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Supplementary discussion

Sources of variability in the experiment

Across all experimental conditions tested during the optimization campaign shown in Fig. 2 of the main text, the mean
difference in conductivity of duplicates was 0.32 MS/m across all the samples. When experimental conditions yielding
zero conductivity were excluded, the mean difference in conductivity of duplicates was 0.43 MS/m. There are several
possible sources of conductivity variations between duplicate samples in this experiment. These sources include:
variations in the precursor ink composition due to finite pipetting accuracy (see Figure S11); variable thermal contact of
the glass substrates with the heated spraycoater fixture; and, variability in the time each sample spent on the heated fixture
after the completion of spraycoating due to the variations in the schedule of the central robotic arm.

The model predictions improved over time

Cross sections of the 8-dimensional gaussian process model can be seen in Figure S12. During the optimization, the
model r2 value (a measure of fit quality) was saved every iteration. The model fit improved over the course of the
campaign, converging to a final r2 value of 0.95 (see Figure S13). The model was evaluated using leave-one-out
cross-validation (see Figure S14) yielding an r2 value of 0.88.

Following the optimization, the conductivity values were compared with conductivity values predicted by the model. The
GP model (see methods) was built over the data set iteratively, mimicking the order of the experiments. A four-sample
delay was also added to mimic the parallelization (e.g. the model used to predict the conductivity of sample 45 only
included information up to sample 41). We noted with interest that predictions significantly improved for experiments
with beta values of 0.25 and 25 whereas the predictions got significantly worse for experiments chosen with beta value of
400 and space-filling mode (see Figure S15). This observation suggests that the model may have improved further had the
optimization continued past 91 experiments.

Manipulated variables bounds

Four out of seven manipulated variables converged on values within 10% of the bounds (see Fig. 2 of main text). This
suggests that widening the bounds of the search space might yield films with even higher conductivities. Such a change,
however, would have made the search space larger and thus potentially slower to search.

Discussion of the scale-up experiment

The conductivity of the large-scale sample is slightly higher than the small-scale sample likely for two reasons:
1. The larger coating has a more uniform coating due to the relative size difference between the spray shape

and the substrate. The spray cone has an approximate diameter of ~16 mm which is greater than half the
size of the 25 mm width substrate.

2. Four-point probe conductance measurements assume infinite size in the x-y direction. That means that
conductance will measure higher for identical coatings with larger-areas.

The conductivity of the champion sample measured by Ada (see supplementary methods - autonomous workflow steps
4-6) is slightly different from the conductivity calculated using the manual data processing method (see supplementary
methods - scale-up experiment). This is likely due to the autonomous measurements not being located at the most
conductive point on the sample. The scale-up method, however, measures nearly the entire film and includes the most
conductive locations in the measurements.
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Supplementary tables

Table S1: Manipulated parameter bounds

input variable definition lower bound upper bound units

DMSO content
The amount of DMSO in the

precursor ink as a volume
fraction

0 0.3 v / v

precursor concentration

The amount of precursor
(palladium nitrate and

acetylacetone) in the ink as a
mass concentration

10 20 mg / mL

ink flowrate
The rate at which the syringe

pump ejects the ink out of
the spray coater nozzle

2 8 µL / s

air flowrate

The amount the electronic
proportional valve was open

as a percentage of the
maximum open state

65 100 control valve %

number of passes
The number of times the

spray pattern is repeated for
a given sample (see fig S10)

1 10 passes

height The distance between the
nozzle and the substrate 10 25 mm

hotplate temperature
The temperature of the

surface of the aluminum
hotplate fixture

220 300 °C

Supplementary materials and methods

Manual preparation of stock solutions

Stock solutions were prepared by hand and stored in capped 2-mL HPLC vials. These vials were placed in a tray that was
accessible to a robotic arm of the self-driving laboratory. The Pd(NO3)2•H2O and acetylacetone solutions were prepared in
acetonitrile (MeCN) at a concentration of 30 mg mL−1. Palladium(II) nitrate hydrate (Pd(NO3)2•H2O; Pd ~40% m/m;
99.9% Pd purity, CAS 10102-05-3) was purchased from Strem Chemicals, Inc. MeCN (CAS 75-05-8; high-performance
liquid chromatography (HPLC) grade, ≥99.9% purity) and acetylacetone (CAS 123-54-6; ≥99% purity) were purchased
from Sigma-Aldrich. All chemicals were used as received.
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Manual preparation of consumables

The self-driving laboratory used the following consumables as received: glass substrates (75 mm × 25 mm × 1 mm
microscope slides; VWR catalog no. 16004-430); 2-mL HPLC vials (Canadian Life Science); and 200-µL pipettes
(Biotix, M-0200-BC). These items were placed in racks and trays for access by the self-driving laboratory.

Autonomous workflow step 1: select conditions for initial experiments

A set of 15 initial random experiments were chosen to initialize the optimization. This amount was chosen based on an
arbitrary 2n+1 rule, where n in the number of dimensions. A random value between 0 and 1 was chosen for each
experimental condition from a uniform random distribution (python numpy.random.random). This value was then scaled
to the range of the variable. Since each experiment was performed in duplicate, 30 samples with 15 unique experimental
conditions were used to initialize the optimization.

Autonomous workflow step 2: mix precursor

A 4-axis laboratory robot (N9, North Robotics) located within the precursor mixing station formulated each precursor ink
by pipetting the stock solutions described above into a clean 2 mL HPLC vial. The total requested volume of the precursor
ink 0.38 mL remained fixed while the volume of each individual stock solution within the precursor ink was allowed to
vary. Each precursor ink had a requested precursor concentration (palladium nitrate and acetylacetone) and DMSO
content. The required amounts of palladium nitrate and acetylacetone to reach the set concentration in 0.38 mL were first
pipette into the vial. MeCN and DMSO were then added to the vial up to 0.38 mL in order to reach the set concentration
and DMSO content. Gravimetric feedback from an analytical balance (ZSA120, Scientech) was used to record the true (or
“realized”) amount of dispensed precursor and minimize pipetting errors (see Fig. S11). The vial was then placed back
into a holding tray once mixing was complete.

Autonomous workflow step 3: spray-coat

A blank glass substrate (75 mm × 25 mm × 1 mm microscope slides; VWR catalog no. 16004-430) and a vial containing
the precursor ink were passed from the precursor mixing station to the spray-coating station. Glass substrates were stored
on a substrate rack at the precursor mixing station. The N9 robot used a custom vacuum chuck to pick up a substrate from
the substrate rack and drop it off at a transfer tray. This transfer tray allowed the transfer of samples between the N9 robot
and a 6-axis robotic arm (UR5e, Universal Robotics). The UR5e would pick up the substrate from the transfer tray and
drop it off at the spray-coating station. The UR5e uses a vacuum chuck affixed to the end effector, similar to the vacuum
chuck that is used by the N9. A vial containing the precursor ink was picked up by the N9 robot and passed to the
spray-coating station via the UR arm. The vials were transferred using a custom 3D-printed vial carrier that allowed the
vials to be transported with the vacuum chuck on the UR robot arm.

The spray-coater was built from an ultrasonic nozzle (Microspray, USA) mounted to a custom motorized XYZ gantry
system (Zaber Technologies Inc., Canada) above a hotplate (PC-420D, Corning, USA). A custom aluminum fixture (alloy
6061, 12.7 mm thick) with notches for substrate access was mounted to the hotplate. This fixture enabled substrates to be
picked up and set down on the hotplate by the UR robot arm.
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Precursor ink was front-loaded into the spray-coater nozzle via a needle that protrudes through the center bore in the
ultrasonic nozzle. A pneumatic solenoid used compressed air to control the extension and retraction of the needle. A
syringe pump (cavro centris pump PN: 30098790-B, Tecan Trading AG, Switzerland) controls the flow of precursor ink
using isopropyl alcohol as a backing solvent. A 50 uL gap between the backing solvent and the precursor ink separated the
two fluids in the tubing (Cole-Parmer, PTFE, 1 mm ID). The ultrasonic spray nozzle was operated at 3 W and 120 kHz.
For each recipe, a total of 300 µL of precursor was sprayed onto a pre-heated glass substrate.

Hotplate temperature was measured using a thermocouple mounted to the surface of the hotplate aluminum fixture. The
thermocouple would provide feedback to a PID controller (kp=0.7, ki=3.5, kd=65) that would turn the hotplate on or off to
maintain a constant surface temperature.

When spraying, the nozzle moved in a serpentine pattern consisting of twelve lines 50 mm in length and evenly spaced
within the 25 mm wide glass slide (see Fig. S10a). This pattern was repeated for the requested number of passes with a 30
second delay between each pass. The spray-coater nozzle speed varied between 2 and 168 mm s−1, depending on the
number of passes. Nozzle speed was calculated by dividing the total distance that the nozzle would travel by the amount
of time the nozzle would need to spray all 300 µL at a particular flowrate.

Compressed air was fed to the nozzle at 60 PSI but restricted by an electronic air control valve (EV-P-20-2550, Clippard,
USA). This valve varied between 65 and 100 % of the maximum. A valve setting of 100% was measured to be 22
standard cubic feet per hour (SCFH) while a value of 65% was measured to be 16 SCFH. The height of the nozzle above
the substrate, controlled by the motorized XYZ gantry system, varied between 10 and 25 mm. The spray flow rate,
controlled by the syringe pump, varied between 2 and 8 µL s−1. After spray-coating, the samples were left to rest on the
hotplate for a minimum of 200 seconds.

Autonomous workflow step 4: XRF

Hyperspectral X-ray fluorescence (XRF) images of each sample were acquired using a Bruker M4 TORNADO X-ray
fluorescence microscope. Samples were transported from the spray-coating station to the XRF microscope by the UR5e
robot arm. The instrument was equipped with a customized sample fixture employing an alignment tool.

The XRF microscope operated using a rhodium X-ray source at 50 kV/600 µA/30 W. The X-ray optics yielded a 25 µm
spot size on the sample. The instrument achieved an energy resolution of 10 eV via twin 30 mm2 silicon drift detectors.
Hyperspectral images were taken over a 16 mm × 16 mm area at a resolution of 40 × 40 pixels. The XRF spectra obtained
(reported in counts) were scaled by the integration time (200 ms) and the energy resolution (10 eV) to yield units of counts
s−1 eV−1.

To quantify the relative amount of palladium in the film, the XRF spectra was integrated at the palladium Lyman-alpha
X-ray fluorescence line (2.837 keV) from 2.6 to 3.2 keV. The resulting counts were converted to film thickness estimates
by applying a calibration factor obtained using reference samples (see below). Five points of interest were defined within
the XRF hypermap of the sample, spaced 2 mm apart vertically down the center of the XRF hypermap (see supplementary
Fig. S10a). For each point of interest, the XRF counts per second were averaged over a 3 mm × 3 mm area.

Calibration of XRF signal against reference samples

To enable palladium film thickness to be estimated from the XRF signal, a calibration procedure was performed according
to Macleod et al15. Sputtered palladium reference samples were fabricated having four different nominal thicknesses (10,
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50, 100, and 250 nm). These samples were characterized by profilometry and XRF. A linear relationship between the film
thickness and the XRF counts was observed with a slope of 3.658 × 10-4 nm cps-1 and intercept of -27.25 nm. This
relationship was used to estimate the thickness of each sample from the XRF data.

Autonomous workflow step 5: Conductivity & Imaging

After XRF imaging, the UR5e robot transported the Pd film sample to the microscope and conductivity station. This
station consists of a four-point conductivity probe and optical microscope that is serviced by a 6-degrees-of-freedom
gantry robot comprised of motor stages from Zaber Technologies. A custom end-effector mounted on the motor stack is
used to secure samples in place during characterization using spring-loaded tabs.

The samples were imaged using an Axio Imager Vario.Z2 microscope from Zeiss. Brightfield and darkfield images were
captured at 2.5× and 20× magnification at 2 mm above and below the center of the film. Focus and exposure parameters
for each sample were determined with an automatic routine through Zen Blue software provided by Zeiss.

Following optical microscopy, the gantry would move the sample to the four-point probe. Four-point probe conductance
measurements were acquired using a Keithley Series K2636B System Source Meter instrument connected to a Signatone
four-point probe head (part number SP4-40045TBN; 0.040-inch tip spacing, 45 g pressure, and tungsten carbide tips with
0.010-inch radii) by a Signatone triax to BNC feedthrough panel (part number TXBA-M160-M). The source current was
stepped from 0 to 1 mA in 0.2 mA steps. After each current step, the source meter was stabilized for 0.1 s and the voltage
across the inner probes was then averaged for three cycles of the 60 Hz power line (i.e., for 0.05 s) and recorded.
Conductance measurements were made on the same five points of interest as analyzed in the XRF data (see Fig. S10a).

The samples were then positioned 30 cm below an optical camera (FLIR Blackfly S USB3; BFS-U3-120S4C-CS) using a
Sony 12.00 MP CMOS sensor (IMX226) and an Edmund Optics 25 mm/f1.4 C-Series Fixed Focal Length Imaging Lens
(#59–871) for imaging. White printer paper was placed 2.5 cm behind the sample to improve image contrast.

Autonomous workflow step 6: Process the raw data

The film conductivity was calculated using a custom data analysis pipeline implemented in Python using the open-source
Luigi framework42. This pipeline combined conductance data and XRF data to estimate the film conductivity at each of
the five points of interest on the sample.

For each set of current–voltage measurements at each position on each sample, a linear fitting algorithm was used to
extract the conductance (dI/dV). The voltage compliance limit of the K2636B was set to 10 V and voltage measurements
greater than 10 V were therefore considered to have saturated the Source Meter instrument and automatically discarded by
the data analysis pipeline.

The conductivity of the thin films was then calculated by combining the 4-point-probe conductance data with the film
thicknesses estimated by XRF:

(1)
where dI/dV is the conductance from the 4-point-probe measurement, t is estimated film thickness from the XRF
measurements, and σ is conductivity.
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Outliers were excluded from the conductance data using a kernel density exclusion method (see below). Outliers were also
excluded from the XRF film thickness estimates using the same exclusion method. Conductivities were calculated for
each position on the sample for which neither conductance nor XRF data was excluded. The mean of these conductivities
was returned to the optimizer (see below). In cases where all points were discarded, a mean conductivity of 0 was
reported.

The outlier kernel density exclusion method was performed by calculating Gaussian kernel density estimates for the
conductance and XRF data, normalizing the density between 0 and 1, and rejecting data points with a kernel density below
0.3. Bandwidths of 5 × 10−3 μΩ−1 m−1 and 5 × 103 cps were used for the conductance and XRF data, respectively.

Autonomous workflow step 7: Choose the next experiment

To choose the next experiment, Ada would request a new set of experimental conditions from a queue. If there was a
sample in the queue, then Ada would make and test that sample. If the queue was empty, a new set of experimental
conditions would be requested from the optimizer. Following the 15 random experiments (described in step 1), the
optimizer was configured to pass experiments to the queue that were selected using Bayesian optimization.

The Bayesian optimization was performed using the Botorch python package27 and would happen in two steps. First, a
surrogate gaussian process (GP) regression model was built over all existing data. The data covariates were normalized to
the unit cube and outcomes were standardized (zero mean, unit variance). A fixed noise GP model was used for the
surrogate model with standard deviation of the input data estimated to be of 0.2 MS/m. We chose 0.2 MS/m as the noise
estimate because it is 10% of the previously reported maximum conductivity value for this technique. All other
hyperparameters for the GP model were default. The model predictions are discussed in the supplementary discussion and
in Figs. S12-15.

Second, an acquisition function was selected and a new set of experimental conditions were acquired. The acquisition
function would cycle between four modes; upper confidence bound (UCB) with three different beta values (beta of 0.25,
25, 400) and a space-filling point. The space-filling point would select an experimental condition in the parameter space
that would maximize the distance to the closest other existing experiment. This cycling was necessary to accommodate
our parallel workflow. The acquisition functions were configured to maximize the conductivity while also effectively
searching the parameter space. Once a set of experimental conditions were found (via UCB or space-filling), the optimizer
would duplicate the result and pass two sets of experimental conditions to the queue.

This autonomous workflow from steps 2 to 7 was repeated until a critical error ultimately stopped the optimization after
91 experiments. During the optimization, the self-driving laboratory was stopped briefly four times to refill consumables
or to adjust a hardware component. Occasionally, these stops would result in some experimental conditions not having a
duplicate (eg. experiments 44, 46, 91). Re-booting the self-driving laboratory after a brief stop would occasionally
resulted in the same acquisition function to be used twice (or more) in a row (eg. experiments 16/17 and 60/61).

Space-filling point

The space-filling point algorithm employed a monte-carlo-based distance optimization. A selection of 100 random points
were chosen in the parameter space. Each point was individually optimized according to a scheme which maximized the
objective function, min(|| x - a ||2), where x is the random point and a is a set of all available data points, subject to the
parameter bounds (see Table S1). We used the scipy.optimize.minimize function to accomplish this maximization for each
random point. This moves each point to the closest local maximum. The point that had the greatest objective function
value (i.e. the point that was furthest away from the next closest point) was chosen as the next experiment to perform.
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Scale-up experiment

Palladium precursor ink was sprayed on a 100 mm × 100 mm × 1.6 mm piece of glass. A new larger aluminum fixture (of
the same thickness) was made for the hotplate to accommodate the larger piece of glass.The scale-up experiment used the
same hotplate and thermocouple set-up as was used during the optimization. The volume of ink sprayed and the spray
pattern were scaled-up while the experimental conditions remained the same as the optimization champion. The amount of
ink sprayed increased from 0.3 to 2.4 mL and the pattern size increased from 25 mm × 50 mm with 12 evenly-spaced lines
to 100 mm × 100 mm with 48 evenly-spaced lines (see pattern in SI Fig. S10b). The nozzle speed remained at 33.86 mm
s-1 for both small and large spray patterns.

A small-scale sample from the champion experiment (sample 123 from experiment 61) was chosen to analyze for
comparison against the large-scale sample. Conductance measurements were acquired with the four-point probe in a grid
pattern on both samples. The small sample had a grid of 100 points extending 5 points spaced 4 mm in the x-direction and
20 points spaced 2mm apart in the y-direction. The large sample had a grid of 576 points extending 24 points spaced 4
mm apart in the x-direction and 24 points spaced 4mm apart in the y-direction. The samples were then both characterized
for thickness. For the small sample, a high-resolution grid of XRF measurements was taken with each pixel spaced 0.2
mm apart and an integration time of 200 ms per pixel. For the large sample, a high-resolution grid of XRF measurements
was taken with each pixel spaced 0.18 mm apart and an integration time of 200 ms per pixel. The high-resolution grid was
down-sampled to match the pixel size and location of the conductance grid by averaging the high-res pixels in the
bounding box of the conductance pixel size. The down-sampled XRF pixel map was converted to thickness using the
same calibration curve as used during the optimization (see autonomous workflow step 4, calibration of XRF signal). The
conductivity was calculated for each pixel using the same method as used during the optimization (see autonomous
workflow step 6).
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Supplementary figures

All figures containing numerical data were created in Python using the matplotlib library, with the exception of Figure
S8c which was created using Microsoft Excel.

Figure S1 | Spray-coating is a scalable coating technique with numerous manipulated and responding variables. An
ultrasonic nozzle moves in a pattern across a substrate. Precursor ink is fed via a syringe pump to the nozzle tip where an
ultrasonic transducer breaks the fluid into tiny droplets. These droplets are then directed towards the substrate by a carrier
gas. The droplets impact the substrate and coalesce to form a film. Spray-coating has many manipulated variables and is
difficult to optimize. The manipulated variables must be tuned properly otherwise the resulting film will have poor
responding properties.
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Figure S2 | Adding DMSO to an acetonitrile-based precursor ink enabled spray-coating at higher temperature.
Two sets of spray-coated Pd films were prepared; the first at 225 °C and the second at 250 °C. Precursor inks containing
MeCN and no DMSO (labelled “0% DMSO” on the left side) were unable to make continuous films at 250 °C. As higher
relative amounts of DMSO was added to the precursor ink, continuous films were capable of being produced at 250 °C.

Figure S3 | Film conductivity is correlated with thickness for the spray-combustion synthesized films studied here.
This plot shows the conductivity plotted against the thickness for all samples. There is a clear trend of increasing
conductivity for increasing thickness, regardless of experimental conditions. The samples in the bottom right of the plot
show that it is possible to achieve thick films with low conductivity. This is likely due to the temperature of the hotplate
being insufficient to fully combust the precursors.
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Figure S4 | Scanning electron microscopy of a sample made using the champion experimental conditions revealed a
granular structure with pinholes. The grains are approximately 50 - 100 nm in diameter.

Figure S5 | Low spray height and high concentration were found to maximize Pd film thickness. This plot shows the
thickness plotted against the realized concentration for all samples. As the concentration goes up, so does the maximum
achievable thickness. The color indicates the height of the spraycoater nozzle. It can be seen that for the majority of
samples low nozzle height produced films on the upper boundary of thickness, regardless of concentration. This indicates
that low nozzle height improves the deposition efficiency.
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Figure S6 | Higher film thicknesses were associated with elevated DMSO content. This plot shows the film thickness
against the realized DMSO content. It can be seen that thicker films are possible with higher DMSO content. The thickest
films across DMSO content always have the lowest temperature (purple points) while the high temperature films (yellow
points) are never on the maximum thickness boundary. It should be noted that thinner films across all DMSO amounts
were the result of the effects of other experimental conditions (e.g. nozzle height, air flow rate, etc.).
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Figure S7 | Precursor inks containing DMSO yielded thicker films at higher temperatures. (a) Thickness
measurements for films with no DMSO and with 20% DMSO across a range of temperatures. Lines were fit to the data to
guide the eye. (b) The films from the above plot went through visible thickness changes at around ~235 °C for the
samples without DMSO and ~270°C for the films with 20% DMSO.
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Figure S8 | Thermal camera and thermocouple data revealed that spraycoating can reduce the local surface
temperature on the substrate by 30 °C. (a) thermal camera data showing the visible change in temperature on the
surface of the substrate when spray-coating. (b) Using a thermocouple attached to a glass substrate with thermal cement,
(c) the temperature of the surface of the substrate was measured to decrease by ~30°C during spray-coating.
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Figure S9 | Low ink flow rate is associated with higher film thickness at elevated temperature. At temperatures
below 240°C, there is no clear trend between temperature, spray flow rate, and thickness. At temperatures above 240 °C,
points with low flowrate (darker) have greater thickness. This suggests that the slower nozzle speed associated with lower
flow rates is causing the nozzle to linger over the same spot for longer, cooling the sample more with the compressed air.
This observation coincidentally lines up with the experiment performed in Figure S7 where the two lines cross over each
other at 240°C.
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Figure S10 | The spray-coater pattern for (a) the small scale sample and (b) the large scale sample. The small spray
pattern was used for all samples in the optimization campaign. Shown in blue are the locations for the 4-point probe and
thickness measurements from the autonomous workflow (see supplementary methods - autonomous workflow steps 4-6).
The center location (0 mm) is located directly in the center of the spray pattern.

Figure S11 | Requested pipetting volumes versus realized pipetting volumes for each precursor ingredient for each
sample in the optimization campaign. The requested volumes are based on experimental conditions requested for each
sample. The realized volumes are based on the gravimetric feedback from the weighscale on the precursor mixing station.
An error-free sample would fall on the grey dashed line in the center of each plot. Pipetting errors for palladium in
acetonitrile (panel a) generally result in lower conductivity due to less Pd being in the precursor ink. More pipetting errors
are reported for acetylacetone in acetonitrile (panel b) likely due to the small volumes that are requested.
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Figure S12 | Cross-sections of the final gaussian process model. These cross-sections were taken at the parameter
values of the champion sample (sample 123 from experiment 61). Each plot was made by building the GP model over the
dataset and predicting the conductivity at a fixed set of inputs (shown in the bottom right) and changing the only
parameter of interest across its range. These plots represent what the optimizer thinks and how the conductivity changes as
a function of each parameter.

Figure S13 | The r2 value of the model increases over the course of the campaign. The data in this plot represents the
r2 fit of the model each time a new experiment was requested during the optimization campaign (every other sample).
There is no data before sample 30 because those samples were selected randomly (i.e. no model was built). The data is
split by colour into four different campaign IDs from the four restarts of the self-driving lab.
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Figure S14 | The model was evaluated using leave-one-out cross validation (LOOCV) once the optimization was
complete to assess the prediction accuracy of the model on unseen data, yielding a r2 of 0.88. To perform LOOCV,
one sample was removed from the dataset while the gaussian process model was built over the remaining dataset. The
resulting model was used to predict the conductivity value of the sample that was left out. A higher r2 score means that the
model was better at predicting unseen data than a model with a lower r2 score.
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Figure S15 | Model predictions improved for low beta values (0.25 and 25) but not for the high beta value and
space-filling. (a) The model improved at predicting where high conductivity samples lie but got worse at predicting where
poor conductivity samples lie. (b) predictions of high conductivity are the result of the acquisition scheme of the
optimizer. Exploitive low beta values (0.25 and 25) resulted in high conductivity points while exploratory high beta values
(400) and space filling resulted in selection of experiments that were far from any previous data and generally resulted in
poor conductivity and poor predictions of conductivity. (c) and (d) show that in the beginning of the campaign, the model
was better at predicting exploratory points and by the end of the campaign it was better at predicting exploitive points. The
data for these plots was generated by iteratively building a gaussian process model over the “finished” samples and
predicting the conductivity of the next experiment. A lag of 4 data points was included to make the simulation similar to
our parallelized robotic workflows. The residuals shown are the predicted conductivity value of the model compared to
the measured value for the same experiment.
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