
In the appendix, we present details of the selective search algorithm, the ImageNet linear evaluation
results and the broader impact of this work.

A Selective Search

A.1 Implementation Details

There are mainly three parameters in the selective search approach: scale, σ and min_size. The
parameter scale controls the number and size of the produced segments, that higher scale means less
but larger segments. The parameter σ is the diameter of the Gaussian kernel used for smoothing the
image prior for segmentation. The parameter min_size denotes the minimum component size. We
use the default values of this approach: scale = 500, σ = 0.9 and min_size = 10.

A.2 Visualization

Figure 1 shows the proposals generated by the selective search approach, which shows reasonably
good to cover the objects.

Figure 1: Proposals found by the selective search approach. The visualized proposals are randomly
drawn from all proposals in each image for clear view.

A.3 Statistics

The distribution of proposal number and size in each image are shown in Figure 2.

B Linear Evaluation on ImageNet-1K

In this section, we present the ImageNet-1K linear evaluation results for reference.

Only the backbone (ResNet-50) weights are leveraged for ImageNet linear classification, and all
of the dedicated modules (e.g. FPN) are dropped. Our linear classifier training follows common
practice [1, 5, 6, 2]: random crops with resize of 224 × 224 pixels, and random flips are used for
data augmentation. The backbone network parameters and the batch statistics are both fixed. The
classifier is trained for 100 epochs, using a SGD optimizer with a momentum of 0.9 and a batch size
of 256. The initial learning rate is set to 30 and the weight decay is set to 0. In testing, each image is
first resized to 256× 256 pixels using bilinear resampling and then center cropped to 224× 224.
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Figure 2: (Left) Histogram of the proposal number per image. (Right) Histogram of proposal size.
We denote the proposal size by

√
hw, where h and w are the height and width of the proposal box,

respectively.

Table 1: Comparison with state-of-the-art methods on ImageNet-1K linear evaluation with the
ResNet-50 backbone. The table is split to two sub-tables for better placement.

(a) Sub-table 1.

Methods Epoch Top-1 Top-5

Supervised 90 76.5 -

SoCo (C4) 100 59.7 82.8
SoCo (C4) 400 62.6 84.6
SoCo (FPN) 100 53.0 77.5
SoCo (FPN) 400 54.2 79.5
SoCo* (FPN) 400 53.9 79.2

(b) Sub-table 2.

Methods Epoch Top-1 Top-5

MoCo [1] 200 60.6 -
SimCLR [2] 1000 69.3 89.0
MoCo v2 [3] 800 71.1 -
InfoMin [4] 800 73.0 91.1
BYOL [5] 1000 74.3 91.6
SwAV [6] 800 75.3 -
SimSiam [7] 800 71.3 -

Table 1 reports top-1 and top-5 accuracies (%) on the ImageNet-1K validation set. The performance
of SoCo is lower than previous image-level self-supervised pretraining methods. We expect joint
image-level and object-level tasks could bridge this gap, and will be left as our future exploration.

C Data Efficiency

We conduct experiments to verify the data efficiency of our method. Concretely, we randomly select
50% of the training data from COCO dataset for SoCo* finetuning, the result is compared with the
model trained on full COCO training data by using supervised pretraining. We use the standard
COCO 1× setting. Table 2 shows the comparison, our method has 2× data efficiency compared with
supervised pretraining.

Table 2: Data efficiency experiment by using Mask R-CNN with R50-FPN.

Method Data amount APbb APbb
50 APbb

75 APmk APmk
50 APbb

75

Supervised 100% 38.9 59.6 42.7 35.4 56.5 38.1
SoCo* 50% 40.1 60.2 43.9 35.7 57.0 37.9

D Broader Impact

This work aims to design a self-supervised pretraining method for object detection. Any object
detection applications may benefit from this work. There may be unpredictable failures. The
consequences of failures by this algorithm are determined on the down-stream applications, and
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please do not use it for scenarios where failures will lead to serious consequences. The method is
data driven, and the performance may be affected by the biases in the data. So please also be careful
about the data collection process when using it.
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