
Published as a conference paper at ICLR 2025

GENEX: GENERATING AN EXPLORABLE WORLD

Taiming Lu, Tianmin Shu, Alan Yuille, Daniel Khashabi, Jieneng Chen
Johns Hopkins University
jchen293@jhu.edu

ABSTRACT

Understanding, navigating, and exploring the 3D physical real world has long
been a central challenge in the development of artificial intelligence. In this work,
we take a step toward this goal by introducing GenEx, a system capable of plan-
ning complex embodied world exploration, guided by its generative imagination
that forms expectations about the surrounding environments. GenEx generates
high-quality, continuous 360-degree virtual environments, achieving high loop
consistency and active 3D mapping over extended trajectories. Leveraging gen-
erative imagination, GPT-assisted agents can undertake complex embodied tasks,
including goal-agnostic exploration and goal-driven navigation. Agents utilize
imagined observations to update their beliefs, simulate potential outcomes, and
enhance their decision-making. Training on the synthetic urban dataset GenEx-
DB and evaluation on GenEx-EQA demonstrate that our approach significantly
improves agents’ planning capabilities, providing a transformative platform to-
ward intelligent, imaginative embodied exploration.

Website https://www.GenEx.world/

Code https://github.com/Beckschen/GenEx

ArXiv https://arxiv.org/abs/2412.09624
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Figure 1: GenEx explores an imaginative world, created from a single RGB image and brought to life as
a generated video (top). With interactive and diverse generation, GenEx enables an agent to imaginatively
explore a large-scale 3D world and acquire imagined observation to augment embodied intelligence (bottom).
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1 INTRODUCTION

Humans navigate and interact with the three-dimensional world by perceiving their surroundings,
taking actions, and engaging with others. Through these interactions, they form mental models to
simulate the world (Johnson-Laird, 1983). These models allow for internal representations of reality,
aiding reasoning, problem-solving, and prediction through language and imagery.

In parallel, this understanding of natural intelligence has inspired the development of artificial in-
telligence systems that create computational analogs of mental models (Ha & Schmidhuber, 2018;
LeCun, 2022; Diester et al., 2024). These world models (WMs) (Ha & Schmidhuber, 2018; LeCun,
2022) aim to mimic human understanding and interaction by predicting future world states (e.g., the
existence, properties and location of the objects in a scene) to help agents make informed decisions.
Recently, generative vision models (Ho et al., 2020; OpenAI, 2024; Bai et al., 2024) have increased
interest in developing world models for predictive simulation of the world (Du et al., 2024a; Yang
et al., 2024b;c; Wang et al., 2024a). However, these works focus solely on state transition probabil-
ities without explicitly modeling agents’ observations and beliefs. Explicitly modeling observation
and belief is crucial because we often deal with partially observable environments where the true
world state is unknown. An embodied agent is inherently a POMDP agent (Kaelbling et al., 1998):
instead of full observation, the agent has only partial observations of the environment. To make ra-
tional decisions, the agent must form a belief, an estimate of the environment it is currently in. This
belief may be incomplete or biased, but it can be revised through incoming observations obtained
by physically exploring the environment.

Typically, in an unfamiliar environment, an embodied agent must acquire new observations through
physical exploration to understand its surroundings, which is inevitably costly, unsafe, and time-
consuming. However, if the agent can imagine hidden views by mentally simulating exploration, it
can update its beliefs without physical effort. This enables the agent to take more informed actions
and make more robust decisions. Consider the scenario in Fig. 1, suppose you are approaching an
intersection. The light ahead is green, but you suddenly notice that the yellow taxi in front has come
to an abrupt, unexpected stop. A surge of confusion and anxiety hits you, leaving you uncertain
about the reason behind its halt. Physically investigating the situation would be unsafe and even
impossible at that moment. However, by standing in the taxi’s position in your own imagination and
envisioning the surroundings from its perspective, you sense a possible motivation behind the taxi’s
puzzling behavior: perhaps an ambulance is approaching. Consequently, you clear the path for the
emergency vehicle, a timely and decisive choice, thanks to your imagination.

To build agents capable of imaginative exploration in a physical world, we propose Generative
World Explorer (GenEx), a video generative model that conditions on the agent’s current egocentric
(first-person) view, incorporates intended movement direction as an action input, and generates fu-
ture egocentric observation. Although prior works (Tewari et al., 2023) can render novel views of
a scene based on 3D models (Yu et al., 2021), the limited render distance and the limited field of
view (FOV) constrain the range and coherence of the generated video. Fortunately, video genera-
tion offers the potential to extend the exploration range. To address the FOV constraint, we utilize
panoramic representations to train our video diffusion models with spherical-consistent learning.
As a result, the proposed GenEx model achieves impressive generation quality while maintaining
coherence and 3D consistency throughout long-distance exploration.

Furthermore, the proposed GenEx can be applied to the embodied decision making. With GenEx,
the agent is able to imagine hidden views via imaginative exploration, and revise its belief. The
revised belief allows the agent to take more informed actions. Technically, we define the agent’s
behavior as an extension of POMDP with imagination-driven belief revision. Notably, the proposed
GenEx can naturally be extended to multi-agent scenarios, where one agent can mentally navigate
to the positions of other agents and update its own beliefs based on imagined beliefs of the other
agents.

In summary, our key contribution is three-fold:

• We introduce GenEx, a novel framework that enables agents to imaginatively explore the world
with high generation quality and exploration consistency.

• We present one of the first approaches to integrate generative video into the partially observable
decision process by introducing the imagination-driven belief revision.

• We highlight the compelling applications of GenEx, including multi-agent decision-making.
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2 RELATED WORKS

Generative video modeling. Diffusion models (DMs) (Sohl-Dickstein et al., 2015; Ho et al.,
2020) have proven effective in image generation. To render high-resolution images, the latent diffu-
sion models (LDMs) (Rombach et al., 2022) are proposed to denoise in the latent space. Similarly,
video diffusion models (Blattmann et al., 2023b; Wang et al., 2023a; Blattmann et al., 2023a; Song
et al., 2025) use VAE models to encode video frames and denoise in the latent space. For controllable
synthesis, the conditional denoising autoencoder are implemented with text (Rombach et al., 2022;
OpenAI, 2024) and various conditioning controls (Zhang et al., 2023; Sudhakar et al., 2024). We
focus on video generation conditioned on the egocentric panoramic view of agent, as panorama (Li
& Bansal, 2023; 2024) ensures coherence in the generated world, and the use of egocentric vision is
de facto choice in many embodied tasks (Das et al., 2018; Sermanet et al., 2024; Song et al., 2025).

Generative vision for embodied decision making. Decision-making in the physical world (Das
et al., 2018; Sermanet et al., 2024) is a fundamental AI challenge. LLMs provide linguistic reason-
ing that aids decision-making (Hao et al., 2023; Min et al., 2024) and vision-language planning (Cen
et al., 2024). World models offer predictive representations of future states to inform decisions,
though early attempts (Ha & Schmidhuber, 2018; LeCun, 2022) focus on simple game agents and
often lack commonsense reasoning about the physical world. Generative vision (OpenAI, 2024;
Kondratyuk et al., 2024) and in-context learning (Bai et al., 2024; Zhang et al., 2024) offer new av-
enues for using video generation to guide real-world decision-making (Yang et al., 2024c). Several
works focus on specific application domains such as autonomous driving (Hu et al., 2023; Wang
et al., 2023b; 2024c; Gao et al., 2024a;b) which limit their generality. Others like video in-context
learning (Zhang et al., 2024) requires a known demonstration video, which is inefficient for decision-
making. Action-conditioned video generation models (Du et al., 2024a; Yang et al., 2024b;c; Wang
et al., 2024a; Bu et al., 2024; Souček et al., 2024; Du et al., 2024b) can directly synthesize visual
plans for decision-making. These models, however, focus on state transition probabilities without
explicitly modeling agent beliefs, which are crucial for reasoning about other objects/agents in par-
tially observable environments.

3 GENERATIVE WORLD EXPLORATION

A machine explorer, such as a home robot, is designed to navigate within its environment and
seek out previously unvisited locations. Integrating generative models, we present the concept of
a generative world explorer (GenEx), enabling spatial exploration within an imaginative realm, akin
to human mental exploration. We introduce the macro-design of GenEx in § 3.1, followed by the
micro-design including input representation, diffuser backbone, and loss objective in § 3.2.

Plan any open path 
for yourself to 
explore this city.

orientation distance
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Turn
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Left
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Path 2

Turn
Right

(c) Goal-driven Imaginative Exploration:
Move to the blue car’s position and orientation.

Move
Forward

(b) Goal-agnostic Imaginative Exploration:
Explore freely to understand your surroundings.

RGB Observation

...

...

Stream Video of Imaginative Exploration

(a) Macro-framework of Genex

Figure 2: GenEx is able to explore an imaginative world by generating video sequence, given RGB observa-
tions, exploration direction, and distance (a). GenEx, grounded in physical environment, can perform GPT-
assisted goal-agnostic imaginative exploration of the world (b) and goal-driven imaginative exploration (c).
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3.1 MACRO-DESIGN OF GenEx

(a) Overview. As shown in Fig. 2, the GenEx framework enables agents to explore within an
imaginative world by streaming video generation, based on current RGB observations and given
exploration configurations. The RGB observation is represented as a panorama image sampled from
any location in the world. A large multimodal model (LMM) serves as the pilot, or the decision
maker, to set up exploration configurations, including any 360◦ navigation direction and distance.
GenEx processes the input in two steps. First, it takes the exploration orientation to update the
panorama forward view. Secondly, its built-in diffuser generates the forward navigation video. Both
view update and diffuser are detailed in § 3.2.

GenEx, grounded in physical environment, can perform GPT-assisted goal-agnostic imaginative ex-
ploration and goal-driven imaginative exploration.

(b) Goal-agnostic Imaginative Exploration. GenEx can explore freely with an unlimited number
of orientations, helping the agent to understand its surrounding environment, as shown in Fig. 2 (b).

(c) Goal-driven Imaginative Exploration. The agent receives a target instruction, such as, “Move
to the blue car’s position and orientation.” GPT performs high-level planning based on the instruction
and initial image, generating low-level exploration configurations in an iterative manner. GenEx then
processes these configurations step-by-step, updating images progressively throughout the imagina-
tive exploration as in Fig. 2 (c). This allows for greater control and targeted exploration.

3.2 MICRO-DESIGN OF GenEx

We detail our micro-design as follows. Our diffuser builds upon the standard stable video diffusion
(SVD) (Blattmann et al., 2023a) backbone (a), but adapts the input from conventional images to
panoramas (b). Furthermore, we propose spherical-consistent learning (c) to ensure coherence in
imaginative exploration.

(a) Diffuser backbone. To support exploration illustrated in Fig. 2, we propose a video diffuser
that can be seamlessly adapted to be a world explorer. Given an initial panorama image x0 with
camera position p0, our objective is to generate a sequence of images {x1, . . . , xn} corresponding
to a sequence of camera positions {p1, . . . , pn}. The camera positions progress steadily forward,
representing navigation in the world. Since the panorama image represents a 360-degree view, the
generation should persist the information stored in previous frames to maintain world consistency
throughout the sequence. Our model uses the pretrained SVD (Blattmann et al., 2023a). The Trans-
former UNet (Ronneberger et al., 2015; Chen et al., 2021) architecture is as described in Blattmann
et al. (2023b), where temporal convolution and attention layers are inserted after every spatial con-
volution and attention layer. The pipeline of our model is shown in Fig. 3 (a). Given an image
condition c (encoded from image x0 using CLIP image Transformer (Radford et al., 2021)), the
video diffusion algorithms learn a network ϵθ to predict the noise added to the noisy image latent zt
with Lnoise = ∥ϵθ(zt, c)− ϵt∥2.

(b) Input image representation. Panorama images are well-suited for generative exploration as
they captures all perspectives from an egocentric viewpoint into a 2D image. Essentially, it rep-
resents a spherical polar coordinate system S on a 2D grid in the Cartesian coordinate system P ,
as shown in Fig. 3 (b). Panorama effectively stores every perspective of the world from a single
location which preserves the global context during spatial navigation. This allows us to maintain
consistency in world information from the conditional image, ensuring that the generated content
aligns coherently with the surrounding environment. The panorama image also allows for rota-
tional transformations, which facilitate world navigation by enabling us to rotate the image to face a
different angle while preserving its original information. The rotation can be performed using Eq. 1:

T (u, v,∆ϕ,∆θ) = fS→P (R (fP→S(u, v),∆ϕ,∆θ)) , (1)
where u and v are positions on the 2D image plane, and ϕ and θ represent longitude and latitude
in polar coordinates. The rotation function R applies a rotation to the spherical representation in
any direction, simulating turning around during navigation. Additionally, a panorama image can
be converted into a cubemap of six separate regular images, each representing a face of a cube
(front, back, left, right, top, and bottom). This panorama-to-cube transformation enhances visual
understanding by LMM agents. Full mathematical details of the equirectangular projection are in
§ A.1.
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Figure 3: (a) Diffuser in GenEx, a spherical-consistent panoramic video generation model. During training,
video x0 is encoded into latent z0 and noised to zt. A conditioned UNet ϵθ predicts and removes noise,
resulting in z′0 which is decoded to x′

0. The loss Lscl in (c) is combined with the original noise prediction
loss. During inference, random noise is iteratively denoised to generate video x′

0 from an image panorama
condition. (b) Left: Conversion between Polar and Cartesian coordinates. Right: Rotated spherical panorama
can be converted to either 2D panorama or six-view images. (c) Spherical-consistent learning: we randomly
sample camera orientation for edge consistency.

(c) Diffuser training objective: spherical-consistent learning (SCL). We aim to generate images
where pixels are continuous in spherical space. However, direct training with results in severe edge
inconsistency, as generated pixels at the far left and far right of the equirectangular image are not
constraint to be continuous on the spherical space. To address this, we introduce spherical-consistent
learning as an explicit regularization. After generating a panoramic video, we apply the spherical
rotational transformation function, as shown in Eq. 1, to randomly rotates the camera to different
positions on both the generated video and the ground truth, as illustrated in Fig. 3 (a). The de-
noised diffused video xt − ϵθ(xt, c) and the ground-truth video x0 are transformed and then passed
into a pre-trained temporal VAE encoder E , resulting in the latent over transformed diffused video
E(T (xt − ϵθ(xt, c))) and the latent over transformed ground-truth video E(T (x0)). Each camera
view is weighted equally in this process to ensure consistent representation across all perspectives.
We train with the objective Lscl to minimize the mean square error over the latent spaces for main-
taining uniformity and coherence in the 360-degree output. During training, the overall training
objective is to minimize the loss:

L = λ ||E(T (D(zt − ϵθ(zt, c))))− E(T (x0))||2︸ ︷︷ ︸
Lscl

+(1− λ)||ϵθ(zt, c)− ϵt||2︸ ︷︷ ︸
Lnoise

, (2)

where D is the temporal VAE (Kingma, 2013) decoder, λ is a weighting constant, and T is the
spherical rotation transformation shown in Eq. 1.

During inference, one can initialize Ztmax ∼ N (0, I), iteratively sample Zt−1 ∼ pθ(Zt−1|zt, c)
using the reparameterization trick, producing latent z′0, which is decoded to panoramic video x′

0.

4 GenEx-BASED EMBODIED DECISION MAKING

4.1 IMAGINATION-DRIVEN BELIEF REVISION

Embodied agents operate under a POMDP framework (Puterman, 1994; Kaelbling et al., 1998).
At each time step t, the agent’s world state (which represents the complete environment at this
specific moment), st ∈ S, and action at ∈ A determine the next world state via the transition
probability T (st+1|st, at). The agent’s given goal g ∈ G (e.g., crossing the street) influences the
reward rt = R(st, at, g), which drives the agent to achieve its objective. The agent receives an
observation ot ∈ Ω based on the observation model O(o|st) and maintains a belief, represented by
a distribution b(s), which is the agent’s internal estimate of the true state of the world. Its belief is
updated with new observations, following the POMDP framework in Eq. 3:
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bt+M (st+M ) =

M∏
t

O(ot+1|st+1, at)
∑
st

T (st+1|st, at)︸ ︷︷ ︸
Physical Exploration

bt(st) (3)

The decision at made at any time t becomes more informed as the agent gains a clearer under-
standing of its surroundings. By navigating through physical space, the agent gathers additional
information about its environment (Fan et al., 2024), enabling more accurate assessments and better
choices moving forward. However, physically traversing the space is inefficient, expensive, and even
impossible in dangerous scenario. To streamline this process, we can use imagination as a medium
for the agent to simulate outcomes without physically traversing. The key question becomes:

How can an agent revise its belief through imaginative exploration for more informed decisions?

Imagination-driven belief revision. We propose imagination-driven belief revision that uses imag-
inative exploration to enhance POMDP agents with a instant belief revision between time steps. In
imagination, we freeze the time and create an imagined world, thus dropping the time variable t
and defining an imagination space with hatˆon the variables. Here the agent can make a sequence
of imaginative actions â = {âi ∈ Â} over imagination time step I = {1, ...i, ..., n}. The agents
can make sequential speculation on the unobserved world based on its initial belief and toward
ultimate goal, it imagine novel observations in a previous unobserved world with pθ(ô

i+1|ôi, âi),
where ô0 = o0 as initialization and θ is our parameterized video diffuser generating the imaginative
observations. As a result, it can update its belief with Eq. 4:

b̂t(st) =

I∏
i

pθ(ô
i+1|ôi, âi)︸ ︷︷ ︸

Imaginative Exploration

bt(st) (4)

Belief
Revision

Imaginative 

Physical

What's in
 front of me?

Figure 4: Imaginative exploration can achieve the same belief up-
date as physical exploration.

Different from Eq. 3, we re-
place physical with imaginative
exploration (Fig. 4). For an
proper imagination, we should ex-
pect bt+T (st+T ) ≡ b̂t(st), where
the imaginative belief approximates
the physical belief. As the se-
quence of imagination I expands,
more observations oi is produced,
the agent’s belief will be approach-
ing, b∗, which is the belief the agent
could obtain under a full observation.

The agent make actions based on its belief and goal, with policy model π(at|bt(st), g). Through the
revised belief, the agent is capable of making more informed decision toward a∗ with a more refined
belief toward b∗, with more information on the true state of its surrounding environment.

In our work, we apply GenEx for imaginative exploration and a LMM as the policy model π and
belief updater b(s), mapping observation to belief, with examples in Fig. 5 and system pipeline in
§ A.5.3.

4.2 GENERALIZED TO MULTI-AGENT

Imagination-based POMDP can be generalized to the multi-agent scenario. The 1-st agent can
imaginatively explore to the location of the k-th agent to predict the agent-k’s observation ôk and
infer agent-k’s belief b̂k, following Eq. 4.

Thus, we can adjust agent-1’s beliefs by aggregating the imagined belief counterpart for other K−1
agents.

at1 = π(bK = {b1, ...bK}, g) (5)

When exploring another agent’s thoughts, we can predict what that agent sees, understands, and
might do next, which in turn helps us adjust our own actions with more complete information.
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the right turn is
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path is clear. A
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should I do?
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Agent 2
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I want to drive forward, but the light is
red, so I should wait in place.

I'm blocking the view between the car
and pedestrian, and they might collide.

Egocentric Single-View Decision: 
Stop in place

Decision with Imagination: 
Warn both parties

Figure 5: Single agent reasoning with imagination and multi-agent reasoning and planning with imagination.
(a) The single agent can imagine previously unobserved views to better understand the environment. (b) In the
multi-agent scenario, the agent infers the perspective of others to make decisions based on a more complete
understanding of the situation. Input and generated images are panoramic; cubes are extracted for visualization.

We define embodied agents and introduce imagination-driven belief revision in § 4.1, followed by
multi-agent decision making in § 4.2, and instantiation of embodied QA in § 4.3.

4.3 INSTANTIATION IN EMBODIED QA.

While the traditional EmbodiedQA benchmark (Das et al., 2018) features well-defined tasks such as
navigation, they are not focus on how mental imagination help planning and the lack of multi-agent
scenario limits further advancements (it doesn’t satisfy condition (3)&(4) as follows). To the best of
our knowledge, no existing benchmark can be used to evaluate our proposed solutions.

To bridge this gap, we aim to collect a new embodied QA benchmark satisfying four conditions: (1)
The agent is planning with partial observation. (2) Questions can’t be solved by linguistic common-
sense alone; agents must physically navigate or mentally explore the environment to answer. (3)
Humans can mentally simulate environments to comprehend and answer questions, but it’s unclear
if machines can do the same. (4) The benchmark can be extended to scenarios involving multi-agent
decision-making. Accordingly, we propose a new dataset called GenEx-EQA in § 5.1.

5 EXPERIMENTS

5.1 DATASET CONSTRUCTION

Realistic Anime

Low-Texture Geometry

Street View Indoor

Figure 6: Examples for 6 different
real and virtual scenes.

GenEx-DB. We synthesize a large-scale dataset generated using
Unity, Blender, and Unreal Engine. The full details are in § A.3.
We create four distinct scenes, each representing a different visual
style (Realistic, Animated, Low-Texture, and Geometry), shown in
Fig. 6: We train a model with each dataset, and for the four re-
sulting navigational video diffusers, we conduct cross-validation
across all scenes to evaluate their generalization capabilities (de-
tailed in § A.7).
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We collect an additional test set of panoramic images from Google Maps Street View (header “Street”
in Table 2) and Behavior Vision Suite (Ge et al., 2024) (header “Indoor” in Table 2), which serves as
a benchmark for real-world street and synthetic indoor exploration 1.

GenEx-EQA. Through the proposed GenEx model, the agents perform exploration autonomously,
capable of tackling embodied tasks such as single agent scene understanding and multi-agent inter-
sectional reasoning. Following the four conditions in § 4.3, we design over 200 scenarios in virtual
physical engine to test various LMM agents embodied decision-making. We provide comprehensive
details in § A.4.1. The dataset generally represent two scenarios:
• Single agent: the agent could infer the egocentric view from any location in its view. The agent

could use GenEx to imagine the missing view (e.g. an ambulance blocked by trees or from the
back of the stop sign). This extra information enables the agent to make more informed decisions.

• Multi-agent: the first agent can imaginatively explore the locations of other agents and use these
imagined observations to update its beliefs.

5.2 EVALUATION ON GENERATION QUALITY

We adopt FVD (Unterthiner et al., 2019), SSIM (Wang et al., 2004), LPIPS (Zhang et al., 2018), and
PSNR (Horé & Ziou, 2010) to evaluate video generation quality, with details in § A.5.

Model Input FVD ↓ MSE ↓ LPIPS ↓ PSNR ↑ SSIM ↑

→ direct test
CogVideoX six-view 4451 0.30 0.94 8.89 0.07
CogVideoX panorama 4307 0.32 0.94 8.69 0.07

SVD six-view 5453 0.31 0.74 7.86 0.14
SVD panorama 759.9 0.15 0.32 17.6 0.68

→tuned on GenEx-DB
Baseline six-view 196.7 0.10 0.09 26.1 0.88

GenEx w/o SCL panorama 81.9 0.05 0.05 29.4 0.91
GenEx panorama 69.5 0.04 0.03 30.2 0.94

Table 1: Video generation quality of different diffusers.

As a strong baseline, we develop a six-view
navigator by training six separate diffusion
model for each face of the cube, representing
still a 360◦ view, independently (See Fig. 3 (b)
six-view). The implementation detail is shown
in § A.6. This baseline may align well with 2D
diffusion models but stands in contrast to the
panoramic approach, which is particularly ef-
fective at maintaining consistent environmen-
tal context. To enable a fair comparison with
GenEx in video quality evaluation, the six-view
baseline predictions are reprojected into panoramas. As a result, Table 1 shows that our method
achieves high generation quality and surpass six-view baseline in all metrics.

5.3 EVALUATION ON IMAGINATIVE EXPLORATION QUALITY

5 3 1 1 3 5
X Position

5
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1
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Sample Cycle Navigation

Origin

Figure 7: Example randomly sampled tra-
jectory for loop consistency. It forms a
closed loop within the scene, with 9 ro-
tations and in 15 meters distance.

Inspired by loop closure (Newman & Ho, 2005), we pro-
pose a new metric, Imaginative Exploration Loop Con-
sistency (IELC), to assess the coherence and fidelity of
long horizontal imaginative exploration. Definition: For
any randomly sampled path forming a closed loop within
the scene, we calculate the latent MSE between the initial
real image and the final generated image, both encoded by
Inception-v4 (Szegedy et al., 2017). The final latent MSE
is averaged over 1000 randomly sampled closed paths, with
each loop differing in number of rotations and total distance
traveled (refer to Fig. 7). We filter out paths blocked by ob-
stacles.

In our results, we observe strong loop consistency across
all exploration paths, shown in Fig. 8. Even in cases of
long-range imaginative exploration (distance = 20m) and
multiple consecutive videos, the latent MSE remained be-
low 0.1, indicating minimal drift from the original frames.
We attribute our method’s strong performance to its preser-
vation of spherical consistency in panoramas, ensuring that
rotation does not degrade performance.

1For training, we exclude Google Maps Street View, for to its inconsistent image quality and unpredictable
camera movement, and Behavior Vision Suite, for its restricted indoor navigation range.
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Figure 9: Correlation be-
tween exploration qual-
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We further conduct more analysis with three
findings regarding the zero-shot generalizabil-
ity to real-world, the correlation between gen-
eration and imaginative exploration, and the
emerging 3D consistency below.

Finding 1. The better the generation quality,
the more consistent the imaginative exploration
will be. Fig. 9 shows a strong correlation be-
tween imaginative exploration loop consistency
and generation FVD, validating our efforts to
enhance the diffuser.

IELC ↓ GenEx GenEx w/o SCL Six-view

Realistic Anime Low-Texture Geometry Realistic Realistic

Street 0.105 0.131 0.122 0.147 0.131 0.269
Indoor 0.092 0.168 0.103 0.117 0.120 0.233

Table 2: Zero-shot generalizability to real world. Rows
are by zero-shot test scenes Columns are by models and
training scenes.

Finding 2. GenEx, trained on synthetic data,
demonstrates robust zero-shot generalizability
to real-world scenarios. Impressively, the
model trained on UE5 and other synthetic data
(Table 2), is generalized well (IELC ≤ 0.1) to
indoor behavior vision suite and outdoor google
map street view in real world, without requiring
additional fine-tuning (See § A.7 for examples).

Finding 3. Generative world exploration empowers strong 3D understanding. Our method enables
the generation of multi-view videos of an object through imaginative exploration with a path cir-
cling around it. Table 3 not only report the common object-level foreground metric (MSEobj.) but
also highlight background evaluation (MSEbg.). Our model demonstrates superior performance
compared with the SoTA open-source models. Importantly, it maintains near-perfect background
consistency and effectively simulates scene lighting, object orientation, and 3D relationships. Inter-
estingly, we demonstrate that our model can reconstruct 3D worlds using additional plug-and-play
models (Depth Anything (Yang et al., 2024a) & DUSt3R (Wang et al., 2024b)), as detailed in § A.8.

Panorama Input 2D Input TripoSR SV3d Ours Ground TruthStable Zero123

Figure 10: Comparison with state-of-the-art 3D reconstruc-
tion models for novel view synthesis. Through exploration,
our model achieves higher quality in novel view synthesis for
objects and improved consistency in background synthesis.

Model LPIPS↓ PSNR↑ SSIM↑ MSEobj.↓ MSEbg.↓
TripoSR

(Tochilkin et al., 2024) 0.76 6.69 0.56 0.08 -

SV3D
(Voleti et al., 2024) 0.75 6.63 0.53 0.08 -

Stable Zero123
(StabilityAI, 2023) 0.50 14.12 0.57 0.07 0.06

GenEx 0.15 28.57 0.82 0.02 0.00

Table 3: GenEx can synthesize novel views
of distant objects (and background scene)
with minimal difference from the ground
truth, surpassing SoTA methods.

In summary, the robust zero-shot generalizability to real-world, the high correlation between gen-
eration and imaginative exploration, and the emerging 3D consistency pave the way for real-world
embodied decision-making.

5.4 RESULTS ON EMBODIED QA

Evaluation of embodied QA. For embodied reasoning evaluation, we define three metrics:

• Decision Accuracy: this metric evaluates whether an agent’s decision aligns with the optimal
action a fully informed human would take. It measures the degree to which the chosen action
successfully addresses the situation or problem.

• Gold Action Confidence: this refers to the agent’s strength of belief to take the most appropriate
action based on the available information and context. The confidence is calculated as the averaged
normalized logit of the agent outputting the correct choice.

• Logic Accuracy: this metric tracks the correctness of the logical reasoning process that leads to
a decision. We use LLM-as-a-judge (GPT-4o) to evaluate the agent’s thinking process, with the
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provided correct chain of thoughts. It highlights the sequence of steps, inferences, and reflections
an agent makes while navigating toward a final action.

In Table 4, we evaluate our single-agent (§ 4.1) and multi-agent (§ 4.2) decision making algorithms.
We use Unimodal refers to agents receiving only text context, while Multimodal reasoning demon-
strate LLM decision when prompted along with a egocentric visual view. GenEx showcases the
performance of models equipped as agents with a cognitive world model.

Method
Decision Accuracy (%) Gold Action Confidence (%) Logic Accuracy (%)

Single-Agent Multi-Agent Single-Agent Multi-Agent Single-Agent Multi-Agent

Random 25.00 25.00 25.00 25.00 - -

Human Text-only 44.82 21.21 52.19 11.56 46.82 13.50

Human with Image 91.50 55.24 80.22 58.67 70.93 46.49

Human with GenEx 94.00 77.41 90.77 71.54 86.19 72.73

Unimodal Gemini-1.5 30.56 26.04 29.46 24.37 13.89 5.56

Unimodal GPT-4o 27.71 25.88 26.38 26.99 20.22 5.00

Multimodal Gemini-1.5 46.73 11.54 36.70 15.35 0.0 0.0

Multimodal GPT-4o 46.10 21.88 44.10 21.16 12.51 6.25

GenEx (GPT4-o) 85.22 94.87 77.68 69.21 83.88 72.11

Table 4: Embodied QA evaluation across different scenarios. For unimodal input, agent is prompted with only
text context, and for multimodal input, agent is given its egocentric image view. In all settings, we prompted
the agent to generate in Chain-of-Thoughts to image other agent’s belief.

Vision without imagination can be misleading for GPTs. In some cases, the unimodal’s response
(processing only the environment’s text description) surpasses the multimodal counterparts (which
includes both text and egocentric visual input). This suggests that vision without imagination can
be misleading. When an LLM agent converts its view into a text description and relies solely on
language-based commonsense reasoning, it tends to make incorrect inferences due to the lack of
spatial context. This highlights the importance of integrating imagination with visual data to enhance
the accuracy and reliability of the agent’s decision-making processes.

GenEx has potential to enhance cognitive abilities for humans. Human performance results reveal
several key insights. First, individuals using both visual and textual information achieve significantly
higher decision accuracy compared to those relying solely on text. This indicates that multimodal
inputs enhance reasoning. Secondly, when provided with imagined videos generated by GenEx,
humans make even more accurate and informed decisions than in the conventional image-only set-
ting, especially in multi-agent scenarios that require advanced spatial reasoning. These findings
demonstrate GenEx’s potential to enhance cognitive abilities for effective social collaboration and
situational awareness.

6 CONCLUSION

We introduced the Generative World Explorer (GenEx), a novel video generation model that en-
ables embodied agents to imaginatively explore large-scale 3D environments and update their be-
liefs without physical movement. By employing spherical-consistent learning, GenEx generates
high-quality and coherent videos during extended exploration. Additionally, we present one of the
first methods to integrate generative video into the partially observable decision-making process
through imagination-driven belief revision. Our experiments show that these imagined observations
significantly enhance decision-making, allowing agents to create more informed and effective plans.
Furthermore, GenEx’s framework supports multi-agent interactions, paving the way for more ad-
vanced and cooperative AI systems. This work marks a significant advancement toward achieving
human-like intelligence in embodied AI.
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A APPENDIX

A.1 PRELIMINARY: EQUIRECTANGULAR PANORAMA IMAGES

Original Panorama Image

Panorama Rotated 180 degrees

Spherical Rotation

Cubemap

Combined Panorama

Figure 11: Left: Pixel Grid coordinate and Spherical Polar coordinate systems; Middle: rotation in Spherical
coordinates corresponds to rotation in 2D image; Right: expansion from panorama to cubemap or composition
in reverse.

A.1.1 COORDINATE SYSTEMS

An Equirectangular Panorama Image captures all perspectives from an egocentric viewpoint into a
2D image. Essentially, it represents a spherical coordinate system on a 2D grid.

Definition D.1 (Spherical polar coordinate system). S: Taking the origin as the central point, a
point in this system is represented by coordinates (ϕ, θ, r) ∈ S, where ϕ denotes the longitude, θ the
latitude, and r the radial distance from the origin. The ranges for these coordinates are ϕ ∈ [−π, π),
θ ∈ [−π/2, π/2], and r > 0.

Definition D.2 (Cartesian coordinate system for panoramic image). P: In this system, a pixel is
identified by the coordinates (u, v) ∈ P , where u and v correspond to the column and row positions
on the 2D panoramic image plane, respectively. Here, u ranges from 0 to W − 1 and v ranges from
0 to H − 1.

Definition D.3 (Sphere-to-Cartesian Coordinate Transformation). The transformation between the
spherical polar coordinates and the panoramic pixel grid coordinates can be defined by the following
functions:

fS→P(ϕ, θ) =

(
W

2π
(ϕ+ π),

H

π

(π
2
− θ

))
(6)

fP→S(u, v) =

(
2πu

W
− π,

π

2
− πv

H

)
(7)

Here, the function fS→P maps the spherical coordinates (ϕ, θ) to the pixel coordinates (u, v), and
the inverse function fP→S maps the pixel coordinates (u, v) back to the spherical coordinates (ϕ, θ).
This transformation ensures that the entire spherical surface is represented on the 2D panoramic
image.

Panorama effectively stores every perspective of the world from a single location. In our work, due to
the nature of panoramic images, we are able to preserve the global context during spatial navigation.
This allows us to maintain consistency in world information from the conditional image, ensuring
that the generated content aligns coherently with the surrounding environment.

A.1.2 PANORAMA IMAGE TRANSFORMATIONS

The spherical format allows various image processing tasks. For example, the image can be rotated
by an arbitrary angle without any loss of information due to the spherical representation. Addition-
ally, it can be broken down into cubemaps for 2D visualization, as shown in Fig. 11.

15



Published as a conference paper at ICLR 2025

Definition D.4 (Rotation Transformation in Spherical Polar Coordinate System). Since a panorama
image is in a spherical format, we can rotate the image to face a different angle while preserving the
original image quality. The rotation can be performed using the following formula:

T (u, v,∆ϕ,∆θ) = fS→P (R (fP→S(u, v),∆ϕ,∆θ)) (8)

Where the rotation function R is defined as:

R(ϕ, θ,∆ϕ,∆θ) = (ϕ+∆ϕ (mod 2π), θ +∆θ (mod π)) (9)

If there is no explicit input, both ∆ϕ and ∆θ can be set to 0.

Panorama to cubes A panorama image can be broken down into six separate images, each corre-
sponding to a face of a cube: front, back, left, right, top, and bottom, as shown in Fig. 11. This
conversion allows the panorama to be viewed as six conventional 2D images.

A.2 HYPERPARAMETERS AND EFFICIENCY OF GENEX-DIFFUSER

We provide the training hyperparameters for GenEx diffuser in Table 5 and computation resource
used for training in Table 6.

Hyperparameters Value
learning rate 1e-5
lr scheduler Cosine

output height 576
output width 1024

mixed precision fp16
training frame 25

lr warmup steps 500

Table 5: GenEx-Diffuser Training configuration.

Setting Value
Total GPU Usage 384 A100 hours

GPU Configuration 2 A100 per batch,
Model Parallelism

Training Time 0.12 minutes per step
Inference Time 0.031 minutes per frame

Table 6: GenEx-Diffuser Training and Inference
Time.

A.3 GENEX-DB

For dataset creation, we use scenes in four different styles to examine how different visual represen-
tation affect final model performance.

• Realistic: Using the Sample City from Unreal Engine 5, designed to evaluate the model’s
ability to handle photorealistic environments.

• Animated: Created to test the model’s performance in stylized, animated settings.
• Low-Texture: Used to assess how well the model adapts to environments with minimal

texture details, focusing on whether the model can learn relying only on architectures.
• Geometry: Composed solely of simple geometric shapes (cubes and cylinders), designed

to determine if the model can learn panoramic movement from basic forms.

In an chosen 3D environment, we sample a random position and random rotation. We sample a path
moving straight forward for 20 meters where there is no collision to any objects and render a video
moving in this path with constant velocity for 50 frames. During training, we randomly sample a
from frame1 to frame25 as the conditional image with ground truth the navigation in the next 25
frames. Image example is provided in Fig. 12.

We report dataset statistics in Table 7.

A.4 GENEX-EQA

A.4.1 DATASET DETAILS

Generally, the GenEx-EQA could be divided into two categories, Single-Agent and Multi-Agents.
In single-agent scenario, the agent should be able to make the appropriate decision with only its
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Frame 1
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Low-Texture
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Figure 12: Dataset examples are four distinct scenes. Each sampled video consist of 50 frames. At each step,
25 frames are chosen for training.

Statistics Value
Engine (Environment) UE5 (City Sample), Unity (Low-texture City, Animate), Blender (Geometry)

# scenes 40000 +
# frames 2,000,000 +

# traversal distance (m) 400,000 +
# total time (s) 285,000 +

# navigation direction +inf

Table 7: The data statistics for GenEx-DB.

current observation (it does mean there is only one agent exist in the scene). In multi-agent scenario,
to fully understand the environment state, the agent need to understand what other agent’s belief.
For each test case, we repeat the scene in a low-texture virtual environment to observe the different
in behavior from observation realistic level.

We provide examples on the constructed GenEx-EQA dataset in Fig. 13.

For each scenario, we include a control set. For example, if the exploration would end up with an
ambulance driving toward the agent, there also exist an setting where the ambulance is driving away
from the agent.

We report the statistics of GenEx-EQA dataset in Table 8.

Statistics Value
Engine UE5, Blender

Environment City Sample, Low-texture City
# scenes 200 +
# agents 500 +

# average agent per scene 2.7
# text context 800 +

# actions 200 +
# navigation direction +inf

Table 8: The data statistics of GenEx-EQA benchmark.

A.5 QUANTITATIVE ANALYSIS IMPLEMENTATION

For all tested videos, FVD, LPIPS, PSNR , SSIM is calculated by resizing each image to 1024×576
pixels and comparing them with the ground truth videos at the same dimensions.

For latent MSE of images, each image is resized to 500 × 500 pixels and processed through the
Inception v4 model Szegedy et al. (2017) to compute the latent MSE. When comparing IELC, we
compare the latent MSE between beginning and ending frames.
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Agent

Agent Agent

Agent

Scene: I arrive at an intersection and want to
turn left. The front path is clear, there is no car. ...
I see another car at the intersection, on the left
view moving slowly.

Stop in place to wait for the car to make the
turn first.
Honk to warn other cars to avoid collision.
Pull over and wait for traffic to clear.
Carefully continue the turn to avoid traffic
congestion.

Question: What should I make the turn?

Choices: 
(A)

(B)
(C)
(D)

Scene: I arrive at an intersection and want to
drive forward.  ...  I see the car opposite to myself
suddenly stop. Also, I hear what seems to be an
alarm, possibly from an emergency vehicle."

Change lanes to bypass the car carefully.
Stop passing the intersection and move a
little bit left to clear the way.
Stop in place to observe the environment.
Continue to proceed through the intersection
since the traffic light is green.

Question: What should I do?

Choices: 
(A)
(B)

(C)
(D)

Scene: I am driving down a street. Ahead, there
is a car stopped in my lane. I can't see what is in
front of this car because it is blocking my view.
The traffic is light, ...

Change lanes to pass the stopped car quickly,
since there is no visible obstruction.
Honk to signal the stopped car to move.
Slow down and keep to my lane, proceeding
with caution.
Wait for the car ahead to start moving.

Question: How should I proceed?

Choices: 
(A)

(B)
(C)

(D)

Scene: I am approaching an intersection with a
"Do Not Enter" sign. ... Ahead, there is a police car
in view, but it is unclear whether the police car is
waiting or needs to move. 

Wait at the intersection for the police car to
move first.
Change lanes to pass through.
Honk to signal the police car to move.
Slow down and proceed cautiously, assuming
the police car will stay in place.

Question: How should I respond to this situation?

Choices: 
(A)

(B)
(C)
(D)

Agent
Agent

Agent
Agent

Scene: I arrive at an intersection to proceed
forward. The intersection does not have a traffic
light and is busy. There is a pedestrian on my
right side crossing the road fast ...

Drive forward as normal.
Block the pedestrian for a few seconds to
avoid hitting by other cars.
Accelerate to avoid collision with other cars.
Pull over and wait for traffic to clear.

Question: What should I do now?

Choices: 
(A)
(B)

(C)
(D)

Scene: I'm at an intersection with a red light,
where right turns are allowed. ... A fast car is
approaching to turn right, and a pedestrian is
crossing in front of me. 

Signal the car to stop for the pedestrian.
Stay in place and wait for the green light.
Honk to alert the pedestrian of the
approaching car.
Proceed cautiously while monitoring both
the car and pedestrian.

Question: What do I need to do?

Choices: 
(A)
(B)
(C)

(D)

Scene: I'm driving on a street. The front path is
clear. ... I see a car in my back try to bypass me.
There is also a pedestrain crossing the street on
my left side. 

Move a little bit to the left to allow the other
car to pass.
Continue drive forward fast.
Slow down to avoid the car bypass now to
protect the pedestrain.
Suddenly stop in place to block the back car.

Question: What would I do?

Choices: 
(A)

(B)
(C)

(D)

Scene: I'm driving on the right lane on a street.
On the other lane, there is a car approaching
fast. ... I can also see a pedestrain on the left side
trying to cross the street.

Continue forward as the path is clear.
Honk to signal the front car to avoid collision
with me.
Pull over to the right.
Warn both pedestrain and the car for a
potentail collision.

Question: What to do now?

Choices: 
(A)
(B)

(C)
(D)

Single-Agent

Multi-Agent

Figure 13: Example GenEx-EQA questions. We generally divide the questions into two categories. (1) single-
agent is testing the ability a agent to make optimal decision independent of social interaction. For example, in
the first scene, decision agent need to infer what can the other car see, but it does not need to infer the belief
that agent hold. (2) Multi-agent is testing the ability of agents to measure other agents’ belief and their potential
interaction. For example, in the first scene in the second row, the agent need to infer the pedestrian’s belief in
its surrounding and also the other car’s belief.

A.5.1 LMM PROMPT FOR WORLD EXPLORATION

We prompted LMM to navigate throughout the scene. The format is provided in Fig. 14. To handle
difference in distance traveling, we use different number of frames from generation. For example,
if the diffusion model generate 25 frames at once and one frame means traveling 0.4 meters, travel
4 meter would mean take the first 10 frames.
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Scenario Context: 
You are presented with a 360-degree equirectangular panorama, a type of image that captures the entire spherical
view of an environment and flattens it into a rectangular format. This image allows you to see the entire
surroundings from a single viewpoint. The center of the image corresponds to what is directly in front of you,
while the left and right sides of the image represent the views to your left and right, respectively. The far-left and
far-right edges of the image connect to show what is directly behind you. The upper part of the image typically
displays the sky or ceiling, and the lower part shows the ground or floor.

Requirement: 
Navigate through the urban street scene based on provided instructions. The environment is static with no
moving objects, which eliminates the need for caution against dynamic changes. Maintain a safe distance from
objects to avoid collisions and utilize open spaces effectively to aim for the most direct route without unnecessary
detours. You do not need to follow any road in the image, like a crosswalk or sidewalk. You can move in any
direction.

Navigation Process: 
This task is part of a multi-step navigation process. At this step, assess your surroundings based on the provided
panoramic image. Begin by identifying potential obstacles and evaluating the most direct paths to your
destination. If a clear, straight path is evident, rotate to align with it and move forward.
Action Choices: (1) Turn left, (2) Turn right, (3) Move forward (4) Stop

Image-Specific Instruction: 
{Instruction}

Analysis Request:
Scene Analysis: Start with a thorough examination of the scene. Describe what is visible in the left, front,
right, and back views.

1.

Target Identification: Identify where the target location is situated, considering the layout and nearby
objects.

2.

 Path Planning: Plan an efficient and clear path. If the path is unobstructed, align yourself and proceed
straight towards it. Ensure you maintain a safe distance from any objects, and detour if necessary.

3.

Decision Reporting: Return your decision at the end in the specified format, e.g., [[move forward 1 meter]].
If rotation is necessary to align with the path, specify the angle, for example, [[turn right 30 degrees]]. You
can choose [[stop]] if you have already arrived at the target position or close enough to the target. Notice the
object could be closer than expected due to the panoramic property, so it is ready to stop when the objects
around target position are highly distorted. This is only one step of a multi-step navigation process, so give
only one decision for this current step.

4.

Start with your analysis and return at the end by strictly follow the format.

LMM Navigation Prompt

Figure 14: Navigation prompt template.

A.5.2 EMBODIED DECISION MAKING USING LMM

We provide LMMs with context using the prompt format illustrated in Fig. 15. In multimodal
scenarios, we also include the egocentric (first-person) view, presented as six separate images, in
addition to the unimodal cases.

A.5.3 SYSTEM PIPELINE OF EQA DECISION-MAKING

We shows a general imagination-enhaced LMM POMDP system pipeline shown in in Fig. 16.
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LLM Prompt

Below are the views provided to me from my surroundings.
<Image 1> This is the my __ view .
<Image 2> This is the my __ view .
...

I am currently operating a vehicle. Based on this information, and considering the given context, please
recommend the most appropriate course of action for me to take.

Additionally, evaluate the perspectives and likely reactions of other drivers, pedestrians, or obstacles in the
environment. How might their actions or behaviors influence your recommendation? Your guidance should be
updated based on the evolving situation, ensuring that your final recommendation reflects a thorough
assessment of the surroundings.

SCENE:
{scene text description}

Question:
{question}

OPTIONS:
{choices}

Start by providing your reasoning for each possible action, considering both my immediate environment and the
actions of others. Conclude with a probability-based recommendation. The total probability across all options
must equal 100%. Format your response strictly as: [A: XX%], [B: XX%], [C: XX%], [D: XX%], where "XX"
represents the percentage probability assigned to each option.

* Image is provided only in Multimodal  Setting

Figure 15: Embodied QA prompt template

Input Image

General Instruction
I am driving a car. Please provide guidance on my next action. For each option, assign a probability to
your recommendation. Format your response strictly as: [A: XX%], [B: XX%], [C: XX%], [D: XX%], etc..
Replace "XX" with the corresponding probability. You are very encouraged to put full confidence in
the choice you think most appropriate, but the four must added up to 100%.

System Prompt

Given is the images you can see, in strict order, left, front, right, and back view from your car.

Embodied
Question

I am driving on a street in a city. In my front view, the path is clear. I am trying to make a left turn, and I see
a yellow car slowly approaching. I am wondering what I should do?

(A) Stop immediately to avoid a possible collision.
(B) Honk to send a warning and prevent an accident.
(C) Sudden brake to slow down and move to the side to give the other car space.
(D) Keep driving forward.

What is happening around me:
Left View (Yellow Car Approaching): The yellow car is moving toward the intersection from the left
side. Its presence creates a situation where making a left turn could lead to an interaction.

1.

Front View (Clear Path): The road ahead remains unobstructed, giving the option to continue forward
without interference from other vehicles.

2.

Right View (Clear Side): There are no visible obstacles or vehicles on the right, so that side poses no
immediate risks.

3.

About the Yellow Car:
The yellow car is approaching from the left. Its movements suggest that it might not stop or yield, so it’s
important to carefully judge the timing and actions to avoid any potential conflict. Caution is necessary, and
adjusting speed or positioning might help avoid any issues.

Prompt: Instead of jump into decision, tell me what do you think is going on around you,.

If I could navigate anywhere in my sight and view the situation from another perspective, I would want to
see from the yellow car’s perspective (the approaching vehicle on the left).

From the yellow car's point of view, I could assess several critical details:
How fast the yellow car is moving and whether it's intending to stop or slow down.
The yellow car’s awareness of my vehicle—whether it can see me and how likely it is to react to my
movement.
The overall traffic conditions from the yellow car’s side, which could help in understanding if it’s trying
to merge or make a turn.

Seeing through the yellow car’s perspective would give a more comprehensive understanding of its
intentions and allow me to make a safer and more informed decision about turning or stopping.

Prompt: If you can navigate anywhere in your sight. In which perspective you would want to see
to better understand the situation

1 Output by 1

Output by 1

Input for 2

2. Move Forward

3. Move Forward

1. Turn Left

I. Turn Back

...

Output for 2

Output by 1 Output by 1

1 LMM
Agents

2 World
Explorer

Observation Belief

Imagine Actions

Input for 

Navigation Instruction

Turn Left1.

Move Forward2.

Move Forward3.

...4.

Turn Back5.

Stop6.

Prompt: Navigate to the position of the {yellow car}, ... Give step by step instructions.

Imagination Generation

Decision

Given the yellow car's perspective and the stop sign ahead, it is very likely the yellow car will
yield or slow down. The path in front remains clear, and the right side poses no risk, making
the safest and most confident decision to continue driving forward with caution while
monitoring the yellow car’s movements.
[A: 0%], [B: 0%], [C: 0%], [D: 100%]

GPT4-o

Claude 3.5

Gemini 1.5
...

Genex

Belief Update

With the additional view from the yellow car’s perspective, here’s a deeper analysis of the
situation:

Yellow Car's View:

The yellow car has a clear sight of a stop sign directly ahead, which indicates that it may
need to stop or slow down very soon.
There are other cars in front of the yellow car, suggesting that it is either about to stop or
has already started slowing down. The traffic in its lane may make it more cautious.
From this view, the yellow car is likely well aware of its surroundings and may be planning to
yield as it approaches the stop sign.

Adjusted Thoughts:

From the yellow car's perspective: It is now apparent that the car is not in a rush and is likely
slowing down or stopping due to the stop sign ahead. This changes the dynamics of the
decision-making process. The car is probably preparing to stop or yield, meaning it is less
likely to continue moving aggressively.

1.

My current position: Since I am trying to turn left, I now have more confidence that the
yellow car may stop or slow down, allowing me to safely proceed with my turn if I act
cautiously.

2.

Strategic Decision: Given that the yellow car is in a controlled state due to the stop sign, the
safest approach would be to keep an eye on the yellow car’s movements and proceed
cautiously. Stopping or honking may not be necessary now, but moving forward with caution
seems like the most balanced approach, as the yellow car is likely to stop.

3.

Imagination Domain

Decision ModuleObservation Module Belief and Imagination Module

Figure 16: EQA answer pipeline. It follows Imagination-enhanced POMDP, updating its belief with imagina-
tion for more informed decision.
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A.5.4 EVALUATION METRIC

Machine Evaluation. We provide the three embodied decision metrics to evaluate the benchmarked
agents.

1. Decision Accuracy and Confidence. Since we prompted the LLMs to generate in a given
format, we directly parse the accuracy and confidence. In case the LLM failed to follow
the format, we filter and remove the cases.

2. Decision Confidence. This represents the agent’s confidence in selecting the most appro-
priate action based on the available information and context. Confidence is calculated by
averaging the normalized logits corresponding to the agent’s correct choice.

3. Chain-of-Thoughts Accuracy This metric evaluates the accuracy of the agent’s logical
reasoning that leads to a decision. We employ GPT-4o as a judge to assess the agent’s
thought process against the correct chain of thoughts. It highlights the sequence of steps,
inferences, and reflections the agent uses to reach a final action. The prompts to GPT-4o
are provided in Fig. 17.

Please assess the logical correctness of the following response generated by an LLM. 

Your task is strictly to evaluate whether the logic in the LLM's response aligns with the provided correct
reasoning. Avoid introducing any personal prior beliefs or interpretations. Your sole responsibility is to verify if
the logic in the reference is accurately reflected in the LLM's output.

After completing the assessment, return either [[YES]] or [[NO]], strictly adhering to this format.

LLM Response: {text}

Correct Logic: {logic}

LLM as a judge Prompt

Figure 17: The prompt template to GPT4o-as-a-judge.

Human Evaluation. We present the same prompt to all human evaluators. In unimodal scenarios
(both realistic and stylized) we reuse the same results due to the absence of randomness, similar to
fixed temperatures in LLMs. Evaluators are guided through three strict steps to prevent information
leakage: (1) text description only, (2) egocentric view, and (3) pre-navigated GenEx generation.
This sequential approach ensures consistency and maintains the integrity of the evaluation process.

A.6 COMPARED METHOD: SIX-VIEW EXPLORATION

We use the same training configuration and dataset as in the original approach, but instead of working
directly with panorama images, as in Fig. 18, we break the equirectangular image down into six faces
of a cube. Each face corresponds to a specific direction: front, left, right, back, top, and bottom, as
in Fig. 11, which obtain navigation process by focusing on discrete sections of the scene.

• Front view always moves forward.
• Left view moves to the right.
• Right view moves to the left.
• Back view moves backward.
• Top view remains stationary for upward and moves forward.
• Bottom view remains stationary for downward and moves forward.

Although each face provides a clear perspective, the transitions between faces introduce inconsis-
tencies as information in cube faces are not shared. However, panorama navigation can preserve a
general world context.
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Frame 1 Frame 2 Frame 4 Frame 6 Frame 10

Cube-wise Navigation

Panorama Navigation

Frame 1 Frame 2 Frame 4 Frame 6 Frame 10

Front

Left

Right

Back

Top

Bottom

Figure 18: In six-view exploration baseline, we train 6 separate diffuser representing each cube face. Although
each individual face remains acceptable quality, the world context is not preserved as in panoramic world
exploration.

A.7 DETAILS OF CROSS-SCENE GENERATION

The model shows a strong cross-scene generalization ability. From the loop consistency results in
Table 2, the panorama generation works well even for scenes deviates largely from its training set.

Dataset For each model trained by the dataset described in § 5.1, we evaluate its cross-scene gener-
ation quality.

Metric We evaluate loop consistency for different scenes when trained on different model and report
in Table 9.

Loop Consistency Street Indoor Realistic Anime Texture Geometry

Realistic 0.1051 0.0917 0.0687 0.1248 0.1332 0.2047

Anime 0.1044 0.1679 0.1171 0.0571 0.1347 0.2890

Low-Texture 0.1215 0.1032 0.1104 0.1624 0.0508 0.0800

Geometry 0.1471 0.0782 0.1230 0.1746 0.0685 0.0434

Table 9: Cross-Scene Loop Consistency (§ 5.2) Latent MSE by training scene and test scene. Columns are by
test scenes and rows are by training scenes.

Image Example We demonstrate some example of cross-scene generation. For example, When
training using the Anime dataset, the model can generalize to generate novel view of a car in the
Low-Texture dataset, although nothing similar exist in its training set. More image examples are
provided in Fig. 19.
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Input Same Scene Test Set Cross-Scene
Cross-Scene Testing

Input View Output View Input View Output View Input View Output View

Google Street View Evaluation

Behavior Vision Suite Evaluation
Input View Output View Input View Output View Input View Output View

Example Generations 
(All in very different scene from training)

Input View

Figure 19: Cross-scene generation examples. Neither google street view or indoor scene is used for training
(Inputs and outputs are panorama images. We extract cubes for visualization).
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A.8 EXTENSION TO 3D REPRESENTATION OF WORLD

3D Egocentric World. We are able to reconstruct a egocentric 3D point cloud combining single
panorama image with the external tool of Depth-Anything-v2 (Yang et al., 2024a). Examples are
shown in Fig. 20. For each point on the image, we directly map it to a 3D location using depth.

Given a pixel (u, v) with image dimensions W (width) and H (height), each point (X,Y, Z) repre-
sents a point in the 3D point cloud.:

Compute angles: Calculate 3D coordinates:

θ = 2πu
W − π X = D · cos(ϕ) · cos(θ)

ϕ = π
(
1− v

H

)
− π

2 Y = D · sin(ϕ)
Z = D · cos(ϕ) · sin(θ)

Input Panorama

Reconstructed
Point Cloud

Depth Map

Inside the Point Cloud

Input Panorama

Reconstructed
Point Cloud

Depth Map

Inside the Point Cloud

Input Panorama

Reconstructed
Point Cloud

Depth Map

Inside the Point Cloud

Figure 20: Egocentric 3D reconstruction with depth map and point cloud using monocular depth estimation
tools (Yang et al., 2024a).

3D Exocentric world. To construct a exocentric 3D reconstruction from multi-view image. For
any given panorama image, we could sample random forward moving direction to generate multiple
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panorama image. Breaking down into cubes, panorama images become usable 2d images to be
passed in reconstruction model like DUSt3R (Wang et al., 2024b). Examples are shown in Fig. 21.

Input View

Generated Images

3D Reconstruction

Input View

Generated Images

3D Reconstruction

Figure 21: Exocentric 3D reconstruction with DUSt3R (Wang et al., 2024b).

A.9 BIRD’S-EYE VIEW GENERATION

Our method can generate bird’s-eye view (BEV) maps from a single panoramic image by leveraging
exploration along the z-axis. By adjusting the exploration pipeline to navigate upwards, we can ex-
tract a top-down view directly. As shown in Fig. 22, examples of the generated BEV maps illustrate
the effectiveness of our method in capturing a comprehensive top-down perspective from a single
panoramic image. This capability enables the agent to imagine a third-person perspective through
BEV maps, supporting more informed and objective decision-making.
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Input View Generated View BEV Input View Generated View BEV

Figure 22: By exploration in z-axis, we are able to generate the 2D bird-eye view of the current scene.
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