B., Salimans, T., et al. Photorealistic text-to-image dif-
fusion models with deep language understanding. Ad-
vances in Neural Information Processing Systems, 35:
36479–36494, 2022.

Sanchez-Lengeling, B. and Aspuru-Guzik, A. Inverse
molecular design using machine learning: Generative
models for matter engineering. Science, 361(6400):360–
365, 2018.

13

https://proceedings.mlr.press/v202/lou23a.html
https://proceedings.mlr.press/v202/lou23a.html
https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.5281/zenodo.3509134
https://proceedings.mlr.press/v202/peng23b.html
https://proceedings.mlr.press/v202/peng23b.html


Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design

Satorras, V. G., Hoogeboom, E., and Welling, M. E (n)
equivariant graph neural networks. In International Con-
ference on Machine Learning, pp. 9323–9332. PMLR,
2021.

Sohl-Dickstein, J., Weiss, E., Maheswaranathan, N., and
Ganguli, S. Deep unsupervised learning using nonequi-
librium thermodynamics. In International Conference on
Machine Learning, pp. 2256–2265. PMLR, 2015.

Song, Y., Sohl-Dickstein, J., Kingma, D. P., Kumar, A., Er-
mon, S., and Poole, B. Score-based generative modeling
through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The Journal of Machine
Learning Research, 15(1):1929–1958, 2014.

Stiefl, N., Watson, I. A., Baumann, K., and Zaliani, A.
Erg: 2d pharmacophore descriptions for scaffold hopping.
Journal of Chemical Information and Modeling, 46(1):
208–220, 2006.

Sun, B. and Saenko, K. Deep coral: Correlation alignment
for deep domain adaptation. In Computer Vision–ECCV
2016 Workshops: Amsterdam, The Netherlands, October
8-10 and 15-16, 2016, Proceedings, Part III 14, pp. 443–
450. Springer, 2016.

Szegedy, C., Zaremba, W., Sutskever, I., Bruna, J., Erhan,
D., Goodfellow, I., and Fergus, R. Intriguing properties of
neural networks. arXiv preprint arXiv:1312.6199, 2013.

Tingle, B. I., Tang, K. G., Castanon, M., Gutierrez, J. J.,
Khurelbaatar, M., Dandarchuluun, C., Moroz, Y. S., and
Irwin, J. J. ZINC-22 - a free multi-billion-scale database
of tangible compounds for ligand discovery. Journal of
Chemical Information and Modeling, 63(4):1166–1176,
2023.

Tran, D., Liu, J., Dusenberry, M. W., Phan, D., Collier, M.,
Ren, J., Han, K., Wang, Z., Mariet, Z., Hu, H., Band, N.,
Rudner, T. G. J., Singhal, K., Nado, Z., van Amersfoort, J.,
Kirsch, A., Jenatton, R., Thain, N., Yuan, H., Buchanan,
K., Murphy, K., Sculley, D., Gal, Y., Ghahramani, Z.,
Snoek, J., and Lakshminarayanan, B. Plex: Towards
reliability using pretrained large model extensions. In
ICML Workshop on Pre-training: Perspectives, Pitfalls,
and Paths Forward, 2022.

Tzeng, E., Hoffman, J., Darrell, T., and Saenko, K. Si-
multaneous deep transfer across domains and tasks. In
Proceedings of the IEEE international conference on com-
puter vision, pp. 4068–4076, 2015.

Urbina, F., Lentzos, F., Invernizzi, C., and Ekins, S. Dual use
of artificial-intelligence-powered drug discovery. Nature
Machine Intelligence, 4(3):189–191, 2022.

Van Amersfoort, J., Smith, L., Teh, Y. W., and Gal, Y. Un-
certainty estimation using a single deep deterministic
neural network. In International conference on machine
learning, pp. 9690–9700. PMLR, 2020.

Van Rossum, G. and Drake, F. L. Python 3 Reference
Manual. CreateSpace, Scotts Valley, CA, 2009. ISBN
1441412697.

Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M.,
Reddy, T., Cournapeau, D., Burovski, E., Peterson, P.,
Weckesser, W., Bright, J., van der Walt, S. J., Brett, M.,
Wilson, J., Millman, K. J., Mayorov, N., Nelson, A. R. J.,
Jones, E., Kern, R., Larson, E., Carey, C. J., Polat, İ.,
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A. Guidance Function Parameterization
To guide sampling in a diffusion model toward certain desired properties, a guidance model ft(·; θ) is trained on a dataset D,
a parametric guidance function p(y | xt; ft(·; θ)) is defined using the learned guidance model, and then the conditional
gradient/score function

∇ log p(y | xt; ft(·; θ)) +∇ log p(xt), (A.1)

are used to guide generation towards high-density regions p(y | xt; ft(·; θ)). To provide a general framework that accommo-
dates both classification and regression settings, we let Y denote an “optimality” random variable indicating the optimality
(under some domain-specific optimality function) of a given input xt.

For discrete desirable properties, the guidance model is trained on a classification task, and the guidance function
p(y | xt; ft(·; θ)) is defined as a categorical likelihood function, making − log p(y | xt; ft(·; θ)) a cross-entropy loss.
To guide a diffusion model towards generating samples consistent with a specific class c, the guidance function is computed
under y = one-hot(c), denoting that the desired class c is represented by a one-hot encoding. The score function then
becomes the class probability of the desired class under the learned model:

∇ log p(y | xt; ft(·; θ)) = ∇ log softmax(ft(x | θ))c. (A.2)

For continuous desirable properties, the guidance model is trained on a regression task, and the guidance function
p(y | xt; ft(·; θ)) is defined as a Bernoulli likelihood function with

p(y = 1 |xt, C; ft(·; θ)) = exp (ft(xt; θ)− C), (A.3)

denoting the probability of optimality, and C representing a domain-specific “goal value”. Importantly, this formulation
requires that ft(xt; θ) < C so that increases in ft(xt; θ)) indicate desirable properties.

A.1. Probabilistic Interpretation

Letting O be an “optimality” random variable indicating whether a prediction ft(x̂t; θ) is optimal for achieving a desired
behavior (e.g., high predictive uncertainty on data points far away from the training data), we can define a Bernoulli
observation model where

p(O = 1 | θ, t; ft, pX̂t
) = exp (−R(θ, ft, t, pX̂t

)), (A.4)

denotes the probability of optimality as a function of the regularizer. That is, the smaller R(θ, ft, t, pX̂t
), the higher the

probability that a prediction ft(x̂t; θ) is optimal.

Following the result in Rudner et al. (2023), we note that specifying a data-dependent regularizer of the form shown in
Equation (8) corresponds to specifying a data-driven prior distribution over neural network parameters

p(θ | t,O = 1; ft, pX̂t
) =

p(O = 1 | θ, t; ft, pX̂t
) p(θ)

p(O = 1 | t; ft, pX̂t
)

.

Minimizing the objective function in Equation (9) corresponds to finding a variational approximation to the posterior implied
by this data-driven prior and the observed data. That is, minimizing the objective function in Equation (9) (approximately)
corresponds to finding a variational distribution qΘ = N (θ; θ′, σ2) (with fixed and very small σ2) that solves the variational
problem

min
qΘ

EpT
[
DKL(qΘ || pΘ|DT ,O,T )

]
, (A.5)

allowing us to interpret the learned guidance model through the lens of Bayesian inference.

17



Context-Guided Diffusion for Out-of-Distribution Molecular and Protein Design

B. Experimental Details
This section provides additional information and experimental results complementing the main text. Appendix B.1 details
the regression experiments from Section 3 and contrasts our approach with standard L2 regularization, illustrated in Figure 3.
Appendix B.2 presents our extension of Lee et al. (2023)’s work on graph-structured diffusion models for small molecule
generation (Section 5.1). Appendix B.3 presents our extension of Weiss et al. (2023)’s experiments on equivariant diffusion
models for generating novel polycyclic aromatic systems (Section 5.2). Finally, Appendix B.4 presents our extension of
Gruver et al. (2023)’s approach to optimizing discrete protein sequences using categorical diffusion models (Section 5.3).

All code was written in (Van Rossum & Drake, 2009) and can be accessed at https://github.com/leojklarner/context-guided-
diffusion. A range of core scientific computing libraries were used for data preparation and analysis, including NUMPY
(Harris et al., 2020), SCIPY (Virtanen et al., 2020), PANDAS (pandas development team, 2020), MATPLOTLIB (Hunter,
2007), SEABORN (Waskom, 2021), SCIKIT-LEARN (Pedregosa et al., 2011) and RDKIT (Landrum et al., 2013). All deep
learning models were implemented in PYTORCH (Paszke et al., 2019).

B.1. Illustrating the Behaviour of Guided Diffusion Models on the Swiss Roll Dataset

Dataset. In order to illustrate the impact of our regularizer on the learning dynamics of a guidance model, particularly
when only trained on a constrained and less diverse subset of the input domain, we conduct a comparison with standard
parameter-space regularization schemes, namely explicit L2 regularization. This comparison is performed on the Swiss
roll dataset, as described by Marsland (2011) and implemented in the SCIKIT-LEARN library (Pedregosa et al., 2011). The
input data Xt ∈ R2 and regression labels y ∈ R are depicted in Figure 7. A threshold of y = 1 is used to split the data
into training and validation sets. The training set encompasses data points with lower label values, while the validation set
consists of data points with higher labels. This split is designed to evaluate the capability of a guided diffusion model trained
on a subset of lower-value data to extrapolate to and generate data points from higher-value, out-of-distribution regions.

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
x1

2.0

1.5

1.0

0.5
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1.5

Figure 7: A visualization of the Swiss roll dataset used to train different guidance models. It consists of 500 data points
generated with the corresponding function in the SCIKIT-LEARN library (Pedregosa et al., 2011) using a noise parameter of
0.3. Both covariates Xt ∈ R2 and labels y ∈ R have been normalized to a mean of zero and a standard deviation of one.
The color-coded regression labels are derived from the data points’ sequential ordering along the manifold’s arc length. A
label threshold of y = 1, denoted by a dashed line, shows the training-validation split: the training data (circles) contains
data points with lower label values, while the validation data (crosses) consists of data points with higher labels. This split is
designed to evaluate the ability of a guided diffusion model trained on a subset of lower-value data to extrapolate to and
generate data points from higher-value, out-of-distribution regions.
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Diffusion Model Training. To train unconditional diffusion models, we adapt an existing implementation of the denoising
diffusion probabilistic models from Ho et al. (2020) to train diffusion models on datasets in R2 (https://github.com/albarji/toy-
diffusion). Specifically, we generate 100 000 data points from the same data-generating process as our labeled training set,
i.e. data points from the Swiss roll generator with standardized labels y < 1. Using a standard cosine beta schedule (Nichol
& Dhariwal, 2021)

βt = 1− ᾱt
ᾱt−1

, with ᾱt =
f(t)

f(0)
and f(t) = cos

(
t/T + ϵ

1 + ϵ
· π
2

)2

(B.6)

where ϵ = 0.008 and T = 40, we ensure that the noising process converges to the target distribution N (0, I). The score
network sθ : R2 × [1, . . . , T ]→ R2 is constructed as a multi-layer perceptron with 5 hidden layers of dimension 64 and
ReLU activation functions (Nair & Hinton, 2010). It is trained with the Lsimple noise prediction objective from Ho et al.
(2020) over 100 epochs of stochastic gradient descent. Specifically, we use the ADAM optimizer (Kingma & Ba, 2014)
with a batch size of 2048 and a learning rate of 1× 10−3 that drops off to 1× 10−5 following a linear learning rate decay
schedule. Samples from this unconditional model are shown in Figure 8.

Guidance Function Training. For the training of guidance models ft(·; θ) : R2 × [1, . . . , T ] → R2, we use smaller
multi-layer perceptrons with 3 hidden layers of dimension 32, applying sin activation functions and dropout (Srivastava
et al., 2014) with p = 0.2 after each layer. These networks are trained to output both the most likely regression label
µt(xt; θ) = f1

t (xt; θ), as well as log-variances logσ2
t (xt; θ) = f2

t (xt; θ) that serve as an estimator of their predictive
uncertainty. Given the regression labels y, the models are optimized with respect to a negative log-likelihood loss
Lt = − logN (y;µt,σ

2
t I) over 100 epochs of stochastic gradient descent, using the ADAM optimizer with a batch size of

128 and a learning rate of 1× 10−2. The corresponding objective L with an explicit L2 regularization term is given by

L(θ,DT ) =̇ EpT
[
− logN (y;µT ,σ

2
T I)

]
+

1

2λ
||θ||22, (B.7)

where the regularization strength λ is optimized as a hyperparameter. Similarly, we train context-guided models by adding
the additional regularization term R(θ, ft, t, pX̂t

) as introduced in Section 3 and given by

R(θ, ft, t, pX̂t
) = EpX̂t

[∑2

j=1

(
f
(j)
t (x̂t; θ)−mt(x̂t)

)⊤
Kt(x̂t)

−1
(
f
(j)
t (x̂t; θ)−mt(x̂t)

)]
, (B.8)

Here, x̂t ∼ pX̂t
(x̂t) represents a context batch sampled from an out-of-distribution context set comprising 10 000 points

distributed uniformly over [−2.5, 2.5]2 ⊂ R2. As detailed in Section 3, we use a randomly initialized parameter set ϕ to
generate 32-dimensional context set embeddings ht(x̂t, ϕ) ∈ RM×32 and use them to construct the covariance matrix

Kt(x̂t) = σtht(x̂t, ϕ)ht(x̂t, ϕ)
T + τtI.

As the model returns mean and log-variance estimates f1
t (x̂t; θ) and f2

t (x̂t; θ), the target function values mt(x̂t) are given
by the training set mean m1

t (x̂t) = −0.38 and a log-variance hyperparameter m2
t (x̂t) = σ2

0 , respectively. The latter is set
to σ0 = 0.7, chosen to induce high predictive uncertainty estimates of exp(σ2) ≈ 2 in out-of-distribution regions of the
input domain. The values of the covariance scale σt and the diagonal offset τt are optimized as hyperparameters. While
empirical performance tends to improve when σt and τt are made time-dependent, we found that in this setting we can
already achieve good performance when keeping them constant. The resulting augmented training objective is given as

L∗(θ,D) = EpT
[
L(θ,DT , T ) +R(θ, ft, T , pX̂T

)
]
. (B.9)

The optimal regularization hyperparameters were selected by performing grid search over the hyperparameter grid presented
in Table 2 with respect to the supervised loss L evaluated on the held-out validation set.

Table 2: Hyperparameter search space for regularization schemes of regression models detailed in Appendix B.1.

Hyperparameter Description Search Space

λ L2 regularization strength 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104

σt covariance scale 10−5, 10−3, 10−1, 1, 101, 103, 105

τt diagonal offset 10−5, 10−3, 10−1, 1, 101, 103, 105
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Results A comparative analysis of model performances is provided in Figure 8. We observe that both L2-regularized
and context-guided models fit the training data well. However, without additional information about the input domain,
the predictions of the L2-regularized model exhibit poor generalization and miscalibrated confidence estimates when
evaluated in new, unseen regions. In contrast, the context-guded regularizer is able to use this additional information to steer
guidance model training toward functions that seem to capture the underlying structure of the input domain more accurately.
More importantly, it also generates significantly better-calibrated uncertainty estimates. This improvement translates into
higher-quality samples when using gradients from the context-guided model for conditional sampling.
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Figure 8: Comparative analysis of predictions, uncertainty estimates, and samples generated by guidance models trained
with L2 regularization and context-guidance schemes. The training and validation sets, (see Figure 7), are depicted by
color-coded and black crosses, respectively. We display 50 samples generated by both unconditional and conditional
models, depicted as green and blue circles, respectively. The samples are generated with the same random seed and no
cherry-picking. The left panel shows the model’s mean predictions across a broader input space [−2.5, 2.5]2 ⊂ R2, with
warmer colors (red) indicating higher predicted values. The right panel shows the model’s log-variance estimates across the
same interval, serving as a measure of uncertainty, with darker regions indicating more uncertain predictons. We observe
that both L2-regularized and context-guided models fit the training data well. However, without additional information about
the input domain, the predictions of the L2-regularized model exhibit poor generalization and miscalibrated confidence
estimates when evaluated in new, unseen regions. In contrast, our context-guided approach is able to use this additional
information to steer guidance model training toward functions that seem to capture the underlying structure of the input
domain more accurately. More importantly, it also generates significantly better-calibrated uncertainty estimates. This
improvement translates into higher-quality samples when using gradients from the context-guided model for conditional
sampling.
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B.2. Graph-Structured Diffusion for Small Molecules

Dataset. We evaluate all methods on the same dataset as Lee et al. (2023), consisting of 250 000 molecules sampled
uniformly from the ZINC database of commercially available compounds (Irwin et al., 2012). Each molecule is annotated
with ground-truth labels y, defined in terms of

• the clipped and normalized negative QuickVina docking score yvina (Alhossary et al., 2015),

• the normalized synthetic accessibility (SA) score ySA (Ertl, 2003), and

• the quantitative estimate for drug-likeness (QED) score yQED (Bickerton et al., 2012).

The resulting composite objective (for which larger values indicate better performance) is given by

y =
clip(−yvina, 20, 0)

20
· 10− ySA

9
· yQED , with y ∈ [0, 1]. (B.10)

As the QuickVina docking score yvina is a function of the specific protein pocket that a molecule is docked into, all data
preparation and model training steps described in this section are repeated across five different proteins from the DUD-E
dataset (Mysinger et al., 2012) selected by Lee et al. (2023), namely PARP1 (Poly [ADP-ribose] polymerase-1), FA7
(Coagulation factor VII), 5HT1B (5-hydroxytryptamine receptor 1B), BRAF (Serine/threonine-protein kinase B-raf), and
JAK2 (Tyrosine-protein kinase JAK2). All compounds are featurized as topological molecular graphs g0, defined as tuples
g0 = (x0,a0) of node features x0 ∈ RM×F and adjacency matrices a0 ∈ RM×M , where M = 38 is the maximum number
of heavy atoms in the training set and F = 10 is the dimensionality of node features, denoting a one-hot encoding of
the element types C, N, O, F, P, S, Cl, Br, I, and NONE. Different bond types are learned by discretizing the continuous
adjacency matric a0 into bins corresponding to certain bonds, namely ai,j < 0.5 → NONE, 0.5 < ai,j < 1.5 → single,
1.5 < ai,j < 2.5→ double, ai,j > 2.5→ triple. Following Lee et al. (2023), we then order the molecules by their labels y
and split them evenly into a low-value training set and a high-value test set of 125 000 data points each, repeated for each
of the five protein targets. This experimental setup allows us to evaluate the ability of guided diffusion models trained on
molecules with low-value properties to extrapolate to and generate data points from higher-value, out-of-distribution regions.

To generate a context set x̂C for our context-guided diffusion method, an additional 500 000 unlabeled compounds were
sampled uniformly from the ZINC database and processed in the same fashion as before. A comparison of the training and
context set in terms of different molecular properties derived with RDKIT (Landrum et al., 2013) is presented in Figure 9.

200 400 600
molecular weight

0.000

0.005

0.010

0.015

0.020

0.025

Pr
ob

ab
ilit

y

10 20 30 40
number of atoms

0.00

0.01

0.02

0.03

0.04

0.05

Pr
ob

ab
ilit

y

0 5 10 15
number of H-bond acceptors

0.000

0.025

0.050

0.075

0.100

0.125

0.150

Pr
ob

ab
ilit

y

5 0 5 10
lipophilicity

0.000

0.005

0.010

0.015

0.020

0.025

0.030

Pr
ob

ab
ilit

y

0 5 10
number of H-bond donors

0.00

0.05

0.10

0.15

0.20

0.25

0.30

Pr
ob

ab
ilit

y

0 10 20
number of rotable bonds

0.00

0.02

0.04

0.06

0.08

0.10

0.12

Pr
ob

ab
ilit

y

0.0 2.5 5.0 7.5
number of aromatic rings

0.00

0.05

0.10

0.15

0.20

Pr
ob

ab
ilit

y

0 100 200
polarizable surface area

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

Pr
ob

ab
ilit

y

labeled dataset
unlabeled context points

Figure 9: Comparison of the molecular properties of the labeled training and unlabeled context sets, verifying that the latter
consists of meaningfully related yet distinct compounds and is suitable for use with our regularization scheme.
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Diffusion Models over Graphs. The Molecular Out-Of-distribution Diffusion (MOOD) framework introduced in Lee
et al. (2023) leverages diffusion models defined over the space of molecular graphs. Specifically, they employ the Graph
Diffusion via the System of Stochastic differential equations (GDSS) formalism of Jo et al. (2022), which we restate in
the following. In this framework, a molecular graph g0 is defined as a tuple g0 = (x0,a0) of node features x0 ∈ RM×F

and adjacency matrices a0 ∈ RM×M , where M is the maximum number of heavy atoms in the training set and F is the
dimensionality of the node features. Following the formalism of Song et al. (2020) outlined in Section 2, the forward
diffusion process {Gt = (Xt,At)}Tt=0 is given by

dGt = f(Gt, t) dt+ βt dBt (B.11)

and decomposes into a system of stochastic differential equations that can be modeled jointly

dXt = fX(Xt, t) dt+ βX,t dBt

dAt = fA(At, t) dt+ βA,t dBt,
(B.12)

where f(Gt, t) = [fX(Xt, t), fA(At, t)] and βt = [βX,t, βA,t]. The corresponding time reversal {Ḡt = (X̄t, Āt)}t≥0 =
{GT−t = (XT−t,AT−t)}t∈[0,T ] is given by

dḠt =
{
−f(Ḡt, T − t) + β2

T−t∇G log pT−t
(
Ḡt

)}
dt+ βT−t dBt, (B.13)

flowing backward in time and decomposing into a corresponding joint system of SDEs given by

dX̄t =
{
−fX(X̄t, T − t) + β2

X,T−t∇X log pT−t
(
X̄t, Āt

)}
dt+ βX,T−t dBt

dĀt =
{
−fA(Āt, T − t) + β2

A,T−t∇A log pT−t
(
X̄t, Āt

)}
dt+ βA,T−t dBt,

(B.14)

where∇X log pt(·) and∇A log pt(·) that are approximated by separate score networks sθX(Xt,At, t) and sθA(Xt,At, t).
To encourage the exploration of novel chemical space, Lee et al. (2023) condition the denoising process on a hyperparameter
γ ∈ [0, 1] that shrinks the unconditional gradients to explore near out-of-distribution regions around the training distribution

∇G log pt(Gt | γ) = ∇G log pt(Gt) +∇G log pt(γ | Gt)

= ∇G log pt(Gt) +∇G log
(
pt(Gt)

−√
γ
)

= (1−√γ)∇G log pt(Gt).

(B.15)

In all of our experiments, we follow Lee et al. (2023) and set
√
γ = 0.2. To additionally condition the denoising process on

desirable molecular properties, Lee et al. (2023) make use of standard guided diffusion as outlined in Section 2, specified as

∇G log pt(Gt | γ,y) = ∇G log pt(Gt) +∇G log pt(γ | Gt) +∇G log pt(y | Gt)

= (1−√γ)∇G log pt(Gt) +∇G log pt(y | Gt).
(B.16)

Here, a regression model ft(gt, θ) is used to approximate the conditional distribution pt(y | gt) ≈ exp(αtft(gt, θ))/Zt,
where αt is an adaptive guidance scale based on a hyperparameter rG,0 and given by

αG,t = rG,t
∥sθ(Gt, t)∥2

∇G log ∥βθ(Gt, t)∥2
with rG,t = 0.1trG,0 (B.17)

Combining the decomposition into a system of joint SDEs from Equation (B.14), the shrinking of the unconditional
gradients from Equation (B.15) and the guidance model formulation from Equation (B.17), the full conditional sample
generation process used by Lee et al. (2023) is given by

dX̄t = β2
X,T−t

{
1

2
X̄t + (1−√γ) sθX

(
X̄t, Āt, T − t

)
+∇X log exp

(
αX,T−tfT−t

(
X̄t, Āt; θ

))}
dt+ βX,T−tdBt

dĀt = β2
A,T−t

{
(1−√γ) sθA

(
X̄t, Āt, T − t

)
+∇A log exp

(
αA,T−tfT−t

(
X̄t, Āt; θ

))}
dt+ βA,T−tdBt

(B.18)
where the drift and diffusion coefficients of dX̄t and dĀt are determined by the variance-preserving (VP) and variance-
exploding (VE) SDE from Song et al. (2020), respectively.
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Diffusion Model Training. As in Lee et al. (2023), we adopt the pre-trained node feature and adjacency matrix score
networks sθX(xt,at, t) and sθA(xt,at, t) from Jo et al. (2022) to define our unconditional diffusion model. These networks
are built on graph multi-head attention (GMH) architectures (Baek et al., 2021) to ensure permutation-equivariance. Each
network consists of two graph attention layers with four attention heads of hidden dimension 16 and tanh activation
functions, followed by a multi-layer perceptron output head with three layers, each of dimension 82 and eLU activation
functions (Clevert et al., 2015). The node feature SDE is based on the variance-preserving SDE from Song et al. (2020),
using a linear β-schedule (βX,0 = 0.1, βX,T = 1). In contrast, the adjacency matrix SDE uses the variance-exploding SDE
also from Song et al. (2020), with an exponential β-schedule (βA,0 = 0.2, βA,T = 1). Both models employ T = 1000
discretization steps. It’s important to note that the unconditional score networks from (Jo et al., 2022) were trained on an i.i.d
85%-15% training-validation split of our dataset, meaning that they may have been optimized using part of the high-property
validation set also used for training other guidance models. However, this is not an issue as (a) the unconditional diffusion
model was trained without access to label infomration, (b) we only use the validation set for hyperparameter optimization,
and (c) the vast search space ensures that most generated compounds are neither in the training nor the validation set
(see Appendix B.6 for a detailed analysis).

Guidance Model Training. For training the guidance models ft(·; θ), we use the graph convolutional neural network
(GNN) architecture from Lee et al. (2023), consisting of 3 GCN layers with 16 hidden units and tanh activations (Kipf
& Welling, 2016). The embeddings from each layer are concatenated and fed into two fully connected heads with tanh
and sigmoid activations, respectively, whose outputs of dimension 16 are then multiplied and fed into another two-layer
MLP with the same dimension and RELU activation functions (Nair & Hinton, 2010). We train separate networks
for each protein target, predicting both the most likely regression label µt(gt; θ) = f1

t (gt; θ), as well as log-variances
logσ2

t (gt; θ) = f2
t (gt; θ) that serve as an estimator of their predictive uncertainty. Given the regression labels y, the

models are optimized with respect to a negative log-likelihood loss Lt = − logN (y;µt,σ
2
t I) Following the protocol of

Lee et al. (2023), all models are trained for 10 epochs of stochastic gradient descent, using the ADAM optimizer with a
batch size of 1024 and a learning rate of 1× 10−3 (Kingma & Ba, 2014). The corresponding objective L with an explicit
L2 regularization term is given by

L(θ,DT ) =̇ EpT
[
− logN (y;µT ,σ

2
T I)

]
+

1

2λ
||θ||22, (B.19)

where the regularization strength λ is optimized as a hyperparameter. For weight decay regularization, we instead switch to
the ADAMW optimizer (Loshchilov & Hutter, 2017) and optimize the corresponding hyperparameter. Similarly, we train
context-guided models by adding the additional regularization term R(θ, ft, t, pX̂t

) as introduced in Section 3:

R(θ, ft, t, pX̂t
) = EpX̂t

[∑2

j=1

(
f
(j)
t (ĝt; θ)−mt(ĝt)

)⊤
Kt(ĝt)

−1
(
f
(j)
t (ĝt; θ)−mt(ĝt)

)]
, (B.20)

Here, ĝt is a context batch sampled from an out-of-distribution context set of 500 000 unlabeled molecules that were
randomly sampled from ZINC and processed identically to the training data. As described in Section 3, we use a randomly
initialized set of parameters ϕ to generate 16-dimensional context set embeddings ht(ĝt, ϕ) ∈ RM×16 and use them to
construct the covariance matrix

Kt(ĝt) = σtht(ĝt, ϕ)ht(ĝt, ϕ)
T + τtI.

Since the model returns mean and log-variance estimates f1
t (ĝt; θ) and f2

t (ĝt; θ), the target function values mt(ĝt) are
given by the training set mean m1

t (ĝt) = mean(y) and a log-variance hyperparameter m2
t (ĝt) = σ2

0 , respectively. The
latter is set to σ0 = 0.7, chosen to induce high predictive uncertainty estimates of exp(σ2) ≈ 2 in out-of-distribution
regions of the input domain. The resulting training objective is

L∗(θ,DT ) = EpT
[
L(θ,DT , T ) +R(θ, fT , T , pX̂T

)
]
. (B.21)

The covariance scale σt and diagonal offset τt are optimized as hyperparameters. To avoid overconfident predictions as
context points approach the invariant distribution N (0, I), we increase τt with the same schedule as the noise scales βt,
starting from β0 = τt and ending at βT = 10τt. Similarly, as the distinction between in- and out-of-distribution becomes
meaningless at larger noise levels, we decrease σt with an inverted schedule starting from β0 = σt and ending at βT = 0.1σt.
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The deep ensembles (Lakshminarayanan et al., 2017) comprise 5 independent models regularized with weight decay, which
is optimized as a hyperparameter. The pre-trained model was optimized with a self-supervised denoising objective, which
has been shown to be an effective pre-training method Zaidi et al. (2023). It was trained on all 500,000 unlabeled molecules
from the context set for 50 epochs with the AdamW optimizer (Loshchilov & Hutter, 2017), using a batch size of 1024, a
learning rate of 10−4, and a weight decay of 10−4. After pre-training, this model was fine-tuned on with weight decay.

All regularization hyperparameters were optimized with respect to the supervised loss L on the held-out, high-label test set
by performing a grid search over the hyperparameter space presented in Table 3. The best hyperparameter combination was
then selected and used to re-train five independent models using different random seeds.

Table 3: Hyperparameter search space for regularization schemes of regression models detailed in Appendix B.2.

Description Hyperparameter Search Space

L2 regularization λ 10−4, 10−3, 10−2, 10−1, 1, 101, 102, 103, 104

Single model with weight decay λ 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5

Fine-tuning with weight decay λ 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5

Ensemble with weight decay λ 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5

Context Guidance
covariance scale σt 10−5, 10−3, 10−1, 1, 101, 103

diagonal offset τt 10−5, 10−3, 10−1, 1, 101, 103

number of context points 256, 512

After retraining five independent guidance models with the best regularization hyperparameters for each of the five different
proteins, we use the gradients from these models to condition the denoising process. Following Lee et al. (2023), we set
the guidance strength hyperparameters to rX,0 = 0.5 and rG,0 = 0, respectively, and sample 3000 molecules each. The
SA (Ertl, 2003) and QED (Bickerton et al., 2012) scores for these new molecules are derived with RDKIT (Landrum et al.,
2013), while the docking score is derived with a QUICKVINA script (Alhossary et al., 2015) prepared by Lee et al. (2023).

Additional Experimental Results. We repeat the heasline results from Section 5.1 in Figure 10; following (Lee et al.,
2023), we present the top 5% of normalized docking scores of compounds that are drug-like (ySA < 5 and yQED > 0.5)
and novel (Tanimoto similarity of < 0.4 to the training set (Bajusz et al., 2015)). We also show the percentage of different
compounds that would be classified as hits with the thresholds defined in Lee et al. (2023) in Figure 11. In addition to the
main metrics from Lee et al. (2023), we also present the full distributions of:

• The objective y =
clip(−yvina,20,0)

20 · 10−ySA
9 · yQED in Figure 12.

• The clipped and normalized negative QUICKVINA score clip(−yvina,20,0)
20 in Figure 13.

• The normalized synthetic accessibility (SA) score 10−ySA
9 in Figure 14.

• The quantitative estimate of drug-likeness (QED) score yQED in Figure 15.

Furthermore, we normalize the scores of the generated compounds by their molecular weight and present the corresponding
results in Figure 16, ensuring the performance differences are not caused by the bias of the docking score toward larger
molecules. Finally, we show the same models trained on noisy labels ȳ = y · ϵ where ϵ ∼ N (0, I) in Figure 17. Finally, the
full distribution of models trained on an 85%-15% i.i.d. split is presented in Figure 18.
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Figure 10: Comparison of the samples generated with different guided diffusion models across five distinct protein targets
using the normalized top-5% docking score of novel and drug-like compounds as in Lee et al. (2023).
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Figure 11: The percentage of small molecules denoted as hits using the thresholds from Lee et al. (2023), given by an
unnormalized negative docking score of 10 for PARP1, 8.5 for FA7, 8.7845 for 5HT1B, 9.1 for JAK2, and 10.3 for BRAF.
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Figure 12: Full distributions of the objective values y of all generated compounds for each protein target across five
independent training and sampling runs with different random seeds. These results mirror those in Figures 4 and 10.
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Figure 13: Full distributions of the clipped and normalized negative QUICKVINA docking score yvina (Alhossary et al.,
2015) of all generated compounds for each protein target across five independent training and sampling runs with different
random seeds. These results mirror those in Figures 4 and 10.
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Figure 14: Full distributions of the normalized synthetic accessibility (SA) score ySA (Ertl, 2003) of all generated compounds
for each protein target across five independent training and sampling runs with different random seeds. These results mirror
those in Figures 4 and 10.
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Figure 15: Full distributions of the quantitative estimate for drug-likeness (QED) score yQED of all generated compounds
for each protein target across five independent training and sampling runs with different random seeds. These results mirror
those in Figures 4 and 10.
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Figure 16: Full distributions of the objective values y of all generated compounds normalized by their molecular weight for
each protein target across five independent training and sampling runs with different random seeds. These results mirror
those in Figures 4 and 10.
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Figure 17: Full distributions of the objective values y of all generated compounds when models are trained on noised labels
ȳ = y ·ϵ with added noise ϵ ∼ N (0, I), across five independent training and sampling runs with different random seeds.
These results mirror those in Figures 4 and 10.
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Figure 18: Full distributions of the objective values y of all generated compounds when guidance models that are trained
on an 85%-15% i.i.d. random split, across five independent training and sampling runs with different random seeds. As
expected, the deep ensembles and pre-trained methods perform particularly well in this setting. Interestingly, the performance
of our domain-aware guidance method stays approximately the same between the random and label-split evaluation settings.
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Comparison to Unsupervised Domain Adaptation Techniques. In addition to the models presented above, we also
compare our method to guidance functions that are regularized with three robust and well-established unsupervised domain
adaptation techniques, namely:

• DEEPCORAL: a method that aligns the feature distributions of the last-layer guidance model embeddings across the
labeled data and context set through an auxiliary loss term (Sun & Saenko, 2016).

• Domain-Adversarial Neural Networks (DANN): a gradient-reversal approach that aligns the labeled data and context
set embeddings by subtracting the gradients of a linear domain classifier from those of the guidance model (Ganin
et al., 2016).

• DOMAIN CONFUSION: a method that tries to learn domain-invariant representations by maximizing the predictive
entropy of an adversarially trained domain classifier (Tzeng et al., 2015).

We adapted the DEEPCORAL and DANN implementations from the DrugOOD library (Ji et al., 2023) and implemented
the DOMAIN CONFUSION models from scratch, closely following the description in Tzeng et al. (2015). All models were
evaluated with the same training, hyperparameter selection, and sample generation protocols as in Appendix B.2, using the
domain adaptation hyperparameter search spaces presented in Table 4.

Table 4: Hyperparameter search space for the unsupervised domain adaptation algorithms.

Method Hyperparameter Search Space

DEEPCORAL loss weight λ 10−2, 5× 10−2, 10−1, 5× 10−1, 1, 5, 101, 5× 101, 102

DANN reversal factor α 10−2, 5× 10−3, 10−3, 5× 10−4, 10−4, 5× 10−5

DOMAIN CONFUSION loss weight λ 10−2, 5× 10−2, 10−1, 5× 10−1, 1, 5, 101, 5× 101, 102

The resulting performance metrics for the first three protein targets from Lee et al. (2023) (PARP1, FA7, and 5HT1B) are
presented in Table 5. While these methods consistently outperform the guidance models trained with standard approaches
such as L2 regularization and weight decay, they still perform considerably worse than our approach. One possible
explanation for this performance gap is that the DEEPCORAL, DANN, and DOMAIN CONFUSION methods only act on the
embedding space of a guidance model without considering the behavior of its predictions. In contrast, our context-guided
approach directly regularizes the model’s predictions, encouraging it to learn functions that revert to an uninformative prior
in regions that are far from the training data. This allows our method to better capture the underlying structure of the data
and improves its robustness in out-of-distribution settings.

Table 5: Performance comparison of our method against guidance models regularized with unsupervised domain adaptation
techniques (DEEPCORAL, DANN, and DOMAIN CONFUSION) and standard regularization approaches (WEIGHT DECAY)
on the first three protein targets from Lee et al. (2023) (PARP1, FA7, and 5HT1B). Our context-guided regularization scheme
outperforms all domain adaptation techniques while maintaining comparable computational efficiency. Results are reported
as the mean and standard deviation across five independent training and sampling runs with different random seeds. The
best results for each target are shown in bold.

Regularizer Average batch time (s) PARP1 (↑) FA7 (↑) 5HT1B (↑)

Ours 0.08±0.00 0.64±0.01 0.47±0.00 0.60±0.03

DEEPCORAL 0.08±0.00 0.36±0.01 0.32±0.00 0.35±0.04

DANN 0.07±0.00 0.37±0.07 0.27±0.03 0.34±0.07

DOMAIN CONFUSION 0.08±0.00 0.40±0.01 0.30±0.01 0.38±0.01

WEIGHT DECAY 0.02±0.00 0.31±0.00 0.26±0.01 0.31±0.01
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Context Set Sensitivity Studies. As the context set provides our method with structured information about a broader
subset of the input domain, we found that its size and composition are key factors in determining model performance. To
investigate this relationship, we carried out a series of sensitivity studies for the fist three protein targets from Lee et al.
(2023) (PARP1, FA7, and 5HT1B). All experiments were performed with the same experimental setup, hyperparameter
search space, and evaluation protocol as described in Appendix B.2, differing only in the choice of context set. The full
results are presented in Table 6

First, we compare the performance of a model trained with the full context set (100%) to models trained with randomly
sampled subsets of size 10% and 1%, respectively. Mirroring the results from Section 5.2, we observe a strong deterioration
in performance across these settings, with the performance of the models trained with the smallest context set (1%) reverting
to that of models trained with standard weight decay.

To explore whether an even larger and more diverse context set could lead to further performance gains, we trained an
additional set of models using the 665k biologically and pharmaceutically relevant molecules from the QMUGS dataset (Isert
et al., 2022), originally curated from the CHEMBL database (Gaulton et al., 2017). While we observe some performance
improvements, they are relatively marginal, indicating that our original context set was likely already at or past the point of
diminishing returns regarding its size.

Finally, we performed an additional sensitivity study for which we selected the 10% of molecules in the original context set
that were either most or least similar to the labeled training data (as measured by their maximum ECFP4-based Tanimoto
similarity, calculated with rdkit (Landrum et al., 2013)). We note that the average maximum Tanimoto similarity between
these context sets and the training data is still relatively low, at 0.42± 0.06 and 0.31± 0.04, respectively. We observe that
using a much smaller context set with near-OOD molecules (most similar 10%) is able to recover the performance of using
the full context set (100%), while relying on less relevant molecules (least similar 10%) leads to worse performance than a
random subsample (10%).

Table 6: Impact of the size and composition of the context set on the performance of our proposed regularizer for the small
molecules application presented in Section 5.1. We compare the full context set (100%) to randomly sampled subsets (10%
and 1%), as well as subsets of the original context set containing the 10% of molecules that are either most or least similar
to the labeled training data. We additionally train models with an even larger and more diverse context set derived from
QMUGS (Isert et al., 2022). Results are reported as the mean and standard deviation across five independent training and
sampling runs with different random seeds.

Regularizer parp1 (↑) fa7 (↑) 5ht1b (↑)

ours (100%) 0.64±0.01 0.47±0.00 0.60±0.03

ours (10%) 0.54±0.01 0.45±0.00 0.44±0.04

ours (1%) 0.37±0.07 0.27±0.03 0.30±0.07

ours (QMUGS) 0.69±0.02 0.47±0.00 0.62±0.02

ours (most similar 10%) 0.66±0.01 0.45±0.01 0.59±0.01

ours (least similar 10%) 0.51±0.02 0.32±0.04 0.42±0.01

weight decay 0.31±0.00 0.26±0.01 0.31±0.01
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B.3. Equivariant Diffusion for Materials.

Dataset. We build on the experimental setup from Weiss et al. (2023) and use a dataset of all 34071 cata-condensed
polybenzenoid hydrocarbons (cc-PBHs) with up to 11 benzene rings (Wahab et al., 2022). In contrast to the setup
in Section 5.1 and Appendix B.2, which uses a subset of the billions of compounds from the ZINC database (Tingle et al.,
2023) to represent the broader chemical space of up to 1× 1060 drug-like small molecules (Bohacek et al., 1996; Ertl, 2003),
this application operates in a closed and fully enumerated input space. This allows us to construct data splits that precisely
control how much generalization is required to reach held-out regions with optimal objective values.

Starting from the GFN2-xTB optimized ground-state cc-PBH structures, we adopt the graph-of-rings representation from
Weiss et al. (2023), representing a compound with R rings as a point cloud of ring centroids xt ∈ RR×3. While computing
electronic properties requires 3D representations, much of the combinatorial structure of this data persists in 2D topological
graphs. We thus generate extended reduced graph fingerprints (Stiefl et al., 2006) in RDKIT (using a fuzziness increment
of 0 and a maximum path length of 50), which correspond to a 2D equivalent of the 3D graph-of-rings framework. These
fingerprints are binarized and compared via the Jaccard-Tanimoto kernel (Bajusz et al., 2015) to measure pairwise similarities.
This enables us to cluster the dataset and derive maximally distinct training, validation, test, and context sets (Figure 19).
Since the framework of Weiss et al. (2023) only generates compounds with a predetermined number of rings R and 75% of
the dataset consists of molecules with R = 11, we split the data as follows: All compounds with R < 11 are used as part of
an out-of-distribution context set. The remaining compounds are split into 3 groups using spectral clustering (scikit-learn)
(Pedregosa et al., 2011). The largest cluster of 16 973 compounds is used as the training set. The second largest cluster of
4538 compounds is used as the held-out test set. The smallest cluster of 3883 compounds is used as the validation set for
hyperparameter selection and early stopping. When training models with our context-guided regularization scheme, we use
either all molecules with R < 11 as a reduced context set or all compounds not in the training set as a full context set

Figure 19: UMAP dimensionality reduction plots (McInnes et al., 2018) of the cc-PBH dataset using extended reduced graph
fingerprints (Stiefl et al., 2006) and the Jaccard-Tanimoto distance. Left: Points are color-coded according to whether they
belong to the out-of-distribution context set with fewer than 11 rings or the training, validation, and test set. Right: The same
points, color-coded according to the composite objective used by Weiss et al. (2023) and defined as y = 3yHLG +yIP −yEA.
Lower values indicate more desirable properties and are, for R = 11, concentrated in the cluster used as a held-out test set.

Each molecule in the dataset used by Weiss et al. (2023) is annotated with five electronic properties: LUMO energy (yLUMO),
HOMO-LUMO gap (yHLG), relative energy (yREL), adiabatic ionization potential (yIP), and adiabatic electron affinity (yEA)
(Wahab et al., 2022). The full property distributions for each data split are shown in Figure 20. Conveniently, the held-out
test set cluster contains compounds with significantly better yHLG, yIP, and yEA values than the training set, which are the
properties used to define the composite objective in Weiss et al. (2023), as is also apparent in Figure 19.
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Figure 20: The full electronic property distributions for each data split.

Diffusion Model Training. Following Weiss et al. (2023), we train an E(3)-equivariant diffusion model (EDM; Hooge-
boom et al. (2022)) on the graph-of-rings-derived point clouds xt ∈ RR×3. Both the forward noising and reverse denoising
process outlined in Section 2 are made equivariant to permutations, translations, rotations, and reflections by using an E(3)-
equivariant graph neural network (E(3)-GNN) (Satorras et al., 2021) as the score model and redefining a translation-invariant
noising process in the linear subspace of

∑
i xi = 0 (Hoogeboom et al., 2022).

We optimized the resulting equivariant diffusion model on the 16 973 compounds in the training set using the same
hyperparameter settings as in Weiss et al. (2023). Specifically, the score network sθ(xt, t) is given by a 9-layer E(3)-GNN
with 192 hidden units and tanh activations. It is trained for 1000 epochs with the ADAM optimizer (Kingma & Ba, 2014)
using a learning rate of 1× 10−3, a batch size of 256, and a small weight decay hyperparameter of 10−12. The diffusion
process is given by a cosine βt schedule (Nichol & Dhariwal, 2021) with T = 1000 time-steps, and β0 = 0 and βT = 1.
Due to the reduced problem space of the graph-of-rings representation, we find that the vast majority of generated point
clouds (≥ 99%, as in Weiss et al. (2023)) correspond to valid molecules and can be parsed by RDKIT (Landrum et al., 2013).

Guidance Model Training. Similar to the score network, the guidance model uses a 12-layer E(3)-GNN architecture
with 192 hidden units and tanh activations, matching the model hyperparameters from Weiss et al. (2023). These models
are trained using the ADAM optimizer (Kingma & Ba, 2014) for up to 1000 epochs with a learning rate of 6× 10−4 and
batch size of 256, stopping if the validation set performance deteriorates for more than 10 consecutive epochs.

As in Weiss et al. (2023), we train these models as multi-property prediction networks, outputting both the regression mean
µt(x̂t; θ) = f1

t (x̂t; θ) and log-variance logσ2
t (x̂t; θ) = f2

t (x̂t; θ) for all five properties yHLG, yIP, yLUMO, yREL, and yEA.
Given the true regression labels y, the models are trained by minimizing to a negative log-likelihood loss across these five
properties Lt = − logN (y;µt,σ

2
t I).
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The corresponding objective L with an explicit L2-regularization term is given by

L(θ,DT ) =̇ EpT
[
− logN (y;µT ,σ

2
T I)

]
+

1

2λ
||θ||22, (B.22)

where the regularization strength λ is optimized as a hyperparameter. Similarly, models are regularized with weight decay
by switching to the ADAMW optimizer (Loshchilov & Hutter, 2017) and optimizing the corresponding hyperparameter.
Context-guided models are trained with the regularization term R(θ, ft, t, pX̂t

) as introduced in Section 3

R(θ, ft, t, pX̂t
) = EpX̂t

[∑2

j=1

(
f
(j)
t (x̂t; θ)−mt(x̂t)

)⊤
Kt(x̂t)

−1
(
f
(j)
t (x̂t; θ)−mt(x̂t)

)]
, (B.23)

where x̂t ∼ pX̂t
(x̂t) is a context batch sampled from either the full context set covering all compounds not in the training set,

or the reduced context set containing only compounds with fewer than 11 rings (see Figure 19). As described in Section 3,
we use a randomly initialized parameter set ϕ to generate 196-dimensional context set embeddings ht(x̂t, ϕ) ∈ RM×196

from the E(3)-GNN’s last layer and use them to construct the covariance matrix

Kt(x̂t) = σtht(x̂t, ϕ)ht(x̂t, ϕ)
T + τtI.

Since the model predicts means and log-variances f1
t (x̂t; θ) and f2

t (x̂t; θ), the target function values mt(x̂t) are given by
the training set mean and a log-variance hyperparameter m2

t (x̂t) = σ2
0 , respectively. The latter is set to σ0 = 1, chosen

to induce high predictive uncertainty estimates of exp(σ2) ≈ e in out-of-distribution regions of the input domain. The
resulting training objective is

L∗(θ,D) = EpT
[
L(θ,DT , T ) +R(θ, fT , T , pX̂T

)
]
. (B.24)

The covariance scale σt and diagonal offset τt are optimized as hyperparameters. To avoid overconfident predictions as
context points approach the invariant distribution N (0, I), we increase τt with the same schedule as the noise scales βt,
starting from β0 = τt and ending at βT = 10τt. Similarly, as the distinction between in- and out-of-distribution becomes
meaningless at larger noise levels, we decrease σt with an inverted schedule starting from β0 = σt and ending at βT = 0.1σt.
The regularization hyperparameters are optimized via grid search on the held-out validation set, using the supervised loss L
as the performance metric. The grid search was over the hyperparameter space shown in Table 7. The best hyperparameter
combination was selected and used to re-train ten independent models with different random seeds.

Table 7: Hyperparameter search space for regularization schemes of regression models detailed in Appendix B.3.

Description Hyperparameter Search Space

L2 regularization λ 10−3, 10−2, 10−1, 1, 101, 102, 10−3

Weight decay λ 10−8, 10−7, 10−6, 10−5, 10−4, 10−3, 10−2, 10−1, 0.5

Context Guidance
covariance scale σt 10−2, 10−1, 1, 101, 10−2

diagonal offset τt 10−2, 10−1, 1, 101, 10−2

number of context points 16, 64, 256

After retraining ten independent guidance models for each regularization type, their predictions for the HOMO-LUMO gap
(yHLG), adiabatic ionization potential (yIP), and adiabatic electron affinity (yEA) properties were used to define the composite
objective y = 3yHLG +yIP −yEA. The resulting gradients were then used to guide the generation of 512 samples each,
using an additional guidance scale s

∇X log pt(xt | y) = ∇X log pt(xt) +∇X log pt(y | xt)s = sθ(xt, t) + s · ∇X log ft(xt; θ)

Additional Experimental Results. In addition to the objective values in Figure 5, we also calculate the proportion of
generated samples that are (1) valid and novel (i.e. not in the training set) in Figure 21 and (2) valid and unique (i.e. only
generated once) in Figure 22. Together with Figure 5, the results suggest that as guidance strength increases, our method
generates more novel molecules with better objective values, yet less diversity. This may be explained by stronger guidance
signals causing the denoising process to converge to the same high-value subsets of the input domain.
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Figure 21: Performance comparison of guidance models with different regularization schemes across ten independent
training and sampling runs. The proportion of compounds that are both valid and novel (i.e. not in the training set) is
computed for each run and aggregated across random seeds.
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Figure 22: Performance comparison of guidance models with different regularization schemes across ten independent
training and sampling runs. The proportion of compounds that are both valid and unique (i.e. only generated once) is
computed for each run and aggregated across random seeds.
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B.4. Discrete Diffusion for Protein Sequences.

Dataset. We use the same antibody sequence dataset as Gruver et al. (2023), consisting of approximately 100 000 paired
heavy and light chain sequences from the OAS and SABDAB databases (Olsen et al., 2022; Dunbar et al., 2014) aligned
with ANARCI (Dunbar & Deane, 2016) and padded to length 300. We focus on the synthetic-label applications presented
by Gruver et al. (2023), namely the single-objective optimization of a protein’s solvent-accessible surface area (SASA)
and percentage of beta sheets. In the following experiments we optimize the latter, using code from Gruver et al. (2023)
and the BIOPYTHON library (Cock et al., 2009) to derive the labels y. Similar to Appendices B.2 and B.3, we split the
data into a low-property training set and a high-property validation set to optimize for hyperparameters that perform well in
label-shifted, out-of-distribution settings. Additionally, a random subsample of a third of the dataset is split off as a held-out
unlabeled context set for our context-guided method, ordering the remaining two-thirds by their labels y and splitting them
in half to generate the low-value training and high-value validation sets.

Diffusion and Guidance Model Training. In contrast to Sections 5.1 and 5.2, the guidance model of Gruver et al. (2023)
is not a standalone model, but rather a regression head of the diffusion model’s score network, trained jointly with the
denoising objective. Specifically, a masked language model (Austin et al., 2021) learns sequence embeddings, from which
two MLPs estimate the score and properties. Following Gruver et al. (2023), we use a BERT-based transformer backbone
(Bhargava et al., 2021; Devlin et al., 2018) with 4 layers and 512 hidden units. The score head is a single linear layer, while
the property prediction head is a feedforward network with one 512-unit hidden layer and tanh activations. This model is
trained for 500 epochs with ADAMW (Loshchilov & Hutter, 2017), using a batch size of 128 and a learning rate of 5× 10−4

with a 10-step linear warmup schedule. The noising process is given by a discrete formulation from Gruver et al. (2023),
using cosine βt schedule (Nichol & Dhariwal, 2021) with T = 1000 time-steps, and β0 = 0 and βT = 1.

We train the regression head to estimate both the regression mean µt(x̂t; θ) = f1
t (x̂t; θ) and log-variance logσ2

t (x̂t; θ) =
f2
t (x̂t; θ). Given the true regression labels y, the property prediction model is optimized with respect to the corresponding

negative log-likelihood loss:
L = − logN (y;µT ,σ

2
T I)

Following (Gruver et al., 2023), we take one gradient step with respect to L for every 5 gradient steps with respect to the
score matching objective, logging the validation loss every 5 epochs and loading the best checkpoint for sample generation.
We train L2-regularized models by augmenting the supervised objective L with an explicit L2 penalty

L(θ,DT ) =̇ EpT
[
− logN (y;µT ,σ

2
T I)

]
+

1

2λ
||θ||22, (B.25)

where the regularization strength λ is optimized as a hyperparameter. Similarly, models are regularized with weight decay
by switching to the ADAMW optimizer (Loshchilov & Hutter, 2017) and optimizing the corresponding hyperparameter.

Context-guided models are trained by adding the additional regularization term R(θ, ft, t, pX̂t
) given by

R(θ, ft, t, pX̂t
) = EpX̂t

[∑2

j=1

(
f
(j)
t (x̂t; θ)−mt(x̂t)

)⊤
Kt(x̂t)

−1
(
f
(j)
t (x̂t; θ)−mt(x̂t)

)]
, (B.26)

where x̂t ∼ pX̂t
(x̂t) is a context batch sampled from the unlabeled context set split off as detailed before. As described

in Section 3, we use a randomly initialized parameter set ϕ to generate 512-dimensional context set embeddings ht(x̂t, ϕ) ∈
RM×512 from the last layer of the regression head and use them to construct the covariance matrix

Kt(x̂t) = σtht(x̂t, ϕ)ht(x̂t, ϕ)
T + τtI.

Since the model predicts mean and log-variance estimates f1
t (x̂t; θ) and f2

t (x̂t; θ), the target function values mt(x̂t) are
given by the training set mean and a log-variance hyperparameter m2

t (x̂t) = σ2
0 , respectively. The latter is set to σ0 = 1,

chosen to induce high predictive uncertainty estimates of exp(σ2) ≈ e in out-of-distribution regions of the input domain.
The resulting training objective is

L∗(θ,D) = EpT
[
L(θ,DT , T ) +R(θ, fT , T , pX̂T

)
]
. (B.27)

The covariance scale σt and diagonal offset τt are optimized as hyperparameters. To avoid overconfident predictions as
context points approach the invariant distribution N (0, I), we increase τt with the same schedule as the noise scales βt,
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starting from β0 = τt and ending at βT = 10τt. Similarly, as the distinction between in- and out-of-distribution becomes
meaningless at larger noise levels, we decrease σt with an inverted schedule starting from β0 = σt and ending at βT = 0.1σt.

At sampling time, Gruver et al. (2023) generate sequences using a grid of denoising hyperparameters and examine the
resulting Pareto front of objective values versus “naturalness” i.e. how likely a sequence is to be synthesizable, estimated by
its likelihood under a protein language model (Ferruz et al., 2022). We use same hyperparameter grid (presented in Table 8),
generating samples with five independently trained models with different random seeds.

Table 8: Hyperparameter search space for regularization schemes of regression models detailed in Appendix B.4.

Hyperparameter Description Sampling Range

λ strength of naturalness regularization 101, 1, 10−1, 10−2, 10−3

η step size of Langevin dynamics update 1.0

K number of steps used to update embedding 10

guidance layer which embedding to use for update first

return best return samples with best guidance model predictions true

Additional Experimental Results. In addition to the Pareto front of the generated samples shown in Figure 6, we follow
Gruver et al. (2023) and also visualize the full distribution of generated samples by plotting their kernel density estimates.
The results are presented in Figure 23, mirroring the conclusions drawn from the analysis of the Pareto front.
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Figure 23: Kernel density estimates (KDE) of all samples generated with different regularization schemes and sampling
hyperparameters, using the standard KDE parameters of the SEABORN plotting library (Waskom, 2021) and five density
isocontours each. Similar to the Pareto front, this highlights the trade-off between objective value and naturalness. As
samples move away from the training data and enter an out-of-distribution regime, our method consistently generates
sequences with better properties at the same level of naturalness.
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B.5. Runtime Comparison.

We quantify computational cost as the average execution time per mini-batch iteration, including data loading, model
forward passes, backpropagation, and parameter updates. Figure 24 compares regularization schemes for the application
in Section 5.1 across 5 model training runs. Figure 25 shows the same comparison for the experiments in Section 5.3. All
models were trained with an identical setup and on the same NVIDIA A100 GPUs, differing only in the regularizer.

When training a standard guidance model, as in Lee et al. (2023), we observe that the added computational cost at training
time is roughly equivalent to training a deep ensemble with M = 5 models (Figure 24). However, we note that our method
does not induce any additional cost at inference, i.e., sampling time. When training the score and guidance models jointly
and only updating the latter every 5 steps, as in Gruver et al. (2023), we observe that the increase in computational cost
becomes negligible (Figure 25).
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Figure 24: Average batch times of models from Section 5.1 trained with an identical setup and on the same GPUs.
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Figure 25: Average batch times of models from Section 5.3 trained with an identical setup and on the same GPUs.
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B.6. Similarity of the Generated Samples to the Training and Validation Sets.

As our experimental setups select regularization hyperparameters based on an out-of-distribution validation set with more
desirable properties than the training data, it is important to verify that the models do not simply generate molecules from the
high-value validation set. The results are presented below and demonstrate that guidance model trained with our regularizer
do not simple generate molecules from the validation set, but are instead learning to sample molecules with improved
properties from novel subsets of the input domain.

B.6.1. GRAPH-STRUCTURED DIFFUSION FOR SMALL MOLECULES

To investigate this, we computed the maximum ECFP4-based (Rogers & Hahn, 2010) Jaccard-Tanimoto similarity of the
molecules generated by our model in Section 5.1 to any compound in the training and validation sets, respectively. The
results are provided in Table 9 and show that the similarities are consistently low and comparable across the training and
validation sets (a threshold of 0.7 is often used to indicate molecules as closely related).

Table 9: Maximum extended-connectivity fingerprint (ECFP4; Rogers & Hahn (2010))-based Tanimoto similarity (Bajusz
et al., 2015) of the small molecules generated in Section 5.1 to compounds in the training and validation sets. Means and
standard deviations are reported across five independent training and sampling runs with different random seeds.

Set PARP1 FA7 5HT1B BRAF JAK2

Training Set 0.33± 0.09 0.35± 0.08 0.35± 0.08 0.37± 0.07 0.36± 0.08

Validation Set 0.33± 0.09 0.36± 0.09 0.37± 0.09 0.39± 0.10 0.38± 0.09

B.6.2. EQUIVARIANT DIFFUSION FOR MATERIALS

Similarly, we investigated the distribution of generated molecules across the training, validation, and test sets of the materials
design experiments from Section 5.2. As this experimental setup operates in an exhaustively enumerated search space, we
compare the proportions of generated samples across all sets with both unguided and weight decay-regularized baselines.
We use a guidance scale of 4, as this is the setting in which both guided diffusion models perform best (see Figure 5). We
observe that our model generates a similar proportion of molecules from the medium-value validation set as the weight
decay-regularized baseline, while producing substantially more compounds from the completely held-out high-property test
set.

Table 10: Distribution of generated molecules across the training, validation, and test sets for the materials science
experiments in Section 5.2. Means and standard deviations are reported across ten independent training and sampling runs
with different random seeds.

Model ratio in training set ratio in validation set ratio in test set

Unguided 0.91± 0.01 0.05± 0.00 0.04± 0.00

Weight Decay 0.49± 0.07 0.32± 0.05 0.19± 0.03

Ours 0.19± 0.03 0.39± 0.05 0.46± 0.06
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