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Abstract

In this work, we propose a concise neural operator architecture for operator learn-
ing. Drawing an analogy with a conventional fully connected neural network, we
define the neural operator as follows: the output of the i-th neuron in a nonlinear
operator layer is defined by Oi(u) = σ

(∑
jWi ju + Bi j

)
. Here, Wi j denotes the

bounded linear operator connecting j-th input neuron to i-th output neuron, and the
bias Bi j takes the form of a function rather than a scalar. Given its new universal
approximation property, the efficient parameterization of the bounded linear oper-
ators between two neurons (Banach spaces) plays a critical role. As a result, we
introduce MgNO, utilizing multigrid structures to parameterize these linear opera-
tors between neurons. This approach offers both mathematical rigor and practical
expressivity. Additionally, MgNO obviates the need for conventional lifting and
projecting operators typically required in previous neural operators. Moreover,
it seamlessly accommodates diverse boundary conditions. Our empirical obser-
vations reveal that MgNO exhibits superior ease of training compared to CNN-
based models, while also displaying a reduced susceptibility to overfitting when
contrasted with spectral-type neural operators. We demonstrate the efficiency and
accuracy of our method with consistently state-of-the-art performance on different
types of partial differential equations (PDEs).

1 Introduction

Partial differential equation (PDE) models are ubiquitous in physics, engineering, and other dis-
ciplines. Many scientific and engineering fields rely on solving PDEs, such as optimizing airfoil
shapes for better airflow, predicting weather patterns by simulating the atmosphere, and testing the
strength of structures in civil engineering. Tremendous efforts have been made to solve various
PDEs arising from different areas. Solving PDEs usually requires designing numerical methods that
are tailored to the specific problem and depend on the insights of the model. However, deep learning
models have shown great promise in solving PDEs in a more general and efficient way. Recently,
several novel methods, including Fourier neural operator (FNO) (Li et al., 2020), Galerkin trans-
former (GT) (Cao, 2021), deep operator network (DeepONet) (Lu et al., 2021), and convolutional
neural operators Raonic et al. (2023), have been developed to directly learn the operator (mapping)
between infinite-dimensional parameter and solution spaces of PDEs. These methods leverage ad-
vanced architectures, such as Fourier convolution and self-attentions, to handle a variety of input
parameters and achieve high performance for forward and inverse PDE problems. The methodology
has been applied to biomechanical engineering and weather forecasting (You et al., 2022; Pathak
et al., 2022). Although deep neural operators have shown great potential to learn complex patterns
and relationships from data, they still have some limitations compared to the classical numerical
methods, such as lower accuracy and less flexibility to complex domain and boundary conditions.
To address these challenges, we investigate the intrinsic properties of PDE-governed tasks and de-
sign the neural operator architecture based on multigrid methods, one of the most commonly used
and efficient classical numerical algorithms.
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In this work, we propose a concise and elegant neural network architecture for operator learning.
Our contributions are summarized as follows:

• We introduce a novel formulation for neural operators where the connections between neu-
rons are characterized as bounded linear operators within function spaces. This approach
yields a new universal approximation result, making the commonly used lifting and pro-
jecting operators in traditional constructs unnecessary.
• Central to this formulation is the efficient parameterization of linear operators. In response,

we propose a distinct neural operator architecture, denoted MgNO. It employs the multi-
grid, with standard convolutions to parameterize the linear operator between neurons, align-
ing with our overarching goal of conciseness. Given the inherent ties between convolutions
and multigrid methods in PDE contexts, MgNO naturally accommodates various boundary
conditions.
• Our method establishes its superiority not only in prediction accuracy but also in efficiency,

both in terms of parameter count and runtime on several PDEs, including Darcy, Helmholtz,
and Navier-Stokes equations, with different boundary conditions. Such efficiency and pre-
cision resonate with the core philosophy of the multigrid method. Despite its minimal
parameter count, our model exhibits rapid convergence without susceptibility to overfitting
compared with other models, indicating a problem worth further investigation from both
theoretical and practical perspectives.

2 Background and related work

Neural operators In recent times, substantial efforts have been dedicated to the development of
neural networks or operators tailored for solving partial differential equations (PDEs). Lu et al.
(2021) introduced the DeepONet, employing a branch-trunk architecture grounded in the universal
approximation theorem in Chen et al. (1996). FNO parameterizes the global convolutional opera-
tors using a fast Fourier transform. Furthermore, geo-FNO Li et al. (2022) addresses tasks involving
intricate geometries, such as point clouds, by transforming data into a latent uniform mesh and
back. U-NO Rahman et al. (2022) improves FNO with a U-shaped architecture. The latent spec-
tral model (LSM) (Wu et al., 2023) tried to identify the latent space and represent the operator in
latent space. In addition, MWT Gupta et al. (2021) introduces a multiwavelet-based operator by
parametrizing the integral operators using a fast wavelet transform. Then, Cao explored the self-
attention mechanism Vaswani et al. (2017) and introduced a Galerkin-type attention mechanism
with linear complexity for solving PDEs. More recently, a convolution-based architecture has been
employed as a neural operator, as presented in Raonic et al. (2023). Among the notable approaches,
spectral-type neural operators have gained attention for their global operation characteristics. The
non-local operators have shown very promising results. Mathematical viewpoints provide universal
approximation property for such operators (Kovachki et al., 2021; Lanthaler et al., 2023). However,
their inherent limitation lies in their incapability to effectively handle boundary conditions. Meth-
ods like FNO, MWT, UNO, and LSM, rely on encoding boundary information within the input data,
making them reliant on specific data representations. These methods tend to learn low-frequency
component (Liu et al., 2022), which is not a surprise since high-frequency modes are often truncated
for the spectral type method. In these methods, convolutions in the neural operator construction are
parametrized by Fourier, or wavelet transforms. However, Fourier or wavelet-based methods are not
always appropriate for solving PDEs because of boundary conditions and aliasing errors. In con-
trast, local and geometrical neural networks, such as ResNet, DilResNet, UNet He et al. (2016a;b);
Ronneberger et al. (2015), offer greater flexibility in managing diverse boundary conditions. Nev-
ertheless, these approaches were not originally designed for solving PDEs and often necessitated a
substantial number of parameters to achieve high accuracy. Furthermore, they tend to act as high-
pass filters, focusing primarily on local features like edges, surfaces, and textures, which limits their
ability to capture long-distance relationships crucial in various physical phenomena. Large kernel
convolution could mitigate the issue, but the design of large kernels requires hand-crafted since it is
often hard to train (Ding et al., 2022).

Multigrid Multigrid methods Hackbusch (2013); Xu (1989); Trottenberg et al. (2000) stand out as
some of the most efficient numerical approaches in scientific computing, especially when tackling
elliptic PDEs. Intriguingly, within the deep learning community, multigrid methods first received
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mention in the original ResNet paper He et al. (2016a), where the authors cited the methods as a
core rationale behind the utility of residuals. Subsequently, the authors in He & Xu (2019); He et al.
(2023) established deeper and more extensive links between multigrid methods and ResNet, giving
rise to what is now known as MgNet. The research rigorously demonstrated that the linear V-cycle
multigrid structure for the Poisson equation, can be represented as a convolutional neural network,
despite their experimental focus on nonlinear multigrid with single-cycle structure for vision-related
tasks. The original MgNet and its subsequent adaptations in the context of numerical PDEs Chen
et al. (2022) and forecasting scenarios Zhu et al. (2023), have not provided a simple but effective
solution in the realm of operator learning. In this work, we aim to fundamentally integrate multigrid
methodologies with operator learning based on a very general framework.

3 A more general definition of neural operators

In this section, we present general deep artificial (abstract) fully connected (regarding neurons)
neural operators as maps between two Banach function spaces X = Hs(Ω) and Y = Hs′ (Ω) on a
bounded domain Ω ⊂ Rd.

3.1 Shallow neural operators from X to Y

To begin, we define the following shallow neural operators with n neurons for operators from X to
Y as

O(u) =
n∑

i=1

Aiσ (Wiu + Bi) ∀u ∈ X (1)

whereWi ∈ L(X,Y),Bi ∈ Y, and Ai ∈ L(Y,Y). Here, L(X,Y) denotes the set of all bounded
(continuous) linear operators between X and Y, and σ : 7→R defines the nonlinear point-wise acti-
vation.

Despite the absence of commonly used lifting and projection layers , we still have the following
universal approximation theorem based on this unified definition of shallow networks.

Theorem 3.1 Let X = Hs(Ω) and Y = Hs′ (Ω) for some s, s′ ≥ 1, and σ ∈ C(R) is non-polynomial,
for any continuous operator O∗ : X 7→ Y, compact set C ⊂ X and ϵ > 0, there is n such that

inf
O∈Ξn

sup
u∈C
∥O∗(u) − O(u)∥Y ≤ ϵ, (2)

where Ξn denote the shallow networks defined in equation 1 with n neurons.

Sketch of the proof: We begin by approximating O∗(u) ≈
∑m

i=1 fi(u)ϕi, where this is viewed as
a piecewise-constant operator. For this approximation, ϕi ∈ Y and fi : X 7→ R are continuous
functionals for all i = 1 : m. Subsequently, we approximate fi(u)ϕi by the aforementioned shallow
neural operatorOi(u) by using the properties ofX = Hs(Ω) and the classical universal approximation
results for shallow neuron networks on Rk. A detailed proof of this can be found in Appendix A.

3.2 Deep neural operators from X to Y

For clarity, let us define the product space Yn := Y ⊗Y ⊗ · · · ⊗ Y︸               ︷︷               ︸
n

. Subsequently, the bounded

linear operator acting between these product spaces can be expressed asW ∈ L (Yn,Ym). To be
more specific, the relation [Wh]i =

∑n
j=1Wi jh j holds for i = 1 : n, j = 1 : m, where h j ∈ Y and

Wi j ∈ L (Y,Y). Now, let us denote nℓ ∈ N+ for all ℓ = 1 : L as the number of neurons in ℓ-th
hidden layer with nL+1 = 1. Then, the deep neural operator with L hidden layers and nℓ neurons in
ℓ-th layer is defined as 

h0 = u ∈ X

hℓ(u) = σ
(
Wℓhℓ−1(u) + Bℓ

)
∈ Ynℓ ℓ = 1 : L

O(u) =WL+1hL(u) ∈ Y
(3)

whereWℓ ∈ L (Ynℓ−1 ,Ynℓ ) withW1 ∈ L (X,Yn1 ) and Bℓ ∈ Ynℓ . Unless otherwise specified, for
simplicity, in the rest of the article, we assume nℓ = n.
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We note that a standard hidden layer in GNO Kovachki et al. (2023) or FNO Li et al. (2020) is given
by

hℓ(u) = σ
(
Wℓhℓ−1(u) +Bℓhℓ−1(u) + bℓ

)
∈ Ynℓ , (4)

where
[
Wℓhℓ−1(u)

]
i
(x) =

∫
Ω
Ki(x, x′) · hℓ−1(u)(x′)dx′, Bℓ ∈ Rn×n, and bℓ ∈ Rn. The term Bℓhℓ−1

in GNO or FNO is typically referred to as a local linear operator. In our approach, the term is
interpreted as a specific parameterization of Bℓ in equation 3. To parameterize Bℓ ∈ Yn, the task
boils down to selecting appropriate bases for Y. If we adopt the bases

{
hℓ−1

1 , · · · ,hℓ−1
n ,1(x)

}
⊂ Y

for each
[
Bℓ

]
i
∈ Y with i = 1, . . . , n, then we can express

[
Bℓ

]
i
=

∑n
j=1 Bℓi jh

ℓ−1
j + bℓi1(x). Further,

this can be compactly written in vector form as Bℓ = Bℓhℓ−1 + bℓ, where Bℓ ∈ Rn×n and bℓ ∈ Rn.

From equation 3, a notable feature of our framework is the elimination of the commonly used lifting
layer in the first layer and the projection layer in the last layer, which are prevalent in most prior
neural operators Kovachki et al. (2023); Li et al. (2022). It’s important to highlight that these two
artificial layers are considered crucial for demonstrating the approximation capabilities across a wide
range of neural operators, as evidenced in Lanthaler et al. (2023).

However, in our proof of Theorem 3.1, a key insight that allows us to remove the lifting and projec-
tion layers is the high expressive capability of the linear operatorWℓ

i j ∈ L (Y,Y), which maps from
the i-th input neuron to the j-th output neuron for all i, j = 1 : n. As a result, a primary contribution
of this work is the introduction of a convolutional multigrid structure to parameterizeWℓ

i j.

4 Parametrization ofWℓ
i j andMgNO

In this section, we begin by discussing the rationale behind using multigrid to parameterize Wℓ
i j.

We then describe a standard multigrid process, framed in convolution language (single channel), for
solving an elliptic PDE. Subsequently, we outline the global parameterization of Wℓ inspired by
the multi-channel multigrid structure. Finally, we introduce our neural operator, MgNO, and touch
upon its boundary-preserving characteristics.

Motivation Given the Schwartz kernel theorem Schwartz (1950 and 1951); Duistermaat et al.
(2010), it is reasonable to select Wℓ

i j as a kernel version, i.e. Wℓ
i ju(x) =

∫
Ki, j(x, x′)u(x′)dx′ as

in equation 4. The primary challenge lies in appropriately parameterizing kernel functions Ki, j(x, x′)
on Ω × Ω. We further narrow our focus to a specific type of kernel known as Green’s functions,
which correspond to certain elliptic PDEs with specific boundary conditions. For practical purposes,
we consider the discrete case for direct operator learning. Specifically, we have Ω = [0, 1]d for
d = 1, 2, 3 and

X = Y = Vh(Ω) := linear finite element space on Ω with mesh size h. (5)

For instance, when d = 2, the input is discretized as u(x) =
∑d

i, j=1 ui jϕi, j(x) 7→ u ∈ Rd×d, where
d = 1

h . Consequently, for anyWℓ
i j ∈ L (Y,Y), the dimensionality of the space L (Y,Y) becomes

d2 × d2. This dimensionality is challenging to parameterize directly for large values of d. Most
existing neural operators, such as those in Kovachki et al. (2023); Lanthaler et al. (2023), primarily
offer low-rank approximations of the kernel function in the spectral or wavelet domain. In this work,
we advocate for using multigrid structures to directly parameterize within the spatial domain.

4.1 Multigrid methods for discrete elliptic PDEs with boundary conditions

First, we offer a concise and practical overview of the rationale and methodology behind using multi-
grid techniques to parameterize Green’s functions. Consider the elliptic PDEs given byLu(x) = f (x)
defined over the domain Ω = (0, 1)2 and subject to Dirichlet, Neumann, or periodic boundary con-
ditions. Employing a linear FEM discretization with a mesh size defined as h = 1

d , the discretized
system can be expressed as:

A ∗ u = f , (6)
where u, f ∈ Rd×d. Here, ∗ represents the standard convolutional operation for a single channel,
complemented by specific padding schemes determined by the boundary conditions. The kernel
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A, of dimensions 3 × 3, is dictated by the elliptic operator L in conjunction with the linear FEM.
Consequently, the inverse operation of A∗ corresponds to the discrete Green’s function associated
with L under a linear FEM framework. As demonstrated in He & Xu (2019); He et al. (2021), the
V-cycle multigrid approach for solving equation 6 can be precisely represented as a conventional
convolutional neural network with one-channel.

We provide a concise overview of the essential components of multigrid structure in the language of
convolution as an operator mapping from f to u:

1. Input ( f ) and Initialization: Set f 1 = f and initialize with u1,0 = 0.
2. Iteration (Smoothing) Process: The algorithm iteratively refines u based on the relation:

uℓ,i = uℓ,i−1 + Bℓ,i ∗
(

f ℓ − Aℓ ∗ uℓ,i−1
)
, (7)

where ℓ = 1 : J and i ≤ νℓ.
3. Hierarchical Structure via Restriction and Prolongation: The superscript ℓ denotes the

specific hierarchical level or grid within the multigrid structure. Specifically, using the
residual, we restrict the input f ℓ and the current state uℓ to a coarser level through convolu-
tion with a stride of 2:

f ℓ+1 = Rℓ+1
ℓ ∗2

(
f ℓ − Aℓ ∗ uℓ

)
∈ Rdℓ+1×dℓ+1×n, uℓ+1,0 = 0. (8)

Subsequently, we apply the smoothing iteration as in equation 7 to derive the correction
from the coarser level. The correction is then prolonged from the coarser to the finer level
using a de-convolution operation Pℓ

ℓ+1 with a stride of 2 (acting as the transpose of the re-
striction operation). After this prolongation, one can either opt to prolong further to an even
coarser level (known as the Backslash-cycle) or proceed with post-smoothing followed by
prolongation (referred to as the V-cycle).

Let’s represent the linear operator defined by the aforementioned V-cycle multigrid operator as
WMg. The convergence result presented in Xu & Zikatanov (2002)

∥u −WMg(A ∗ u)∥A ≤
(
1 −

1
c

)
∥u∥A, (9)

demonstrates the uniform approximation capabilities of WMg relative to the inverse of A∗, which
corresponds to the Green’s function associated with the elliptic operatorL. Here, c is a constant that
is independent of the mesh size h, and ∥u∥2A = (u, A ∗ u)L2(Ω) denotes the energy norm. Please refer
the Section C in Appendix for more details regarding the approximation property. We quantify the
constant c in equation 9 numerically using a concrete example.

Figure 1: Overview ofWMg using a multi-channel V-cycle multigrid framework.

4.2 Architecture ofMgNO

Finally, we introduce a surrogate operator, denoted as MgNO. This operator maps from the linear
finite element space of input functions, represented by u ∈ Rd×d×cin � X := Vh(Ω), to the linear
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finite element space of output functions, represented by v ∈ Rd×d×cout � Y := Vh(Ω). The mapping
is defined as: 

h0 = u ∈ X,

hℓ(u) = σ
(
Wℓ

Mgh
ℓ−1(u) +Bℓhℓ−1(u) + bℓ1

)
∈ Yn, ℓ = 1 : L,

v = G̃θ(u) =WL+1
Mg (hL(u)) ∈ Y.

(10)

Here,W1
Mg ∈ L (X,Yn),Wℓ

Mg ∈ L (Yn,Yn), for ℓ = 2 : J and WL+1
Mg ∈ L (Yn,Y) are multi-channel

linear operators that process multi-channel input hℓ−1 and outputWℓ
Mg(hℓ−1). The function σ is the

point-wise GELU activation, with Bℓ ∈ Rn×n and bℓ ∈ Rn.

We observe that directly using a one-channel WMg to parameterize each Wℓ
i j in equation 3 indi-

vidually lead to expressivity and efficiency limitations. It is advantageous to design all Aℓ, Bℓ,i,
restriction operators Rℓ+1

ℓ
, and prolongation operators Pℓ

ℓ+1, for ℓ = 1 : J, as multi-channel convolu-
tional kernels. A detailed exposition of the multi-channel multigrid in the convolutional context is
available in Algorithm 1 Appendix B and figure 1. Two primary motivations drive our choice of this
strategy. Firstly, as established in He et al. (2022), channels in deep CNNs, for 2D inputs, function
analogously to neurons in terms of their universal approximation capabilities. Consequently, aug-
menting the number of channels in multigrid enhances the expressiveness ofWMg. Secondly, this
approach aligns with classical multigrid methods applied to solve elliptic partial differential equa-
tion system, including linear elasticity problems in 2D or 3D scenarios. In such cases, the V-cycle
multigrid methods can be naturally represented as linear MgNO with multi-channel inputs. From a
practical standpoint, the multi-channel variant ofWMg possesses a parameter count on the order of
O

(
log(d)n2

)
and complexity on the order of O(d2n2). Ultimately, by substitutingWℓ in equation 3,

withWℓ
Mg, we derive our MgNO as presented in equation 10. It’s important to note thatWℓ

Mg does
not include any nonlinear activation.

Boundary-preserving discretization in MgNO It is imperative to highlight that MgNO is adept
at accommodating the boundary conditions of various PDEs. Leveraging the inherent relationship
between convolutions and multigrid, the output ofWℓ

Mg can seamlessly satisfy Dirichlet, Neumann,

or periodic boundary conditions. Consequently, G̃θ(u) can maintain these boundary conditions with-
out any training phase, provided by taking B1 = 0 in equation 10 and ensuring 1(x) satisfies the
same boundary conditions. One can refer to Table 4 in Section F for specific convolution configura-
tion for specific boundary conditions, and also Section C in Appendix for an concrete example of
integrating boundary conditions into neural operators.

5 Experiments

General setting We consider pairs of functions (u j,v j)N
j=1, where u j is drawn from a probability

measure µ and v j = G(u j). Given the data (u j,v j)N
j=1, we approximate G, by solving the network

parameter set θ via an optimization problem:

min
θ∈Θ
L(θ) := min

θ∈Θ

1
N

N∑
j=1

[
∥G̃θ(u j) − v j∥

2
]
. (11)

Benchmarks To substantiate the superiority of our method, we conducted comprehensive method
comparisons across multiple benchmark scenarios. These benchmarks were categorized based on
their association with specific partial differential equations (PDEs, namely Darcy, Navier-Stokes,
and Helmholtz benchmarks. Furthermore, we incorporated tasks encompassing both regular and ir-
regular domains, each subject to a variety of boundary conditions. This comprehensive comparison
allows us to thoroughly assess the robustness and adaptability of our method, ensuring its effective-
ness in real-world scenarios. For clearness, we summarize the benchmarks in Table 5. Please also
refer to Section D for more detailed descriptions.

Baselines We perform a comprehensive comparison with existing methods: (1) We include the
original FNO (Li et al., 2020); (2) UNet (Ronneberger et al., 2015) and U-NO (Rahman et al.,
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2022); (3) multiwavelet neural operator (MWT) (Gupta et al., 2021); (4) Galerkin transformer (GT)
(Cao, 2021); (5) latent spectral models (LSM) (Wu et al., 2023); (6) learned simulator for turbu-
lence (DilResNet) (Stachenfeld et al., 2021). (7) Fine-tuned FNO (sFNO-v2) (Benitez et al., 2023).
The baseline models were implemented using their official implementations. For consistency, we
executed the baselines with default hyperparameters unless the experiments’ details specified oth-
erwise. In cases where specific experiment details were lacking in the literature, we employed a
reasonable network scale to ensure a fair comparison. In our training setup, we implemented a com-
prehensive approach. We trained the baselines using multiple configurations, including their default
training settings encompassing different loss functions, training algorithms, and schedulers. We then
reported the best results from these trials to mitigate any training-related variations. Notably, our
observations revealed that all models benefited from the scheduler utilizing cosine annealing learn-
ing rates. Figure 3 will visually demonstrate that all models underwent sufficient training, ensuring
that their performance accurately reflects their capabilities.

Darcy The Darcy problems, widely recognized for their applicability to multigrid methods, serve
as a key focus. We anticipate substantial performance improvements compared to the current state-
of-the-art. To thoroughly assess our method, we incorporated three distinct Darcy benchmarks:
Darcy smooth, Darcy rough in Li et al. (2020), and Darcy multiscale in Liu et al. (2022). Darcy
smooth and Darcy rough both present two-phase media within the domain, featuring different in-
terface roughness levels. In contrast, Darcy’s multiscale presents media with multiple scales of
permeability. Darcy rough and multiscale Darcy challenges our method’s ability to capture operator
dependencies on fine-scale features, a task that poses difficulties for existing methods. Please refer
D.1 for detailed datasets description and experiments setup.

Table 1: Performance comparison for Darcy benchmarks. Performance are measured with relative
L2 errors (×10−2) and relative H1 errors (×10−2).

Darcy smooth Darcy rough Darcy multiscale

Model time (s/iter) params (m) L2 H1 L2 H1 L2 H1

FNO2D 7.4 2.37 0.684 2.583 1.613 7.516 1.800 9.619
DilResNet 14.9 1.04 4.104 5.815 7.347 12.44 1.417 3.528
UNet 9.1 17.27 2.169 4.885 3.519 5.795 1.425 5.012
U-NO 11.4 16.39 0.492 1.276 1.023 3.784 1.187 5.380
MWT 21.7 9.80 — — 1.138 4.107 1.021 7.245
GT 38.2 2.22 0.945 3.365 1.790 6.269 1.052 8.207
LSM 18.2 4.81 0.601 2.610 2.658 4.446 1.050 4.226
MgNO 6.6 0.57 0.176 0.576 0.339 1.380 0.715 1.756
MgNO-high-in 9.5 0.85 0.103 0.469 0.275 0.799 0.504 1.579

— MWT (Gupta et al., 2021) only supports resolution with powers of two.
— FNO2D, U-NO and MWT’s performance are further improved from originally reported because of the usage of H1 loss and scheduler.
— The runtime and number of parameters count are using Darcy rough as the example case.

Remark 5.1 Note that MgNO-high-in is not directly comparable with other models. The MgNO-
high-in model differs from others, utilizing a higher input resolution of 512×512 in the Darcy rough
case, compared to the standard 256×256 used in other models. Inspired by reduced-order modeling
(Lucia et al., 2004; Hou et al., 1999; Engquist & Souganidis, 2008; Målqvist & Peterseim, 2014;
Owhadi & Zhang, 2007), it represents high-resolution input but targets a solution in a lower dimen-
sional space. This is achieved by adjusting the depth/level of theWMg that condenses the input to
the desired output resolution. Our findings suggest that high-resolution inputs enhance fine-scale
predictions, implying the model effectively balances computational efficiency with high fidelity. On
the other hand, by incorporating appropriate finite element basis functions, MgNO, compatible with
the finite element method, demonstrates the discretization invariant capability. MgNO can train on
lower-resolution datasets and evaluate on higher resolutions without the necessity of high-resolution
training data, thus accomplishing zero-shot super-resolution. Please see E for the detailed experi-
ments.

Table 5 and Figure 2 illustrate the precision with which our method predicts the fine-scale features
of the solution. The qualitative comparisons of the contour lines in the top row indicate the model’s
aptitude in accurately capturing small-scale variations, evidenced further by the low H1 error re-
ported in Table 5. Moreover, our method establishes its superiority not only in prediction accuracy
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Figure 2: Qualitative comparisons on Darcy rough benchmark. Top: coefficient a, ground truth u,
and predictions; bottom: the corresponding prediction error map for each model in the same color
scale.

but also in efficiency, both in terms of parameter count and runtime. Such efficiency and precision
resonate with the core philosophy of the multigrid method.

Figure 3: Comparison of training dynamics between MgNO, FNO and UNO. The x-axis represents
the number of epochs, and the y-axis is the error in the log scale. We present both the L2 and H1

training and testing accuracy (errors). For full comparisons, please refer D.1

Training Dynamics In Figure 3, we present the training dynamics of different models on bench-
mark Darcy rough. We train all the models in the same setting. Please see D.1 for further training set-
tings). Despite its minimal parameter count, our model exhibits rapid convergence without suscep-
tibility to overfitting. It is noteworthy that while larger models like MWT(9.80M), UNO(16.39M),
and LSM(4.81M) can achieve training errors comparable to, or even lower than, our model, their
testing errors are considerably higher. This discrepancy underscores our model’s robust generaliza-
tion capabilities on unseen data.

Helmholtz We conduct experiments on the Helmholtz equation. The Helmholtz equation poses
significant challenges for numerical methods, primarily due to the resonance phenomenon. Please
refer to D.3 for more details about the dataset. We present the comparison in Table 3 and Figure 8.

Navier Stokes Numerous studies have explored the use of neural operators for fluid dynamics
simulation Kochkov et al. (2021); Li et al. (2020); Stachenfeld et al. (2021); Mi et al. (2023). Our
focus is on the 2D Navier-Stokes equation in its vorticity form defined over the unit torus, T (refer
to Section D.2 for an in-depth discussion). The vorticity, represented by ω(x, t), is defined for x ∈ T
and t ∈ [0,T ]. We aim to learn the operator S : w(·, 0 ≤ t ≤ 9) → w(·, 10 ≤ t ≤ T ), which projects
the vorticity up to time 9 onto the vorticity up to a later time T , following the benchmark set by Li
et al. (2020). Our experiments consider viscosities of ν = 1e − 5 and conclude at time T = 20.
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Furthermore, we also test models on the same Navier-Stokes task with ν = 1e − 5 but introduce
an alternative training configuration labeled as “NS2”. It is imperative to note that in the Navier
Stokes ν = 1e−5 configuration with training tricks, all models incorporate these specialized training
techniques. These modifications consistently enhance performance when compared to the original
setup. The inclusion of these training tricks contributes to more stable generalization errors across
various models, justifying their use in performance comparisons. Hence, both evaluation methods
offer an equitable basis for contrasting the efficacy of our approach with existing baselines. A com-
prehensive overview of the training configurations and specific tricks can be found in Section D.2.

Table 2: Performance on Navier Stokes
Model time params(m) Pipe NS NS2

FNO2D 2.0 0.94 0.67 15.56 4.57
UNet 7.6 17.27 0.65 19.82 10.08
DilResNet 5.9 1.04 0.31 23.28 10.91
U-NO 56.1 30.48 1.00 17.13 2.64
MWT 6.2 9.80 0.77 15.41 3.09
LSM 24.3 4.81 0.50 15.35 12.93
MgNO 6.4 2.89 0.24 10.82 1.63

Table 3: Performance on Helmholtz
Model time params(m) L2(×10−2) H1(×10−2)

FNO2D 5.1 1.33 1.69 9.92
UNet 7.1 17.26 3.81 23.31
DilResNet 10.8 1.03 4.34 34.21
U-NO 21.5 16.39 1.26 8.03
sFNO-v2 30.1 12.0 1.72 10.40
LSM 28.2 4.81 2.55 10.61
MgNO 15.1 7.58 0.71 4.02

Table 4: Ablation & hyperparameter study
Model Configuration L2 Error (×10−2)
MgNO, 4 levels 2.10
MgNO, 3 levels 2.44
MgNO, without boundary condition 3.18
MgNO, 6 layers 1.47
MgNO-fno 3.91
Baseline MgNO 1.63

Ablation & Hyperparameter Study The
ablation study uses NS2 as a reference exam-
ple. The baseline MgNO is configured with 5
levels, 32 channel dimensions, utilizes periodic
boundary conditions, and comprises 5 architec-
tural layers. One can find the detailed config-
uration in Table 7. We conduct the ablation&
hyperparameters study by changing one model
configuration and fixing the others. In the first
and second rows, our analysis evaluated the im-

pact of the number of levels (depth) within the MgNO architecture. Given that our structure simply
merges convolution with a multigrid touch, this hyperparameter examination doubles as an ablation
study for the influence of neural network depth. The outcomes highlight the performance sensitiv-
ity of MgNO to its depth. This mirrors properties observed in traditional multigrid methods where
deeper algorithms are requisite for effectively mitigating low-frequency component errors. The third
row emphasizes the role of boundary conditions in convolution operations, underscoring the distinct
advantages of our method. Fourth row indicate adding more layers improves performance, but it also
increases computational costs. The MgNO-fno configuration offers a higher-level ablation. Here,
we substituted the multigrid parameterizedWi, j with the spectral convolution detailed in Li et al.
(2020). The ablation study reaffirms the strength of the MgNO approach, especially when integrat-
ing boundary conditions. This method not only resonates with traditional multigrid properties but
also encapsulates the essence of convolution-based neural operators, delivering optimal performance
in comparison to alternative convolution-based configurations.

Conclusion

In this work, we introduced a novel formulation for neural operators, where neuron connections
are characterized as bounded linear operators within function spaces, eliminating the need for tra-
ditional lifting and projecting operators. Central to our approach is the MgNO architecture, which
leverages multigrid structure and its multi-channel convolutional form to efficiently parameterize
linear operators, naturally accommodating various boundary conditions. Empirically, MgNO has
demonstrated superior performance in both accuracy and efficiency across several PDEs, including
Darcy, Helmholtz, and Navier-Stokes equations.

Moreover, there are still some questions worth future exploration. Our work does not sufficiently
benchmark tasks on irregular domains. For irregular domains, our current implementation of MgNO
requires a deformation mapping to transform the data into a regular format as shown in the pipe
task. Therefore, incorporating algebraic multigrid methods Xu & Zikatanov (2017) will enhance the
MgNO’s applicability to inputs and outputs in general format such as arbitrary sampling data points
and point clouds. Furthermore, MgNO achieves rapid convergence without overfitting, highlighting
a promising direction for future research.
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Reproducibility Statement The complete code used in our experiments is available at https://
github.com/xlliu2017/MgNO/. This repository includes all scripts, functions, and necessary files
for reproducing our results. Datasets employed in our experiments can also be accessed via URLs
provided in the repository. We have disclosed all configurations, encompassing hyperparameters,
model architectures, and optimization strategies. This ensures that our experimental setup is fully
transparent and can be replicated by others. To ensure the robustness of our results, each experiment
was conducted at least three times with different runs initiated using unique random seeds. This
approach is aimed at accounting for variability and guaranteeing the reliability of our findings.
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A Proof of Theorem 3.1

Here we present the detailed proof of Theorem 3.1 with the following steps.

1. Piecewise constant approximation of O∗: Since C ⊂ X is a compact set, for any ϵ > 0, there
are {ϕ1, · · · , ϕm} ⊂ Y and continuous functionals fi : X 7→ R for i = 1 : m such that

sup
u∈C

∥∥∥∥∥∥∥O∗(u) −
m∑

i=1

fi(u)ϕi

∥∥∥∥∥∥∥
Y

≤
ϵ

3
. (12)

Thus, we only need to prove that there is Oi ∈ Ξni such that

sup
u∈C
∥ fi(u)ϕi − Oi(u)∥Y ≤

ϵ

3m
. (13)

2. Parameterization (approximation) of X with finite dimensions to discretize fi: Since X =
Hs(Ω) and C is compact, we can find k ∈ N+ such that

sup
u∈C

∣∣∣∣∣∣∣∣ fi(u)ϕi − fi

 k∑
j=1

(
u, φ j

)
φ j

 ϕi

∣∣∣∣∣∣∣∣
Y

≤
ϵ

3m
∀i = 1 : m, (14)

where φi are the orthogonal basis in Hs(Ω). Then, for a specific fi : X 7→ R, let us define
the following finite-dimensional continuous function Fi : Rk 7→ R as

Fi(x) = fi

 k∑
i=1

xiφi

 , ∀c ∈ [−M,M]k, (15)

where M := supi supu∈C(u, φi).

3. Universal approximation of Fi on [−M,M]k using classical shallow neural networks F̃i(x)
for x ∈ [−M,M]k: If σ : R 7→ R is not polynomial, given by the results in Leshno et al.
(1993), there is ni ∈ N

+ and

F̃i(x) =
ni∑
j=1

ai jσ(wi j · x + bi j), (16)

where wi j ∈ R
k and ai j, bi j ∈ R, such that

sup
x∈[−M,M]k

∣∣∣Fi(x) − F̃i(x)
∣∣∣ ≤ ϵ

3m∥ϕi∥Y
. (17)

4. Representation of F̃i(x) using Ξni : Now, let us define Oi ∈ Ξni as

Oi(u) =
ni∑
j=1

Ai jσ
(
Wi ju + Bi j

)
(18)

where
Wi ju = wi j · ((u, φ1) , · · · , (u, φk))1(x) ∈ Y (19)

and Bi j = bi j1(x) ∈ Y, and

Ai j(v) = ai j
(v,1)

∥1∥2
ϕi. (20)

Here, 1(x) denotes the constant function on Ω whose function value is 1. This leads to

Oi(u) = F̃i (((u, φ1) , · · · , (u, φk))) ϕi

≈ Fi (((u, φ1) , · · · , (u, φk))) ϕi

= fi

 k∑
j=1

(
u, φ j

)
φ j

 ϕi.

(21)

5. Triangle inequalities to finalize the proof:

sup
u∈C

∥∥∥∥∥∥∥O∗(u) −
m∑

i=1

Oi(u)

∥∥∥∥∥∥∥
Y

≤ ϵ, (22)

where
∑m

i=1 Oi(u) ∈ ΞN with N =
∑m

i=1 ni.
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B Multigrid in convolution language

Algorithm 1 u =WMg( f , u1,0; J, νℓ, n)

1: Input: discretized input function f ∈ Rd×d×c f , discretized initial output function u1,0 ∈ Rd1×d1×n,
number of grids J, number of smoothing iterations νℓ for ℓ = 1 : J, number of channels n on
each grid.

2: Initialization: f 1 = K0 ∗ f ∈ Rd1×d1×n, u1,0 ∈ Rd1×d1×n , u1,0 = 0 if u1,0 is not given as input, and
discretized spatial size dℓ = d

2ℓ−1 for ℓ = 1 : J.
3: for ℓ = 1 : J do
4: Feature extraction (smoothing):
5: for i = 1 : νℓ do
6:

uℓ,i = uℓ,i−1 + Bℓ,i ∗
(

f ℓ − Aℓ ∗ uℓ,i−1
)
∈ Rdℓ×dℓ×n. (23)

7: end for
8: Note: uℓ = uℓ,νℓ
9: if ℓ < J then

10: Interpolation and restriction:

uℓ+1,0 = 0 and f ℓ+1 = Rℓ+1
ℓ ∗2

(
f ℓ − Aℓ ∗ uℓ

)
∈ Rdℓ+1×dℓ+1×n

11: end if
12: end for
13: for ℓ = J − 1 : 1 do
14: Prolongation:

uℓ,0 = uℓ + Pℓ
ℓ+1 ∗

2 uℓ+1 ∈ Rdℓ×dℓ×c

15: for i = 1 : νℓ do
16: Skip if Backslash-cycle OR do the following post-smoothing if V-cycle:

uℓ,i = uℓ,i−1 + Bℓ,i ∗
(

f ℓ − Aℓ ∗ uℓ,i−1
)
∈ Rdℓ×dℓ×n.

17: end for
18: end for
19: Output:

u = u1,ν1 ∈ Rd×d×n.

C A Numerical Example Illustrating the Approximation Property ofWMg

with Sepcific Boundary Condition in equation 9

We consider elliptic PDEs described by −∆u(x) = f (x) over the domain Ω = (0, 1)2, subject to
Dirichlet boundary conditions where u = 0 on ∂Ω. Using a linear Finite Element Method (FEM)
discretization with mesh size h = 1

(d+1) , the discretized equation is represented as:

A ∗ u = f , (24)

where u, f ∈ Rd×d and A =

 0 −1 0
−1 4 −1
0 −1 0

. Here, ∗ denotes the standard convolution operation

for a single channel, incorporating a zero-padding scheme with padding size 1 corresponding to the
Dirichlet boundary condition.

In the one-channelWMg configuration, as detailed in Algorithm 1, we need further configurations to
incorporating the Dirichlet boundary conditions. The convolutional layers Aℓ and Bℓ,i utilize zero-
padding of size 1. In contrast, the layers Rℓℓ+1 and Pℓ

ℓ+1, for ℓ = 1 : J, are set up without any

14
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Figure 4: The error, quantified on a logarithmic scale, numerically demonstrates the approximation
rate, which is approximately 1 − 1

c ≈ 0.1, as outlined in equation 9.

padding. The convolution weights are configured as follows:

Aℓ =

 0 −1 0
−1 4 −1
0 −1 0

 , Bℓ,i =

 0 1/64 0
1/64 12/64 1/64

0 1/64 0

 ,
Rℓ+1
ℓ =

 0 1/2 1/2
1/2 1 1/2
1/2 1/2 0

 , and Pℓ
ℓ+1 =

 0 1/2 1/2
1/2 1 1/2
1/2 1/2 0

 .
ImplementingWMg with these specific weights, we apply it iteratively to the right-hand side f for l
iterations, analogous to l layers in theWMg network. We define u(l+1) :=WMg( f , u(l)) with u(0) := 0.
The convergence rate observed is illustrated in Figure 4.

The configurations of these weights are based on fundamental facts of piecewise linear finite ele-
ments and multigrid algorithms. For further details on these configurations, one can refer to Briggs
et al. (2000); Braess (2007). For Neumann boundary conditions and periodic boundary conditions,
the implementation of reflect padding and periodic padding, respectively, each with a padding size of
1, aligns seamlessly with the discretization of the finite element method, facilitating straightforward
application without essential difficulty. The convergence behaviors are the same.

D Further details on benchmarks

Benchmarks Time dependent Regular domain # Dimension BD High resolution Multi-channel input
Darcy smooth No Yes 2D Dirichlet No No
Darcy rough No Yes 2D Dirichlet Yes No
Darcy multiscale No Yes 2D Dirichlet Yes No
Navier Stokes Yes Yes 2D Periodic No Yes
Pipe No No 2D Mixed No Yes
Helmholtz No Yes 2D Neumann No No

Table 5: Summary of benchmarks

D.1 Darcy

The Darcy equation writes {
−∇ · (a(x)∇u(x)) = f (x) x ∈ D

u(x) = 0 x ∈ ∂D
(25)

where the coefficient 0 < amin ≤ a(x) ≤ amax,∀x ∈ D, and the forcing term f ∈ H−1(D;R). The
coefficient to solution map is S : L∞(D;R+)→ H1

0(D;R), such that u = S(a) is the target operator.

Two-Phase Coefficient (Darcy smooth and Darcy rough) The two-phase coefficients and solu-
tions (referred to as Darcy smooth and Darcy rough in Table 5) are generated according to https://
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github.com/zongyi-li/fourier_neural_operator/tree/master/data_generation, and
used as an operator learning benchmark in (Li et al., 2020; Gupta et al., 2021; Cao, 2021). The coef-
ficients a(x) are generated according to a ∼ µ := ψ#N

(
0, (−∆ + cI)−2

)
with zero Neumann boundary

conditions on the Laplacian. The mapping ψ : R → R takes the value amax on the positive part of
the real line and amin on the negative part. The push-forward is defined in a pointwise manner. The
forcing term is fixed as f (x) ≡ 1. Solutions u are obtained by using a second-order finite difference
scheme on a suitable grid. The parameters amax and amin can control the contrast of the coeffi-
cient. The parameter c controls the roughness (oscillation) of the coefficient; a larger c results in a
coefficient with rougher two-phase interfaces, as shown in Figure 2.

Darcy multiscale coefficient We examine equation 25 that features a multiscale trigonometric
coefficient adapted from (Owhadi, 2017). This corresponds to the Darcy multiscale benchmark
highlighted in Table 5. The domain, denoted as D, spans the area [−1, 1]2. The coefficient a(x) is
formulated as

a(x) =
6∏

k=1

(
1 +

1
2

cos(akπ(x1 + x2))
) (

1 +
1
2

sin(akπ(x2 − 3x1))
)
,

where each ak is uniformly distributed between 2k−1 and 1.5× 2k−1. The forcing term is consistently
set to f (x) ≡ 1. Reference solutions are derived using P1 FEM on a grid resolution of 1023 × 1023.
Refer to Figure 5 for visual representations of both the coefficient and the solution.

(a) coefficient in log10 scale (b) reference solution in 2D

Figure 5: (a) multiscale trigonometric coefficient, (b) reference solution.

Training settings In the Darcy rough scenario, our data comprises 1280 training, 112 validation,
and 112 testing samples. For the Darcy smooth and multiscale trigonometric cases, the split is 1000
training, 100 validation, and 100 testing samples. Training is limited to 500 epochs for Darcy smooth
and rough, and 300 epochs for Darcy multiscale.

We trained various baselines using multiple configurations, focusing primarily on default training
settings with varying loss functions and schedulers. The optimal results were selected to ensure
consistency. The consistent boost in performance across all models was observed using the H1 loss
and the OneCycleLR scheduler with cosine annealing. Specifically, optimal models are trained with
a batch size of 8, the Adam optimizer, and OneCycleLR with cosine annealing. Although learning
rates varied to optimize training across models, MgNO started with a rate of 5 × 10−4, decreasing to
2.5 × 10−6. FNO, UNO, and LSM default to 1 × 10−3, with a weight decay of 1 × 10−4. CNN-based
models, like UNet and DilResNet, have a maximum rate of 5 × 10−4. As indicated in Figure 3, a
thorough training process ensured equitable model comparison.

All experiments were executed on an NVIDIA A100 GPU.

Training dynamics We present the training dynamics of different models on benchmark Darcy
rough. We train all the models in the same setting (we use the same batch size 8, Adam optimizer
and OneCycleLR scheduler with cosine annealing. OneCycleLR scheduler with a small learning
rate at the end allows models to be trained sufficiently. Note that the learning rate varies for different
models to allow models to be trained sufficiently) for 500 epochs and record the history of training
and testing errors during the process.
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Figure 6: Comparison of training dynamics between MgNO, FNO and UNO. The x-axis represents
the number of epoch and the y-axis the error in log scale. We present both the L2 and H1 training
and testing accuracy (errors).

D.2 Navier Stokes

We take the dataset to simulate incompressible and viscous flow on the unit torus, where the density
of the fluid is unchangeable ( ρ in Eq. In this situation, energy conservation is independent of mass
and momentum conservation. Hence, the fluid dynamics can be deduced with:

∇ · U = 0
∂w
∂t
+ U · ∇w = ν∇2w + f

w|t=0 = w0,

where U = (u, v) is a velocity vector in 2D field, w = |∇ ×U| = ∂u
∂y −

∂v
∂x is the vorticity, w0 ∈ R is the

initial vorticity at t = 0. In this dataset, viscosity ν is set as 10−5 and the resolution of the 2D field
is 64 × 64. Each generated sample contains 20 successive time steps, and the task is to predict the
future 10-time steps based on the past 10 time steps. The training dataset contains 1000 samples,
while the testing dataset contains 100. In the following, we describe two training setups.

Two training setups

• Original training setup: Samples consist of 20 sequential time steps, with the goal of
predicting the subsequent 10 time steps from the preceding 10. Using the roll-out prediction
approach as described by Li et al. (2020), the neural operator uses the initial 10-time steps
to forecast the immediate next time step. This predicted time step is then merged with
the prior 9 time steps to predict the ensuing time step. This iterative process continues to
forecast the remaining 10 time steps.
• New training setup: Our findings indicate that an amalgamation of deep learning strate-

gies is pivotal for the optimal performance of time-dependent tasks. While Li et al. (2020)
employed the previous 10-time steps as inputs for the neural operator, our approach simpli-
fies this. We find that leveraging just the current step’s data, similar to traditional numerical
solvers, is sufficient. During training, we avoid model unrolling. Instead, from the initial
1000 samples consisting of 20 sequential time steps, we derive 19,000 samples with pairs
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of sequential time steps. These are then shuffled and used to train the neural operator to
predict the subsequent time step based on the current one. For testing, we revert to the
roll-out prediction method as only the initial time step’s ground truth is available. These
methods align with some techniques presented in Brandstetter et al. (2022). As shown in
Table 2, the second approach provides better performance.

For both setups, we use the L2 loss function, the Adam optimizer, and the OneCycleLR scheduler
with a cosine annealing strategy. The learning rate starts with 1 × 10−3 and decays to 1 × 10−5. All
models were trained for 500 epochs.

Pipe This dataset in Li et al. (2022) is devoted to simulate incompressible flow through a pipe.
The governing equations are:

∇ · U = 0
∂U
∂t
+ U · ∇U = f −

1
ρ
∇p + ν∇2U.

The dataset is generated in the pipe-shaped structured mesh with the resolution of 129 × 129. For
experiments, we adopt the mesh structure as the input data, and the output is the horizontal fluid
velocity within the pipe.

Figure 7: The pipe task: On the left, the ground truth of the pipe flow is displayed, whereas the right
illustrates the prediction error of the MgNO.

D.3 Helmholtz equation

Helmholtz equation in highly heterogeneous media is an example of multiscale wave phenomena,
whose solution is considerably expensive for complicated and large geological models. We adopt
the setup from (De Hoop et al., 2022), for the Helmholtz equation on the domain D = [0, 1]2. Given
frequency ω = 103 and wave speed field c : Ω → R, the excitation field u : Ω → R solves the
equation 

(
−∆ −

ω2

c2(x)

)
u = 0 in Ω,

∂u
∂n
= 0 on ∂Ω1, ∂Ω2, ∂Ω4,

∂u
∂n
= 1 on ∂Ω3,

where ∂Ω3 is the top side of the boundary, and ∂Ω1,2,4 are other sides. The wave speed field is

c(x) = 20 + tanh(c̃(x)), where c̃ is sampled from the Gaussian field c̃ ∼ N(0,
(
−∆ + τ2

)−d
), where

τ = 3 and d = 2 are chosen to control the roughness. The Helmholtz equation is solved on a 100×100
grid by finite element methods. We aim to learn the mapping from c ∈ R100×100 to u ∈ R100×100 as
shown in Figure 8.

18



Published as a conference paper at ICLR 2024

(a) Prediction

(b) Error

Figure 8: The Helmholtz benchmark.

The Helmholtz equation is notoriously difficult to solve numerically. One reason is the so-called
resonance phenomenon when the frequency ω is close to an eigenfrequency of the Helmholtz oper-
ator for some particular wave speed c. We found that it was necessary to use a large training dataset
of size 4000 examples. The test dataset contained 400 examples. All models were trained for 100
epochs.

E Discretization invariance

FNO intrinsically leverages the Fourier basis, allowing models trained on lower-resolution datasets
to seamlessly process high-resolution inputs. By incorporating appropriate finite element basis func-
tions, MgNO, compatible with the finite element method, demonstrates an equivalent capability.
MgNO can train on lower-resolution datasets and evaluate on higher resolutions without the neces-
sity of high-resolution training data, thus accomplishing zero-shot super-resolution.

FNO MgNO

Train
Test 128 256 512 128 256 512

64 5.2808 7.9260 9.1054 1.032 1.178 1.205

Table 6: Comparison of discretization invariance property for MgNO and FNO for the Darcy multi-
scale benchmark. The relative L2 error (×10−2) with respect to the reference solution on the testing
resolution is measured.

F Model Configurations

We detail the primary configurations of the models in this section. Taking the number of iterations
per level as an example, the format [[1,1],[1,1],[1,1],[1,1],[1,1],[2]] is adopted. In the context of
the first level, the representation [1, 1] implies one a priori iteration followed by one post iteration
(as indicated by the two values separated by a comma).
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Modules Darcy (smooth/rough/multiscale) Navier Stokes Helmholtz

WMg :

Number of levels:
Channels per level:
Iterations per level:

Convolution A:
Convolution B:
Convolution R:

ConvTranspose P:
Layer normalization:

6
[24,24,24,24,24,24]

[[1,1],[1,1],[1,1],[1,1],[1,1],[2]]
3 × 3, zeros padding 1
3 × 3, zeros padding 1

3 × 3, zeros padding 1, stride 2
4 × 4, no padding, stride 2

No

5
[32,32,32,32,32]

[[1,0],[1,0],[1,0],[2,0],[2]]
3 × 3, circular padding 1
3 × 3, circular padding 1

3 × 3, circular padding 1, stride 2
4 × 4, no padding, stride 2

Yes

6
[32,64,128,256,512]

[[1,0],[1,0],[1,0],[1,0],[2]]
3 × 3, reflect padding 1
3 × 3, reflect padding 1

3 × 3, no padding, stride 2
4 × 4, no padding, stride 2

Yes
Number of layers: 4/4/5 5 3
Activation function: GELU GELU GELU

Table 7: Model Configurations
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